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A B S T R A C T

The theme of this thesis is to apply ultrametric analysis to classical problems in analytic

number theory. This allows one to handle situations featuring high ramification at finite

places. While this strategy works in many cases, the main focus of this work is the sup-

norm problem for automorphic forms on GL2. Our treatment of the problem is spread

over two main parts.

First, we have to develop the necessary local theory which splits into archimedean

and p-adic cases. The results needed in the archimedean cases are mostly classical, but

recalling them in some detail will provide some guidance and intuition for the non-

archimedean cases. The ultrametric situation is far less developed. Here we compute

explicit expressions for the p-adic Whittaker function associated to a newform. These

expressions are new in most cases and lead to tight bounds for the Whittaker function

in question.

Second, we use the adelic framework and the theory of automorphic representations

to put the local pieces together and treat the sup-norm of automorphic forms over num-

ber fields. We establish lower bounds far up in the cusp coming from the transition

region, archimedean and non-archimedean, of the global Whittaker new vector. Further-

more, we prove hybrid upper bounds, in other words estimates that are explicit in all

major aspects of the automorphic form under investigation. We allow a wide variety of

representations at the archimedean places and make no restrictions at the finite one. In

that sense we go beyond the existing work.

iii





To Livia.

v





No man should escape our universities without knowing how little he knows.

— J. Robert Oppenheimer

A C K N O W L E D G E M E N T S

First of all I would like to thank A. Booker and A. Saha for there supervision. Next to

all the helpful advice they trusted me with the freedom that I needed.

Furthermore, I thank A. Corbett and R. Steiner for all the good coffee and the fruitful

discussions it was served with. On this note I should also mention K. Poulias, J. Dean

and many other Bristol graduate students who made the time in the office bearable.

Another big thank you goes to my teachers V. Blomer and A. Pohl who never lost

interest in my work.

Last but not least I thank my family, in particular Federica and Livia, for all their

support and patience. Without them this thesis would have not been possible.

vii





D E C L A R AT I O N

I declare that the work in this dissertation was carried out in accordance with the re-

quirements of the University’s ‘Regulations and Code of Practice for Research Degree

Programmes’ and that it has not been submitted for any other academic award. Except

where indicated by specific reference in the text, the work is my own work. Work done

in collaboration with, or with the assistance of, others is indicated as such. Any views

expressed in this dissertation are those of the author.

10th May 2019

Edgar Assing

ix





C O N T E N T S

i part one 1

1 introduction and background 3

1.1 Local analysis of the Whittaker model . . . . . . . . . . . . . . . . . . . . . 4

1.2 A brief introduction to the sup-norm problem . . . . . . . . . . . . . . . . 6

1.3 Notation and prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 The archimedean fields R and C . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Non-archimedean local fields . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Number Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.4 The Group GL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

ii the local theory 25

2 the case of archimedean fields 27

2.1 The method of stationary phase . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Basic estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.2 Estimating the K-Bessel function . . . . . . . . . . . . . . . . . . . . 36

2.2 The Whittaker model for representations of GL2(R) . . . . . . . . . . . . . 40

2.3 The Whittaker model for representations of GL2(C) . . . . . . . . . . . . . 44

3 the case of non-archimedean fields 49

3.1 The p-adic method of stationary phase . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Evaluation of Gauß sums . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.2 An explicit p-adic method of stationary phase and some tricks . . 54

3.1.3 Evaluating twisted Kloosterman sums . . . . . . . . . . . . . . . . 58

3.2 Computing finite Fourier coefficients . . . . . . . . . . . . . . . . . . . . . 62

3.2.1 Supercuspidal representations . . . . . . . . . . . . . . . . . . . . . 63

3.2.2 Twists of Steinberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.3 Irreducible principal series . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Integral representations for Whittaker new vectors . . . . . . . . . . . . . 72

3.3.1 Dihedral supercuspidal representations . . . . . . . . . . . . . . . . 72

xi



contents

3.3.2 Twists of Steinberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.3 Irreducible Principal Series . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 The size of Whittaker new vectors . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.1 Dihedral supercuspidal representations . . . . . . . . . . . . . . . . 89

3.4.2 Twists of Steinberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.4.3 Irreducible principal series . . . . . . . . . . . . . . . . . . . . . . . 117

3.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.5 Miscellaneous integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

iii global application 145

4 the sup-norm of cuspidal automorphic forms 147

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.2 Setting up the scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.3 Lower bounds for newforms near the cusp . . . . . . . . . . . . . . . . . . 158

4.4 The generating domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.4.1 Local preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.4.2 Finding the generating set . . . . . . . . . . . . . . . . . . . . . . . . 163

4.4.3 The action of ηL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.5 Counting results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.5.1 Counting field elements in boxes . . . . . . . . . . . . . . . . . . . . 168

4.5.2 Counting integer matrices . . . . . . . . . . . . . . . . . . . . . . . . 173

4.6 Estimates via the Whittaker expansion . . . . . . . . . . . . . . . . . . . . . 181

4.6.1 The Whittaker expansion of cusp forms . . . . . . . . . . . . . . . . 181

4.6.2 The sum S1(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

4.6.3 The sum S2(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

4.6.4 The error E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

4.6.5 The final Whittaker bound . . . . . . . . . . . . . . . . . . . . . . . 194

4.7 Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

4.7.1 Amplification and the spectral expansion . . . . . . . . . . . . . . . 197

4.7.2 Estimating the geometric expansion . . . . . . . . . . . . . . . . . . 204

4.8 The two main sup-norm theorems . . . . . . . . . . . . . . . . . . . . . . . 210

bibliography 213

xii



Part I

PA RT O N E

This part provides a general introduction to the entire thesis. We will outline

the philosophy behind this work, provide some motivation for the results in

the following parts, and finally we will combine everything by briefly stating

the main results.

Furthermore, we will setup some notation and provide the necessary prereq-

uisites for the rest of the text.





1
I N T R O D U C T I O N A N D B A C K G R O U N D

The language of automorphic representations is a powerful framework for the study of

many problems in number theory. The obvious advantages are the uniform treatment of

different types of automorphic forms as well as the efficient notation handling number

fields. More importantly, it is the right scheme to attack problems featuring ramification.

Indeed, it not only offers the right tools to do so, it also clears up several phenomena by

analogy with the archimedean theory, which are usually better understood.

We will put this language to good use and obtain some new results towards the

sup-norm problem for automorphic forms on GL2. While doing so we will exploit all

the advantages mentioned above. Indeed, the theory of automorphic representations en-

ables us to treat a wide variety of objects such as modular forms, Maaß forms, Hilbert

modular forms, and combinations of these at once. Furthermore, the number field set-

ting will come across very natural and is far less tedious than in the classical language.

We will also see that treating square full level, requires a strategy which is borrowed

from the archimedean places.

It is the nature of the adelic approach that it essentially consists of two parts. The local

computations or preliminaries and the global argument. Locally, the analytic machinery,

to establish important estimates, is available. Globally, automorphy is exploited to piece

the local results together and prove the final result. This essentially dictates the structure

of this thesis. It consists of a local part and a global part. Both parts heavily rely on

existing theory and ideas. But in each part we also establish new results which are of

independent interest. This thesis relies heavily on the manuscripts [2, 4] by the author.

We will use the next sections for a more careful introduction of the two main parts of

this work.
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1.1 local analysis of the whittaker model

1.1 local analysis of the whittaker model

Uniform bounds for special functions, say the K-Bessel function, are by now a standard

tool in the spectral theory of automorphic forms. From the viewpoint of automorphic

representations many special functions appear in the Whittaker model of admissible,

irreducible, infinite dimensional representations. To illustrate this we begin the local

part by computing a suitable basis for the Whittaker model of an admissible, infinite

dimensional representation of GL2 over an archimedean field. We also recall the method

of stationary phase and derive useful bounds for the K-Bessel function.

Turning to the non-archimedean situation we observe that the representation theoretic

point of view provides a large source of special functions over Qp and other local fields.

The importance of these functions is underlined through their appearance in several

trace/period formulae. Unfortunately their properties are not as well understood as in

the archimedean situation. We are particularly interested in certain examples of p-adic

Whittaker functions.

The functions under consideration are elements of the Whittaker space

W(GL2(Qp),ψ) =

{
W : GL2(Qp)→ C smooth :

W


1 x

0 1

 g

 = ψ(x)W (g) for all x ∈ Qp, g ∈ GL2(Qp)

}
,

where ψ is a non-trivial additive character on Qp. The group GL2(Qp) acts on this space

by right translation. Thus we can look at subspaces of W(GL2(Qp),ψ) on which this

action is irreducible. These subspaces contain a special element that we call a Whittaker

new vector. The defining property is that it is right invariant by the compact open sub-

group

K1(n) =


1+ pna b

pnc d

 ∈ GL2(Zp) : a, b, c, d ∈ Zp


for minimal n. The new vector in an irreducible subspace is unique up to scaling and

we normalise it by W (1) = 1.

It turns out that the behaviour of a new vector is dictated by the underlying represen-

tation. Thus, given an irreducible, admissible representation π of GL2(Qp) we denote

the corresponding subspace of the Whittaker space byW(π,ψ) and the new vector con-
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1.1 local analysis of the whittaker model

tained within will be called Wπ. The first property of Wπ that comes to mind is its

absolute size. This leads to the invariant

h(π) = 1+
‖Wπ‖∞
‖Wπ‖2

first defined in [82]. This was studied in [69, 82], motivated by its connection to the

sup-norm of modular forms.

The methods in both papers [69, 82] rely heavily on π having a highly ramified cen-

tral characters. Thus, the values of h(π) for mildly ramified central character remained

somewhat mysterious. This produced some interest in finding out the truth. The conjec-

ture [69, Conjecture 2], based on assuming square root cancellation in certain sums of

epsilon factors, predicts that

h(π)�ε p
nε

as long as the exponent conductor of the central character is less than n
2 . However, it

quickly turned out that this conjecture is not accurate. Indeed, counter examples are

constructed by A. Saha and Y. Hu in an unpublished manuscript.

In this thesis we settle the question for the size of h(π) once and for all. Indeed we

prove that

h(π)�F max(q
n
12 , q

m
3
− n

12 )

wherem is the exponent conductor of the central character and F is any non-archimedean

local field of characteristic 0, odd residual characteristic q, and uniformiser $. This up-

per bound is sharp in the sense that for fixed central character and fixed even n there

are representations such that the upper bound is attained up to constant. Note that the

transition between the two exponents happens exactly at m = n
2 . If n = m, we recover

the exponent n
4 which already appeared in [82]. Furthermore, our results show that the

lower bounds obtained in [69, Theorem 2.8] are not best possible.

The upper bounds are derived using the method of stationary phase and the excep-

tional large values appear due to the existence of degenerate critical points. This is very

similar to the archimedean situation. It is the nature of ultrametric analysis that the

method of stationary phase yields a precise formula instead of an asymptotic expansion.

Thus, as a by-product, we obtain several explicit expressions for Wπ which we believe

to be of independent interest.
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1.2 a brief introduction to the sup-norm problem

Note that for odd n there are no degenerate critical points and we obtain the stronger

bounds

h(π)�F max(1, q
m
2
−n

4 ).

The starting point of the method of stationary phase is to use integral representations

for the Whittaker new vector on certain special matrices gt,l,v. Roughly we will prove

that

Wπ(gt,l,v) = C(t,π)

∫
O×

ξ(z)ψ(Tr(A(t)z) + v$−lNrE/F (z))dµE

for a two dimensional etalé algebra E with character ξ associated to π and explicit con-

stants C(t,π) ∈ C and A(t) ∈ E×. The choices for E and ξ can be naturally explained

for each π. Our proof of these integral representations is based on finite Fourier analysis

as well as the local functional equation. Note that similar formulae have been indepen-

dently obtained by N. Templier in 2011 (unpublished) and Y. Hu in 2016 (unpublished

except for the case of principal series which appeared in [46]).

The work described so far is built on the results published by the author in [4]. How-

ever, in this thesis we go beyond them. More specifically, we remove the restriction that

the local field is Qp. Furthermore, we perform the stationary phase arguments in much

more detail which leads to many explicit expressions for Wπ which did not appear

earlier.

We will apply these results to the sup-norm problem of automorphic forms. See below

for a more detailed description of the latter. However we believe that the formulae we

prove for Wπ are of interest beyond the applications given here.

1.2 a brief introduction to the sup-norm problem

Let M be a compact Riemannian surface with Laplace-Beltrami operator ∆. The eigen-

functions

∆φ = λφφ

are central objects in mathematical physics. In view of the correspondence principle one

expects a close connection between the geodesic flow on M and the mass distribution

properties of φ. The sup-norm

‖φ‖∞ = sup
x∈M
|φ(x)|

6



1.2 a brief introduction to the sup-norm problem

is one measure of the latter. The sup-norm problem asks for the true size of ‖φ‖∞. The

local bound, which we like to call the Hörmander bound, reads

‖φ‖∞ �M λ
1
4
φ‖φ‖2.

It is known as a local bound since its proof does not use any global information of M .

If M has negative curvature, the geodesic flow is ergodic and the Hörmander bound is

expected to be far from the truth. Indeed, in the specific case of compact surfaces with

negative curvature a bound of the form ‖φ‖∞ �ε λ
ε
φ‖φ‖2, for all ε > 0, should hold. In

the breakthrough paper [52], the authors use connections to number theory to exploit

the global structure of M and prove a sub-local bound

‖φ‖∞ �M λ
5
24

+ε

φ ‖φ‖2

for arithmetic surfaces M and Hecke-Maaß eigenforms φ. Since then there has been

much work extending their method. We will give a more comprehensive survey later on

in this thesis. For now let us only mention two recent results. In [70] hybrid bounds for

Hecke-Maaß newforms on congruence quotients of arbitrary level and central charac-

ter are proven. Furthermore, in [20] Hecke-Maaß newforms with square-free level and

trivial central character on congruence quotients over number fields are considered. In

this thesis we combine these two results non-trivially producing a general hybrid bound

over number fields.

Let us describe our result in some detail. Let F be a number field with archimedean

places ν ∈ S∞. Further let n = n2n
2
0 be an ideal factorised in square-free and square-

full part, and ω be a Hecke character of conductor m. Let φ be a newform of level n

and central character ω. We assume that φ is holomorphic of weight kν at real places

ν ∈ Shol ⊂ S∞, Maaß of weight 0 or 1 and spectral parameter Tν at the remaining real

places, and spherical with spectral parameter Tν at all complex places. To measure the

size of the archimedean parameters simultaneously we define

|T |sph =
∏

ν∈S∞\Shol

|Tν |[Fν : R] , |T |C =
∏

ν complex

|Tν |2 and |k|hol =
∏

ν∈Shol

|kv| .

The size of the ideals is determined by their absolute norms N (n), N (m) etc. We have

the following theorem.

7



1.3 notation and prerequisites

Theorem 1.2.1. In the setting described above we have

‖φ‖∞
‖φ‖2

�F ,ε (|T |sph |k|holN (n))εN (n0)
1
2N

(
m

(m, n0n2)

) 1
2
(
|T |

5
12
sph |k|

7
16
holN (n2)

1
3

+ |T |
1
4
sph |T |

1
4
C
|k|

1
4
holN (n2)

1
4

)
.

Furthermore, if Shol = ∅ and [FR : F ] ≥ 2 is the maximal totally real subfield of F , then

‖φ‖∞
‖φ‖2

�F ,ε (|T |∞N (n))ε |T |
1
2
− 1

8[FR : F ]−4
∞ N (n2)

1
2
− 1

8[FR : F ]−4N (n0)
1
2N

(
m

(m, n0n2)

) 1
2

.

The proof consists of two main parts. First, we estimate the Whittaker expansion to

gain good control high in the cusps. This can be compared to a maximum principle as

used in the classical theory of PDE’s. It is here where the understanding of the local

Whittaker new vectors, studied in the first part, comes in handy. Indeed, it is essential

to our estimate that we understand their support and their L2-size. Second, we apply

the so called amplification method. Here we exploit the global structure in form of an

amplifier to bound φ in the bulk. This step requires some local preliminaries. At places

with high ramifications we use a local test function to produce the dependence on n0

and m which can be seen as a p-adic version of the Hörmander bound.

We can also produce large values of Hilbert-Maaß newforms just as in [69, 82]. In this

case we find examples of forms which are large in every aspect simultaneously. These

are large values arising from the transition region of the Whittaker function. Thus, they

appear high in the cusp and may be interpreted as resonance phenomena before the

cusp form starts its decay. Large values in the bulk are of a very different origin and are

much harder to construct. We do not address them in this thesis.

The theorem stated here is based on the work [2]. However, we go slightly further by

including the possibility of Hilbert-Maaß forms. Over Q hybrid bounds for holomorphic

modular forms are folklore. However, to the best of our knowledge, such bounds in this

explicit form have not yet appeared in the literature. Furthermore, we keep the argument

quite general so that some extensions become easy to implement.

1.3 notation and prerequisites

In this section we introduce the necessary notation and provide some background. Ev-

erything should be quite standard. However, since conventions differ from source to

8



1.3 notation and prerequisites

source, we want to introduce our notation in some detail. All the background provided

in this section should be well known.

Our notation is taken from [2, 4] and we draw inspiration from the papers [20, 69,

70] as well as the thesis [30]. Additionally we use classical conventions from analytic

number theory. Indeed, for a positive function g we write f � g and g � f to mean

f = O(g). We may add parameters as subscript to indicate dependencies of the implied

constant. Further we write f � g if f � g and g � f . Note that the implied constants

may differ, if they agree we write f ∼ g. Finally we use e(x) = e2πix.

1.3.1 The archimedean fields R and C

Let F be either R or C. We equip F with the modulus

|x| =


sgn(x)x if F = R,

=(x)2 +<(x)2 if F = C.

We equip R with the standard Lebesgue measure µR (normalised by µR([0, 1]) =

(2π)−
1
2 ) and C with µC = µR ⊗ µR. Note that these are Haar measures for the additive

group. On the multiplicative group (F×,×) we define the Haar measure µ×F = |·|−1 µF .

Additive characters of F are very well understood. Indeed, we define

ψ(x) =


e(x) if F = R,

e(<(x)) if F = C.

Every character of the (locally compact topological) group (F ,+) is of the form ψa =

ψ(a·) for some a ∈ F . Thus we can identify the character group of (F ,+) with (F ,+)

itself. With this identification the Fourier transform is given by

[Ff ](y) = f̂(y) =

∫
F
f(x)ψy(x)

−1dµF (x).

Note that our measures are normalised such that ˆ̂f(x) = f(−x) for Schwartz functions

f ∈ S(F ).

Similarly easy are the multiplicative characters. Indeed, a generic multiplicative (quasi)-

character will be of the form

χ(x) =

(
x

|x|
1

[F :R]

)k
|x|s ,

9



1.3 notation and prerequisites

for s ∈ C and k ∈ Z. With this in mind we define the Mellin transform

[Mf ](χ, s) =

∫
F×

f(x)χ(x) |x|s dµ×F (x).

1.3.2 Non-archimedean local fields

We are now turning to the non-archimedean or p-adic world. We will restrict our atten-

tion to those fields which arise as localisations of number fields. Thus, F will be a finite

extension of Qp for some prime p.

Basic objects

Let F be a local field of characteristic 0. More precisely, F is a topological field of

characteristic 0 which is complete with respect to a discrete valuation v and has finite

residue field. Due to the classification of such fields, [63, Chapter II, Proposition 5.2], F

is a finite extension of Qp for some prime p and thus has residue field Fq for q = pf .

We normalise the valuation v to be surjective onto Z and fix a uniformiser $ ∈ F such

that v($) = 1. This choice is fixed once and for all and we ignore any dependence

on it that may arise. Equip F with the complete absolute value |·| = q−v(·) and let

o = {x ∈ F : |x| ≤ 1} denote the ring of integers in F . Note that o is a discrete valuation

ring with unique maximal ideal p = $o. We define the local zeta factor by

ζF (s) = (1− q−s)−1.

Let e = e(F/Qp) be the maximal ramification index of F over Qp and put κF = d e
p−1e.

Then we can define the p-adic logarithm by the convergent power series

logF (1+$κF x) =
∑
n≥1

(−1)n+1x
n$nκF

n
.

Measures and Volumes

Since (F ,+) is a locally compact group there is an up to scaling unique Haar measure

µF , which we normalise by µ(o) = 1. On the other hand we have the unique Haar

measure µ×F on (F×,×) normalised by µ×F (o
×) = 1. Note that these two measures are

connected by µ×F = ζF (1)
µF
|·| . The volumes of some important sets are

Vol(pn,µF ) = q−n and Vol(1+ pn,µ×F ) = ζF (1)q
−n, for n ≥ 1.

10



1.3 notation and prerequisites

By abuse of notation we will write 1+ p0 = o×.

Characters and integral transforms

The additive character theory is very similar to the archimedean case. We fix an additive

character ψ which is trivial on o and non-trivial on $−1o. Any additive character is of the

form ψa = ψ(a·). Let n(ψa) = −v(a). This is the smallest integer k such that ψa|pk = 1.

With this at hand we define the Fourier transform

[Ff ](y) = f̂(y) =

∫
F
f(x)ψy(x)

−1dµF (x).

Naturally this transform is defined for Schwartz-Bruhat functions f ∈ S(F ). These are

locally constant, compactly supported functions. Our measures are normalised such that
ˆ̂f(x) = f(−x).

The multiplicative theory is more involved. We define the set

X = {χ : F× → S1 : continuous character satisfying χ($) = 1}.

Then every (quasi)-character is of the form χ |·|s for s ∈ C and χ ∈ X. Note that this

decomposition depends on the choice of $ which we consider as fixed. An important

special function in this context is the Gauß sum

G(y,χ) =

∫
o×
ψ(xy)χ(x)dµ×F = [F(χ · 1o×)](−y).

which is essentially the Fourier transform of a multiplicative character.

To each (quasi)-character χ we associate the exponent conductor a(χ). This is the

smallest integer k ∈ N0 such that χ|1+pn = 1. Note that if a(χ) = 0 then χ|o× = 1

and χ = |·|s for some s ∈ C. If this is the case, we call χ unramified. We also define

Xn = {χ ∈ X : a(χ) ≤ n} and X′n = {χ ∈ X : a(χ) = n}. We have

]Xn = ζF (1)
−1qn and ]X′n =


q− 2 if n = 1,

ζF (1)−2qn else.

The Mellin transform of a Schwartz-Bruhat function f ∈ S(F×) is defined by

[Mf ](χ, s) =

∫
F×

f(x)χ(x) |x|s dµ×F .

Furthermore, we can associate to each character χ a L-factor by

L(s,χ) =


(1− χ($)q−s)−1 if χ is unramified,

1 else.

11
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Another crucial invariant is the so called ε-factor ε(s,χ). Note that this factor also de-

pends on the fixed additive character ψ. However, we hide this from the notation. The

exact shape and behaviour of these complex numbers are quite mysterious and we will

not describe them in more detail. They are connected to Gauß sum as follows.

G(x,χ) =



1 if a(χ) = 0 and v(x) ≥ 0,

−ζF (1)q−1 if a(χ) = 0 and v(x) = −1,

ζF (1)q
−a(χ)

2 ε( 12 ,χ
−1)χ−1(x) if a(χ) ≥ 1 and v(x) = −a(µ)

0 else.

(1.3.1)

This evaluation appeared for example in [31, Lemma 2.3] and will be used frequently in

what follows. Other important properties of ε factors are

ε(s,χ |·|c) = q−ca(χ)ε(s,χ), ε(s,χ) = ε(
1

2
,χ |·|s−

1
2 ) and ε(s,χ)ε(1− s,χ−1) = χ(−1).

If q is odd, then X contains a unique quadratic character which we will denote by χF .

Note that χF lives in X1. Furthermore, if F = Qp it reduces to the Legendre symbol via

the identification o×/(1+ p) = F×p .

Two dimensional étale algebras over F

The following notions have been introduced in [4] under the name quadratic space,

but two dimensional étale algebra is the appropriate name. In the special case of two

dimensions an étale algebra E over F is either a quadratic extension of F or it is simply

the algebra E = F ×F . If we are dealing with a quadratic extension, we let e = e(E/F )

be the ramification index and f = f(E/F ) be the degree of the residual extension. In

particular, we have ef = 2. By d = d(E/F ) we denote the valuation of the discriminant

of E/F , it satisfies d = e− 1. The Galois group is GalE/F = {1,σ}. The norm and the

trace are defined as usual by

Tr(z) = z + σz and NrE/F (z) = z · σz.

The Haar measure on E will be normalised as follows:

Vol(O,µE) = q−
d
2 ,

where O is the ring of integers in E. The unique maximal ideal in O is denoted by P

it will be generated by a uniformiser Ω of E. We will usually choose uniformisers such

that NrE/F (Ω) = $f . Note that this determines a canonical valuation vE on E.

12
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Further, let χE/F be the quadratic character on F× which is trivial on NrE/F (E
×) and

set

ψE = ψ ◦ Tr.

By [73, Lemma 2.3.1] we have

n(ψE) = −
d

f
.

Which again implies that the Haar measure µE is normalised to be self dual with respect

to ψE . Multiplicative characters on E are usually denoted by ξ and one can attach the

same objects as we did over F .

If E = F × F , we define the ring of integers to be O = o× o and the ideal P = p× p.

The Haar measure is simply the product measure µ×µ and all multiplicative characters

factor into two multiplicative characters on F×. To keep notation consistent we define

Tr(x1,x2) = x1 + x2 and NrE/F ((x1,x2)) = x1x2.

1.3.3 Number Fields

Let F be a number field of degree n = r1 + 2r2, where r1 is the number of real em-

beddings and 2r2 is the number of complex embeddings. We write OF for the ring of

integers in F . Prime ideals in OF are typically denoted by p. Each prime ideal gives rise

to a non-archimedean place of F which we also denote by p. The corresponding local

field will be called Fp and it is equipped with the local structure described above. In the

global setting we add a subscript p everywhere to indicate that these are local objects

at that particular place. Thus, we have |·|p , vp, · · · . We define N (p) = qp = ](OF/p). By

extending this multiplicatively we define the absolute norm N (a) of a fractional ideal

a. In a similar spirit we use ν for an archimedean place and at the same time for the

corresponding embedding ν : F → Fν . We put |·|ν = |·|
[Fν :R]. In the number field context

|·| without a subscript always denotes the standard absolute value on F ,R ⊂ C, while

|·|ν corresponds to the modulus defined on the archimedean local field Fν .

We define F∞ =
∏
ν Fν and equip it with the modulus |·|∞ =

∏
v |·|ν . Sometimes we

use |·|R (respectively |·|C) to denote the part of |·|∞ coming from the real (respectively

complex) embeddings only. Let Afin denote the finite adéles equipped with the absolute

value |·|fin being the product of all the local absolute values. The usual adéle ring is then

defined by AF = F∞ ×Afin and equipped with |·|A and µA in the usual manner. We

13
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also define the set of totally positive field elements F+ to contain all x ∈ F such that

xν > 0 for all real ν. Furthermore, put F 0(AF ) = {a ∈ AF : |a|AF
= 1} and embed

R+ ⊂ F∞ diagonally. Finally, we also define F∞,+ ⊂ F∞ to be the set of vectors having

positive entries over the real places. Note that the classical Minkowski space can be

identified with F∞ (as an euclidean vector space). This is the content of [63, Chapter I,

Proposition 5.1]. However, it is important to keep in mind that the canonical measure

on Minkowski space is 2r2(2π)
n
2 µ∞.

Further, let us choose ideal representatives θ1, . . . , θhF ∈ ÔF , where hF denotes the

narrow class number of F . By abuse of notation we will use θj to denote the element in

ÔF and also for the associated ideal. We write dF for the discriminant of F and d for

the different ideal of F . Then by [63, Theorem 2.9] we have N (d) = |dF |. For any ideal

m we use [m]n =
m

(m,n∞)
for the coprime-to-n part of m.

Note that, as explained in [20, Remark 1], we can find fundamental domains for

F×∞/O×F , F×∞/(O×F )2, F×∞/O×F ,+ and F×∞,+/O×F ,+ contained in the set

{y ∈ F×∞ : |yν | � |y|
1
n∞ for all ν}.

Elements in the latter set will be referred to as balanced. In particular, every (fractional)

ideal is of the form θj(α) for some j and a balanced α ∈ F×∞,+.

Fix an additive character ψQ = ψ∞
∏
p ψp on AQ, trivially on Q with ψ∞ = e(·). This

extends to a global character on AF via

ψ(x) = ψQ(TrAF \AQ
(x)). (1.3.2)

Note that we can choose our local unramified characters in such a way that

ψ(x) =
∏
ν real

ψν(xν)
∏

ν complex

ψν(2xν)
∏
p

ψp($
−vp(d)
p xp). (1.3.3)

The interesting multiplicative characters are the so called Hecke characters χ : F× \

A×F → C×. The easiest such character is given by |·|sA which defines an everywhere

unramified Hecke character. Note that due to the tensor product theorem we have the

decomposition χ = (⊗νχν)⊗ (⊗pχp), where each χν and χp is a character of the under-

lying local field. Furthermore, almost all χp are unramified. There is a unique integral

ideal m =
∏

p p
a(χp) such that χ factors through

F× \A×F → F×
∏
p

(1+ pvp(m)) \A×F → C×.
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Another important structural result is (a version of) the strong approximation theorem

for F× given in [63, Chapter VI, Proposition 1.9]. We have

F× ·

(
F∞,+ ×

∏
p

(1+ pvp(m))

)
\A×F

∼= ClmF .

Where ClmF = Jm
F /Pm

F is the (narrow) ray class group, for

Jm
F = {a fractional ideal such that (a,m) = 1} and Pm

F = {(a) ⊂ Jm
F : a totally positive}.

Note that after dealing with slight subtleties at the archimedean places the latter helps

to establish a correspondence between Hecke characters and Größencharakteren and

thus yields another structural description of Hecke characters. This is the content of [63,

Chapter VI, Corollary 6.14].

If χ : F× \A×F → C is a Hecke character, we associated the corresponding L-function

Λ(s,χ) =
∏
ν

Lν(s,χν)︸ ︷︷ ︸
=γ∞(s,χ)

∏
p

Lp(s,χp)︸ ︷︷ ︸
=L(s,χ)

.

Here we use the classical (analytic) notation which separates the archimedean and non-

archimedean parts. If χ is the trivial character, this leads to the Dedekind zeta function.

In this case the local factors reduce to ζp(s) at the finite places and we write ζn(s) =∏
p|n ζp(s). At the archimedean places we have Lν(1, s) = ΓR(s) = π−

s
2 Γ( s2 ) if ν is real

and Lν(1, s) = ΓC(s) = 2(2π)−sΓ(s) otherwise.

1.3.4 The Group GL2

Let R be a commutative ring with 1. Typically this will be one of the objects introduced

above. We set G(R) = GL2(R). We will also need the subgroups

Z(R) =

z(r) =
r 0

0 r

 : r ∈ R×

 , A(R) =

a(r) =
r 0

0 1

 : r ∈ R×

 ,

N(R) =

n(x) =
1 x

0 1

 : x ∈ R

 and B(R) = Z(R)A(R)N(R).

Further, let

ω =

 0 1

−1 0


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be the long Weyl element. If the ring R is equipped with Haar measures µ and µ×,

we use the identifications N(R) = (R,+), A(R) = R×, and Z(R) = R× to transport

these measures to the corresponding groups. Via the same identifications we can also

transport characters.

We will now describe the structure of G in more detail for some special choices of R.

GL2 over Archimedean fields

In this case the maximal subgroup is given by

K =


U2(C) if F is complex,

O2(R) if F is real.

A typical element in k(θ) ∈ SO2 is of the form

k(θ) =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 .

On the other hand, elements k[α,β] ∈ SU2(C) is given by

k[α,β] =

α −β

β α

 ,

for α,β ∈ C such that |α|+ |β| = 1. Finally, we equip K with the unique Haar probability

measure µK .

The representation theory of GL2 over archimedean fields is well known and we will

give a very brief summary later on.

GL2 over Non-Archimedean fields

In this case the maximal compact subgroup is given by K = G(o). We will also need the

following compact, open subgroups

K0(n) = K ∩

o $no

o o

 ,K0(n) = K ∩

 o o

$no o

 and

K1(n) = K ∩

1+$no o

$no o

 ,K2(n) = K ∩

 o o

$no 1+$no

 .
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We equip K with the Haar probability measure µK . We have the following decomposi-

tion of G(F )

G(F ) =
⊔
t∈Z

⊔
0≤l≤n

⊔
v∈o×/(1+$min(l,n−l)o×)

Z(F )N(F ) a($t)ωn($−lv)︸ ︷︷ ︸
=gt,l,v

K1(n). (1.3.4)

This suggests to define the invariants t(g), l(g) and n0(g) in the obvious way by writing

g ∈ Z(F )N(F )gt(g),l(g),vK1(n)

with v ∈ o×/(1+$n0(g)o×). We further define

n1 =
⌈n
2

⌉
,

n0 = n− n1,

n1(g) =


n0 if l(g) ≤ n0,

n1 if l(g) ≥ n1,
(1.3.5)

Let π be a infinite dimensional, admissible, irreducible representation of GL2(F ). Such

a representation comes with several invariants. Namely, the log-conductor n = a(π), this

is the smallest n ∈N0 such that π|K1(n) contains the trivial representation. Furthermore,

π has central character ωπ. We write m = a(ωπ) for the log-conductor of the central

character and define

m1(g) = max(0,n0(g)− n+m) ≤ max(0,m− n1) = m1.

The contragredient representation will be denoted by π̃. We attach the L-factor L(s,π)

and the ε-factor ε( 12 ,π) to π. Without loss of generality we may twist π by an unramified

character to ensure that ωπ ∈ X′m. Such representations are completely classified and

we follow [4] as well as [2] to describe this classification and its consequences in more

detail. More precisely we know each unitary, tempered, irreducible π belongs to one of

the following families.

1. Twists of Steinberg: π = χSt, for some unitary character χ satisfying χ($) = 1.

In this case we have ωπ = χ2 and a(π) = max(1, 2a(χ)). Furthermore, the L-factor

as well as the ε-factor are given by

L(s,π) =


L(s, |·|

1
2 ) if χ = 1,

1 if χ 6= 1,

and ε(
1

2
,π) =


−1 if χ = 1,

ε( 12 ,χ)
2 if χ 6= 1.
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2. Principal series: π = χ1 � χ2, for unitary characters χ1 and χ2. In particular,

a(π) = a(χ1) + a(χ2) and ωπ = χ1χ1. Concerning the L-factor we know

L(s,π) = L(s,χ1)L(s,χ2) and ε(
1

2
,π) = ε(

1

2
,χ1)ε(

1

2
,χ2).

3. Supercuspidal representations: If π is supercuspidal, then L(s,π) = 1 and all

the other invariants are more difficult to describe. However, if q is odd, we know

that every supercuspidal representation is dihedral. Thus π = ωξ, where ωξ is the

Weil representation constructed from a quadratic extension E/F and an unitary

multiplicative character ξ of E×. Details on the construction of ωξ can be found in

[73]. In this scenario we call π the dihedral supercuspidal representation associated

to (E, ξ). We find that a(π) = fa(ξ) + d and

ε(
1

2
,π) = γε(

1

2
, ξ), (1.3.6)

for some γ ∈ S1, given in [53, Section 2], depending only on E. The behaviour of

π under GL1-twists is described by χπ = ωξ·(χ◦NrE/F ) and the central character is

ωπ = χE/F · ξ|F× .

This list can be extracted from [35] and [73]. We will sometimes also allow principal

series associated to non-unitary characters χ1 and χ2 since these appear as local compo-

nents of Eisenstein series.

It is well known, that for G each admissible, irreducible, infinite dimensional repre-

sentation is generic. In other words it admits a unique ψ-Whittaker model W(π). This

Whittaker model contains an up to scaling unique new vector Wπ which we normalise

by Wπ(1) = 1. This vector is characterised by Wπ(gk) = W (g) for all g ∈ G and all

k ∈ K1(n). On the subgroup A(F ) this function is given by

Wπ


v$t 0

0 1


 =



q−t(s+1) if t ≥ 0 and π = |·|s St ,

χ1(v$t)q−
t
2 if t ≥ 0 and π = χ1 � χ2

with a(χ1) > a(χ2) = 0,

ωπ(v) if t = 0 and L(s,π) = 1,

0 else.

(1.3.7)

for t ∈ Z and v ∈ o×. This is stated in [69, Lemma 2.5] and proven in [31, Lemma 2.10]

by reducing it to results from [73].
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An important tool to understand the L- and ε-factors of a representation π is the local

functional equation

Z(W , s,µ)

L(s,µπ̃)
ε(s,µπ̃) =

Z(π̃(w)W , 1− s,µ−1ω−1π̃ )

L(1− s,µ−1π)
,

for

Z(W , s,µ) =

∫
F×

W (a(y))µ(y) |y|s−
1
2 dµ×F y,

a multiplicative character µ ∈ X, a Schwartz-Bruhat function W , and some complex

number s with sufficiently large real part. The action of π̃ on a Schwartz-Bruhat function

is understood by inclusion in the Kirillov model.

GL2 over Global fields

Over a global field we consider the group G(AF ). In this setting we will add subscripts

ν and p to all the local objects to indicate the corresponding local place ν or p. We define

the compact subgroups

K1(n) = K∞
∏
p

K1,p(vp(n)) and K = K∞
∏
p

Kp,

where K∞ =
∏
ν Kν . We view G(F∞) as a real Lie group and associate the Lie algebra

g∞ with universal enveloping algebra U(g∞) and center of the latter Z(g∞). The global

Hecke algebra of G(AF ) will be denoted by H .

We choose the product measure on K and A(AF ) coming from the previously defined

local measures. On the group N(AF ) = AF we put the measure

µN(AF ) =
2r2(2π)

n
2√

|dF |

∏
ν

µν
∏
p

µp.

This corresponds to the normalisation Vol(N(F ) \N(AF )) = 1, as can be seen from

strong approximation together with [63, Chapter I, Proposition 5.2].

Finally, we define

∫
Z(AF )\G(AF )

f(g)dµ(g) =

∫
K

∫
A×F

∫
N(AF )

f(na(y)k)dµN(AF )(n)
dµ×

A×F
(y)

|y|
dµK(k)

(1.3.8)

as in [35].

The global applications will be concerned with the study of cuspidal automorphic

forms. We will quickly summarise the definition of such forms and their relation to
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representation theory following [22]. A function φ is called an automorphic form on

G(AF ) if it satisfied the following properties1

1. φ(γg) = φ(g) for all g ∈ G(AF ) and all γ ∈ G(F ),

2. There is a simple element ξ ∈H such that f ∗ ξ = f ,

3. There is an ideal J ⊂ Z(g∞) of finite co-dimension which annihilates φ,

4. For each g ∈ G(AF ) the function φ(·g)|G(F∞) is slowly increasing.

We say φ is cuspidal if∫
N(F )\N(AF )

φ(ng)dn = 0 for almost all g ∈ G(AF ).

This definition may seem technical at first. However, it encompasses all possible classi-

cal notions. Furthermore, in this form the definition works for more general reductive

groups.

Of particular interest to us will be

φ ∈ L2
0(G(F ) \G(AF ),ω) ⊂ L2(G(F ) \G(AF ),ω)

which are right K1(n)-invariant, and eigenfunctions of the Casimir element (Cν)ν ∈

U(q∞) with eigenvalues (λν)ν . These are automorphic forms in the sense described

above. Thus, it is standard procedure to associate an cuspidal automorphic represen-

tation2 πφ to φ. As explained in [22, p. 4.6] each cuspidal automorphic representation

with central character ω can be (uniquely) realised as a closed invariant subspace of

L2
0(G(F ) \G(AF ),ω).

Let us describe the structure of the cuspidal automorphic representation π. We write

Vπ for the representation space of π. First note that since (π,Vπ) is a cuspidal auto-

morphic representation it is in particular unitary and admissible. For convenience we

assume throughout the text that the central character ωπ of π satisfies ωπ|R+ = 1. In

other words, the archimedean part of ωπ is trivial on the diagonally embeded positive

reals. This can be achieved without loss of generality by twisting by a character of the

form |·|iαAF
, for α ∈ R.

1 The term used in [22] is K∞-automorphic form. However, since we fixed our maximal compact subgroups

once and for all we dropped this from the notation. The K∞ dependence enters because the Hecke algebra

at archimedean places ν depends on Kν .
2 We use the definition of an automorphic representation given in [22, p. 4.6]. In particular irreducibility is

included in the definition.
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By the tensor product theorem [34, Theorem 4] we may assume that

π '
⊗
ν

πν ⊗
⊗
p

πp.

Where (πp,Vπ,p) (respectively (πν ,Vπ,ν) ) is an irreducible representation of G(Fp) (reps

G(Fν)) with central character ωπ,p (respectively ωπ,ν). Note that this decomposition also

preserves the subspaces of K-finite vectors.

As to Hecke characters, we can associate a L-function to an automorphic representa-

tion π. Indeed we set

Λ(s,π) =
∏
ν

L(s,πν)
∏
p

L(s,πp).

This completed L-function has a meromorphic continuation and satisfies a functional

equation. Furthermore, it encodes the arithmetic information of π and is a central object

in modern analytic number theory. Sometimes it is helpful to consider a slightly more

general object. We define the zeta integral

Z(s,φ,χ) =

∫
F×\A×F

φ(a(y)) |y|s−
1
2

AF
χ(y)d×y,

for a automorphic form φ ∈ Vπ, a Hecke character χ and s ∈ C. Again this posses a

functional equation

Z(s,φ,χ) = Z(1− s,π(w)φ,χ−1ωπ).

See [25, Chapter 3, (5.42)]. To gather more information about the structure of Z let us

assume that φ corresponds to a pure tensor and is cuspidal, so that it has the Whittaker

expansion

φ(g) =
∑
α∈F×

Wφ(a(α)g),

for

Wφ(g) =

∫
A\F

φ(n(x)g)ψ(−x)dx =
∏
ν

Wφ,ν(gν)
∏
p

Wφ,p(gp).

Unfolding reveals

Z(s,φ,χ) =
∏
ν

Z(s,Wφ,ν ,χν)
∏
p

Z(s,Wφ,p,χp).

for s with sufficiently large real part. Note that these are exactly the local zeta integral

for which we have a local functional equation.

21



1.3 notation and prerequisites

Finally, let us define some more geometric objects. Indeed, it is well known that if

F = Q then classical automorphic forms are thought to be functions on the upper half

plane H(2) = {z ∈ C : =(z) > 0}. Similarly, one defines upper half space by

H(3) = {x+ yj : x ∈ C, y ∈ R+} ⊂H, (1.3.9)

here H are the usual (Hamilton) quaternions over R. We write =(x+ yj) = y. Further

we equip H(2) and H(3) with the usual (euclidean) norm ‖ · ‖. Automorphic forms over

F can then be thought (by strong approximation) as living on copies of

H =
∏
ν real

H(2) ×
∏

ν complex

H(3). (1.3.10)

Points in H are usually denoted by P = (Pν)ν and we define the distances

uν(Pν ,Qν) =
‖Pν −Qν‖2

2=(Pν)=(Qν)
. (1.3.11)

We conclude this section by recalling the construction of so called Eisenstein series.

These describe the continuous spectrum by intertwining from unitary principal series

representations. We closely follow the exposition in [35].

We define the function H : G(AF )→ R+ via the Iwasawa decomposition as follows

H


1 x

0 1


a 0

0 b

 k

 =
∣∣∣a
b

∣∣∣
AF

for all k ∈ K.

H factors in the obvious way. We have H =
∏
ν Hν

∏
pHp.

We define the space

H̃(s) =

{
Ψ : G(AF )→ C : Ψ


αau x

0 βav

 g

 = ωπ(a)
∣∣∣u
v

∣∣∣s+ 1
2

∞
Ψ(g)

for α,β ∈ F×, a ∈A×F , x ∈AF , u, v ∈ R+,∫
K

∫
F×\F 0(AF )

|Ψ(a(y)k)|2 dµ×
A×F

(y)dµK(k) <∞
}
.

This defines a representation (πs, H̃(s)) of G(AF ) where G(AF ) acts by right transla-

tion. For s ∈ iR an inner product is given by

〈Ψ1,Ψ2〉H̃(s) =

∫
K

∫
F×\F 0(AF )

Ψ1(a(y)k)Ψ2(a(y)k)dµ
×
A×F

(y)dµK(k).

We can also view H̃(s) as a trivial holomorphic fibre bundle over H̃ = H̃(0). For φ ∈ H̃

we define Ψ(s) = Ψ ·H(·)s ∈ H̃(s).
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1.3 notation and prerequisites

Further, to Ψ ∈ H̃ we associate the Eisenstein series

EΨ(s, g) =
∑

γ∈B(F )\G(F )

[Ψ(s)](γg).

Note that the space H̃ is not irreducible. Indeed it can be decomposed in global prin-

cipal series representations χ1 � χ2 satisfying χ1χ2 = ωπ. This is useful when giving a

more explicit description of an orthonormal basis BH̃ for H̃.
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Part II

T H E L O C A L T H E O RY

This part is dedicated to the analysis of Whittaker vectors over local fields.

The uniqueness of the Whittaker model implies very strong factorisation re-

sults which allow us to understand many essential properties of global Whit-

taker functions by studying the corresponding local objects instead. In this

section we develop the necessary local theory. We will start in the archimedean

setting and then move into the p-adic world.

Of main interest to us are integral representations, explicit formula, support

properties, and asymptotic expansions for certain elements in the Whittaker

space of a local representation. In the case of archimedean fields these fea-

tures are mostly standard. However, it is still hard work to gather all the

results and present them in a unified matter. Therefore we include this case

here. In the non-archimedean case many of these results appear to be new.

In this section we fix a local field F . In particular all the corresponding ob-

jects, such as ψ, $, p, o etc., are those attached to this particular field and

appear without subscript.





2
T H E C A S E O F A R C H I M E D E A N F I E L D S

In this chapter F is either real or complex. We first recall some facts about the method

of stationary phase. Then we will consider Whittaker models of representations of G(R)

and G(C) by computing some important elements in terms of classical Whittaker func-

tions Wp,q, K-Bessel functions and even some hypergeometric functions. We conclude

by recalling some useful asymptotic expansions.

Besides introducing the archimedean method of stationary phase we obtain the follow-

ing key results. Corollary 2.1.7 provides general bounds for the K-Bessel function allow-

ing complex parameter with fixed real part. Further we compute and L2-normalise cer-

tain Whittaker vectors which will be important later on. See Lemma 2.2.2 and Lemma 2.3.4.

Note that the proper way to treat the archimedean places would be by considering rep-

resentations of the Hecke algebra or by using the language of (g,K)-modules. However,

for our rudimentary purpose it suffices to stick to simple representations.

2.1 the method of stationary phase

Oscillatory integrals of the form

I(t; y) =

∫
Rm

α(x)eitϕ(x,y)dx, (2.1.1)

where y varies in some parameter space N , appear frequently in mathematics. A helpful

tool for dealing with such integrals is the method of stationary phase. In this section

we will summarise the tools used later on. There are many good references concerning

the method of stationary phase. A very abstract version can be found in [45]. Here we

follow the more explicit approach taken in [13]. We were also inspired by the account

on the method of stationary phase given in [24]. Our exposition has the slight caveat

that it only deals with one dimensional integrals. However, this will be enough for our

applications.
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2.1 the method of stationary phase

2.1.1 Basic estimates

The function α appearing in (2.1.1) is usually referred to as amplitude, while ϕ is called

the phase. The method of stationary phase roughly states that the main contributions

of the integral (2.1.1) come from critical points of the phase. A critical point (x0, y0) ∈

Rm ×N of ϕ is a point which satisfies

∇ϕy0(x0) = 0.

Here ϕy = ϕ(·, y). Further, we call a critical point non-degenerate if the corresponding

Hessian quadratic form, Q(x0, y0), is non-degenerate.

The set

S = {y ∈ N : ∇ϕy(x) 6= 0, ∀x ∈ Rm}

is called the shadow zone. The light zone L consists of those y ∈ N which exhibit only non-

degenerate critical points. The remaining y are contained in the so called caustic locus C,

which therefore features the degenerate critical points. The reason for this distinction is

that the behaviour of I(t; y) depends on the degeneracy of y.

For y ∈ S we can derive very good upper bounds for I(t; y) simply by integration by

parts. This is made rigorous in [13, Lemma 8.1], which we recall now.

Lemma 2.1.1. Let y ≥ 1, X,Q,U ,R > 0 and let K ⊂ [α,β]× S be a compact set. Suppose

ϕ(x, y) is a smooth function such that

d

dx
ϕ(x, y) ≥ R for all (x, y) ∈ K

and
dj

dxj
ϕ(x, y)�j Y Q

−j for all (x, y) ∈ K, j ≥ 2.

Then ∫
R

αy(x)e
itϕ(x,y)dx�A


(β − α)Xt−

A
2

[(
QR√
Y

)−A
+ (
√
tRU)−A

]
(β − α)Xt−A

[(
QR√
Y

)−A
+ (RU)−A

]
,

for all A ∈N0, y ∈ pr2(K) and all α ∈ C∞(R) such that supp(α) ⊂ pr1(K) and

α
(j)
y (u)�j XU

−j .
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2.1 the method of stationary phase

Proof. The first bound follows directly from [13, Lemma 8.1] with h(u) = tϕ(u, y). The

second bound follows by observing that∫ ∞
−∞

αy(u)e
itϕ(u,y)du = t−n

∫ ∞
−∞

[Dnαy](u)eitϕ(u,y)du

for Df = − d
du [(i

dϕ
du )
−1f ] and n ∈ N. The claim follows after estimating trivially using

[13, (8.5), (8.6)] to deal with Dnαy.

Next we will recall an asymptotic formula valid for y in the light zone. The following

lemma is a slight simplification of [13, Proposition 8.2].

Lemma 2.1.2. Let 0 < δ < 1
10 , t,X,Y1,Y2,V ,Q > 0 be parameters and fix an integral J of

length V1 ≥ V and let K ⊂ J ×N be a compact set. Define Z = Q+X + tY2 + V1 + 1 and

assume that
t
1
3Y1

Y
2
3
2

≥ Zδ, Y1 ≤ 1 ≤ Y2 ≤ t
1
3 , and V ≥ QZ

δ
2

√
tY1

.

Suppose that for each y ∈ pr2(K) there is a unique x0(y) ∈ J such that ϕ′(x0(y); y) = 0.

Further, assume that

ϕ′′(x, y)� Y1Q
−2 and ϕ(j)(x, y)�j Y2Q

−j ,

for all j ≥ 2 and all (x, y) ∈ K. Then

I(t; y) =

∫
R

αy(x)e
itϕ(x;y)dx = eitϕ(x0(y);y)

e
πi
4

√
2π√

tϕ′′(x0(y); y)

(
αy(x0(y)) +Oδ

(
XZ−

δ
2

))
,

for all αy ∈ C∞(R) satisfying supp(αy) ⊂ pr1(K) and

α
(j)
y (x)�j XV

−j

for all (x, y) ∈ K.

For the sake of completeness we present the proof here. As it suffices for our purposes

we only compute the leading order term. However, the proof can be extended to provide

more terms of the asymptotic expansion just as in [13, Proposition 8.2].

Proof. Choose a parameter U = QZ
δ
2√

tY1
≤ V . By assumption we have

tY1U
2

Q2
≥ Zδ and

tY2U
3

Q3
≤ 1. (2.1.2)
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2.1 the method of stationary phase

Further, we fix κ0 ∈ C∞(R) supported in [−1, 1] such that κ0(x) = 1 for all |x| ≤ 1
2 . We

write

I1(t; y) =

∫
R

αy(x)

(
1− κ0

(
x− x0(y)

U

))
︸ ︷︷ ︸

fy(x)

eitϕ(x;y)dx. (2.1.3)

It is easy to check that f (j)y �j XU
−j on its support. Furthermore, the mean value

theorem implies that ∣∣ϕ′(x; y)∣∣� |x− x0(y)| Y1
Q2
� UY1

Q2
.

Thus we apply Lemma 2.1.1 together with (2.1.2) and get

I1(t; y)�A V1X

(
Z−

Aδ
2

√
tY1
Y2

+ Z−Aδ

)
� Z2−Aδ

1+

 t
1
3

Y
1
6
2

−A
� Z−B.

So far we have shown that

I(t; y) =

∫
R

αy(x)κ0

(
x− x0(y)

U

)
eitϕ(x;y)dx+OB,δ(Z

−B).

Let Hy(x) be defined by requiring that

ϕ(x; y) = ϕ(x0(y); y) +
1

2!
ϕ′′(x0(y); y)(x− x0(y))2 +Hy(x).

One checks that H ′y � U2Y2Q
−3 and H ′′y � UY2Q

−3. In particular, U is chosen such that

tH
(j)
y � U−j for j = 1, 2.

For j ≥ 3 we observe

tH
(j)
y (x) = tϕ(x; y)(j) � tY2Q

−j � (tY2)
1− j

3U−j � U−j .

With this at hand we define

gy(x) = αy(x)κ0

(
x0(y)− x

U

)
eitHy(x)

and observe that g(j)y �j XU
−j . We rewrite the integral I(t; y) as

I(g; y) = eitϕ(x0(y);y)
∫

R

gy(x)e
itϕ′′(x0(y);y)

2
(x−x0(y))2dx+OB,δ(Z

−B). (2.1.4)

The decay of ĝ allows us to write

gy(x) =

∫
R

ĝy(z)e(zx)dz =

∫
[−Z

δ
4
U

,Z
δ
4
U

]
ĝy(z)e(zx)dz +Oδ,B(Z

−B). (2.1.5)
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2.1 the method of stationary phase

Inserting this expression in (2.1.4), interchanging order of integration, and evaluating

the inner integral yields

I(g; y) = e
iπ
4
+itϕ(x0(y);y)

√
2π

tϕ′′(x0(y); y)

∫
[−Z

δ
4
U

,Z
δ
4
U

]
ĝy(z)e

(
x0(y)z −

πz2

tϕ′′(x0(y); y)

)
dz

+OB,δ(Z
−B).

By Taylor’s theorem we have

e

(
− πz2

tϕ′′(x0(y); y)

)
=

K∑
n=0

z2n

n!

(
−2π2i

tϕ′′(x0(y); y)

)n
+O

(
XZ−

(2K+1)δ
4

)
on the domain of integration. Next, we chose K = K(B, δ) big enough, extend the

truncated integral to R, and get

I(g; y) = e
iπ
4
+itϕ(x0(y);y)

√
2π

tϕ′′(x0(y); y)

[ ∑
n≤K

1

n!

(
−2π2i

tϕ′′(x0(y); y)

)n
·
∫

R

z2nĝy(z)e (x0(y)z) dz

]
+OB,δ(Z

−B).

By Fourier inversion we obtain

I(g; y) = e
iπ
4
+itϕ(x0(y);y)

√
2π

tϕ′′(x0(y); y)

∑
n≤K

g(2n)(x0(y))

n!

(
i

2tϕ′′(x0(y); y)

)n
+OB,δ(Z

−B).

In order to complete the proof we need to estimate all the higher order terms. This is

done as follows. First, we recall that κ0((x0(y)− x)/U) is constant in a neighbourhood

of x0(y). Thus we obtain

g(2n)(x0(y))�n

2n∑
j=0

XV −j
∣∣∣∣ d2n−jdx2n−j

eitHy(x0(y))
∣∣∣∣ .

Further, note that H (j)
y (x0(y)) = 0 for j = 0, 1, 2 and H

(j)
y (x0(y)) = ϕ(j)(x0(y); y) for

j ≥ 3. We arrive at

g(2n)(x0(y))�n X

V −2n +( (tY2)
1
3

Q

)2n
 .

Using the lower bound on ϕ′′ together with the assumptions on the parameters reveals

that the n-th term in the sum is bounded by XZ−
nδ
2 . The result follows by estimating

all but the 0-th term in the sum.
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2.1 the method of stationary phase

Unfortunately this result only allows a single critical point. In practice one often en-

counters several critical points which might approach each other as the parameter y

varies. However, due to the great flexibility in the parameters, one can handle these

situations by using suitable partitions of unity. As we will see this is very cumbersome.

To complete the picture one needs satisfying expansions in some neighbourhood of

the caustic locus C. This will concern us for the rest of this section.

In the case of degenerate critical points many different outcomes are possible. The

general behaviour of (2.1.1) is governed by the ’singularity type’ of ϕ at (x0, y0). There

is a wide range of classification results for singularities and the corresponding normal

forms. For our purpose we only need one type of singularity.

We say a critical point (x0, y0) is a singularity of type A2 (sometimes called fold singu-

larity) if Q(x0, y0) has corank 1 and there is Z ∈ Rm such that for all X ∈ kern(Q(x0, y0))

we have

∂2+1
v ϕ(x0, y0) 6= 0

where ∂v is the partial derivative in the direction v = 〈X,Z〉.

These are exactly the singularities that lead to the appearance of Airy functions in the

asymptotic expansion of I(t; y). Let us note that in the case m = 1 an A2 singularity

boils down to a point (x0, y0) such that

dϕ

dx
(x0, y0) =

d2ϕ

dx2
(x0, y0) = 0 6= d3ϕ

dx3
(x0, y0).

For more details and further references on the theory of singularities we refer to [1].

Before we continue let us recall some basic properties of the Airy function and its

derivative. The Airy function is defined by

Ai(x) =
1

2π

∫
R

ei(t
3/3+xt)dt

for x ∈ R and can be continued analytically to the complex plane. As we can see from

the definition, the Airy function is the prototype of a function with the simplest pos-

sible degenerate critical point. As such Ai(x) interpolates between a slowly decaying
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2.1 the method of stationary phase

wavefront to the left of 0 and exponential decay to the right. This is captured in the

asymptotic expansions

Ai(x) =



e−
2
3x

3
2

2
√
πx

1
4
(1+ o(1)) if x > 0,

cos( 2
3
|x|

3
2−π

4
)

√
π|x|

1
4

(1+ o(1)) if x < 0,

1

3
2
3 Γ( 2

3
)

if x = 0,

which can be extracted from [64, Chapter 4, Section 4.1]. Thus it is not surprising that the

Airy function and its derivative play a key role in asymptotic expansions of oscillatory

integrals featuring degenerate critical points of type A2. Recall that Ai′ has the integral

representation

Ai′(x) =
i

2π

∫
R

tei(t
3/3+xt)dt

and the asymptotic behaviour

Ai′(x) =



− z
2
√
π
e−

2
3
z
3
2 (1+ o(1)) if x > 0,

|x|
1
4

sin( 2
3
|x|

3
2−π

4
)√

π
(1+ o(1)) if x < 0,

−1
3
1
3 Γ( 1

3
)

if x = 0.

The latter can be extracted from the connection formula

Ai′(z) = − z√
3π
K 2

3
(
2

3
z

3
2 ) and Ai′(−z) = z

3

(
J 2

3
(
2

3
z

3
2 )− J− 2

3
(
2

3
z

3
2 )

)
and the corresponding asymptotic expansions [64, Chapter 12 Equation 1.03 and Chap-

ter 4 Equation 9.09].

Before we come to oscillatory integrals with degenerate critical points we will need

one more preparation. Usually we are concerned with integrals involving compactly

supported test functions satisfying certain decay properties. However, we will encounter

situations where the test function is not compactly supported. To deal with this issue

we fix a smooth partition of unity {χn}n≥0 of R such that

supp(χn) ⊂


[2n−1, 2n+1] ∪ [−2n+1,−2n−1] if n ≥ 1,

[−2, 2] if n = 0.

Furthermore, let us assume that∣∣∣∣ dldxlχn(x)
∣∣∣∣�l 2

−ln for all n, l ∈N0 and all x ∈ R.
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2.1 the method of stationary phase

It is an easy exercise to see that such a partition of unity exists.1

Concerning oscillatory integrals with degenerate critical points we have the following

lemma, which is extracted from [45, Theorem 7.7.18]. See also [24, Lemma 16.4].

Lemma 2.1.3. Let (x0, y0) ∈ K ⊂ J ×N be a critical point of singularity type A2. In particular

y0 is contained in the caustic locus C. Then, there exists a neighbourhood

(x0, y0) ∈ V ×N ′ ⊂ K

and a, r0, r1 ∈ C∞(N ′) such that

I(t; y) = 2πeitb(y)r0(y)Ai(a(y)t
2
3 )t−

1
3 − 2πieitb(y)r1(y)Ai′(a(y)t

2
3 )t−

2
3

+OK,ϕ(Xmin(1,U)−2t−1),

for all y ∈ N ′ and all αy ∈ C∞(J) such that supp(αy) ⊂ V and

α
(j)
y �j XU

−j .

Furthermore, we have

r0(y0) =
2αy0(x0)

ϕ(3)(x0; y0)
1
3

, b(y0) = ϕ(x0; y0) and a(y0) = 0.

In particular, we have

I(t; y0) =
2Γ( 13 )

3
1
6

eitϕ(x0;y0)αy0(x0)

ϕ′′′(x0; y0)
1
3

t−
1
3 +O(t−

2
3 ) and

I(t; y) = 2πeitb(y)r0(y)Ai(a(y)t
2
3 )t−

1
3 +O(t−

1
2 ). (2.1.6)

Note that the latter is only an asymptotic formula when y is sufficiently close to y0. More pre-

cisely, there is a fixed δ > 0 such that (2.1.6) is an asymptotic formula as long as |y− y0| ≤ δt−
2
3 .

Proof. By the Malgrange preparation theorem, [45, Theorem 7.5.13], there is a neighbour-

hood (x0, y0) ∈ U1 ×N1 ⊂ K, smooth functions a, b ∈ C∞(N1) and T ∈ C∞(U1 ×N1)

with T (x0, y0) = 0 6= ∂T
∂x0

(x0, y0) such that

ϕ(x, y) =
T (x, y)3

3
+ a(y)T (x, y) + b(y) for all (x, y) ∈ U1 ×N1. (2.1.7)

In particular, we have a(y0) = 0, b(y0) = ϕ(x0, y0) and T ′(x0, y0) =
ϕ′′′(x0,y0)

1
3

2 . Further-

more, there is a neighbourhood (x0, y0) ∈ (U2,N2) ⊂ (U1,N1) such that

Ty : U2 → Ty(U2) ⊂ V2, x 7→ T (x, y)

1 The construction is outlined in a footnote in [24].
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2.1 the method of stationary phase

is invertible and satisfies T ′y(x) � 1 for all (x, y) ∈ (U2,N2). We define V = U2 and

α̃y(z) =
α(T−1y (z))

T ′y(T
−1
y (z))

.

Since supp(αy) ⊂ V , we have supp(α̃y) ⊂ Ty(U2) ⊂ V2. Even more, α(j)
y � XV −j

implies α̃(j)
y �j Xmin(1,V )−j .

By [45, Theorem 7.5.6] we find r0, r1 ∈ C∞(N3) and q ∈ V3 ×N3 such that

α̃y(z) = q(z, y)(z2 + a(y)) + r1(y)z + r0(y) for all (z, y) ∈ V3 ×N3.

In particular, r0(y) = α̃y(0)� X .

Next, fix a neighbourhood y0 ∈ N ′ ⊂ N3 such that
∣∣z2 + a(y)

∣∣ � 1 on (V3 \ V4)×N ′,

for some open set 0 ∈ V4 ⊂ V3. By construction a(y)� 1 for y ∈ N ′.

Finally, we choose a compactly supported test function ξ0 such that ξ0|V4 ≡ 1 and

supp(ξ0) ⊂ V3.

With this at hand we can perform the change of variables x→ z = Ty(x) and compute

that

I(t; y) = eitb(y)
∫
R
α̃y(z)e

it[ z
3

3
+a(y)z]dz

= eitb(y)
(
r0(y)

∫
R

eit[
z3

3
+a(y)z]dz + r1(y)

∫
R

zeit[
z3

3
+a(y)z]dz

+

∫
R

ξ0(z)q(z, y)(z
2 + a(y))eit[

z3

3
+a(y)z]dz

+

∫
R

(1− ξ0(z))(α̃y(z)− r0(y)− r1(y))eit[
z3

3
+a(y)z]dz

)
= eitb(y) (I1 + I2 + I3 + I4) .

for y ∈ N ′. The first two integrals are identified with

I1 = 2π
r0(y)

t
1
3

Ai(a(y)t
2
3 ) and I2 = −i2π

r1(y)

t
2
3

Ai′(a(y)t
2
3 ).

The third integral can be estimated trivially after performing partial integration. Indeed,

I3 =
−i
t

∫
R

d

dz
(ξ0(z)q(z, y))e

it[ z
3

3
+a(y)z]dz � t−1 sup

z∈V3

(
|q(z, y)|+

∣∣q′(z, y)∣∣) .
Finally, we have to estimate the integral I4. Note that in this case the test function does

not have compact support. However, for z ∈ supp(1− ξ0) the phase is well behaved.

Using the partition of unity (χn)n∈N0 together with Lemma 2.1.1 shows that

I4 �A Xmin(1,V )−At−A.
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2.1 the method of stationary phase

This is absorbed in the contribution of I3, which completes the proof of the main for-

mula.

The special cases follow after inserting the suitable bounds for Ai′.

2.1.2 Estimating the K-Bessel function

The K-Bessel function often occurs in the theory of automorphic forms through its

appearance in the archimedean Kirillov model of certain representations of GL2. Evalu-

ating this function asymptotically is also a good example to see the method of stationary

phase in action. As starting point we use the so called Basset integral. For all | arg z| < π
2 ,

s > 0 and k ≥ −1, we have

Kk/2+is(sz) =
Γ(k/2+ is+ 1

2 )2
k/2+is

2
√
π(sz)k/2+is Ik(s; z). (2.1.8)

Where Ik(s; z) is the oscillatory integral

Ik(s; z) =

∫ ∞
−∞

αk(u)e
−isϕ(u;z)du,

for

ϕ(u; z) = log(u2 + 1) + zu, and αk(u) = (u2 + 1)−(k+1)/2.

For simplicity we assume s, k, z ∈ R+ in all the following estimates.

The phase ϕ has the following critical point structure:

S = (1,∞), L = (0, 1) and C = 1.

This follows directly from

d

du
ϕ(u; z) =

2u

u2 + 1
+ z and

d2

du2
ϕ(u; z) = 2

u2 − 1

(u2 + 1)2
.

The asymptotic expansion in the case k = 0 is well known. Therefore, we will go a bit

further and try to give precise upper bounds which are uniform in k ≥ 0. The method

of stationary phase, as we use it, works only for a limited range of k. Thus, later on we

will introduce some restrictions on k.

Estimate in the shadow zone

We use the partition of unity constructed above to write

Ik(s; z) =
∞∑
n=0

∫ ∞
−∞

αk(u)χn(u)e
−isφ(u;z)du =

∞∑
n=0

I
(n)
k (s; z).
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2.1 the method of stationary phase

Furthermore, we define the compact sets Kn = supp(χn)× [1+ r,C] for some parame-

ters r > 0 and C � 1.

For (x0, y0) ∈ Kn we have the lower bound∣∣∣∣ ddxϕ(x0, y0)
∣∣∣∣ ≥ inf

(x,y)∈Kn

∣∣∣∣ 2u

u2 + 1
+ z

∣∣∣∣ ≥ r. (2.1.9)

In the last step we used that∣∣∣∣ 2u

u2 + 1
+ z

∣∣∣∣ ≥ zu2 + 2u+ z

u2 + 1
≥ u2 + 2u+ 1

u2 + 1
+ r ≥ r

for every u ∈ R.

By elementary means one shows that

dj

dxj
ϕ(x, y)�j 2

−nj (2.1.10)

for n ∈N0, j ≥ 2 and x ∈ pr1(Kn).

Because

sup
u∈supp(χn)

∣∣∣∣ djduj αk(u)
∣∣∣∣�j (k+ 1)j2−n(j+1),

we can use the product rule to bound

sup
u∈supp(χn)

∣∣∣∣ djdxj αkχn(x)
∣∣∣∣�l (k+ 1)j2−n(j+1). (2.1.11)

These estimates enable us to prove the following lemma.

Lemma 2.1.4. For any A ∈N0 we have

I
(n)
k (s; z)�A


(
√
sr2n)−A

(
1+

( √
s

k+1

)−A)
(
sr2n

k+1

)−A
,

where z ∈ [1+ r,C] and n ∈N0. Furthermore,

Ik(s; z)�A


(
√
s(z − 1))−A

(
1+

( √
s

k+1

)−A)
(
s(z−1)
k+1

)−A
whenever z > 1.

Proof. We apply Lemma 2.1.1 with

α = −2n+1,β = 2n+1,Y = 1,Q = 2n,X = 2−n,U =
2n

k+ 1
and R = r

to obtain the bounds for I(n). The estimates (2.1.9), (2.1.10) and (2.1.11) ensure that the

necessary conditions are met. The bounds for I follow after summing over n ∈N0.
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2.1 the method of stationary phase

Estimate in the light zone

Lemma 2.1.5. For cs−
1
9 ≤ z < 1−Cs−

1
3
+δ with suitable constants c ≤ 1 ≤ C, and k ≤ s

2
9

we have

Ik(s; z) =
e
iπ
4
√
π

√
s2

k
2
+1+is(1− z2)

1
4

[
eis(1+

√
1−z2)(1−

√
1− z2)

k
2
+is

− eis(1−
√
1−z2)(1+

√
1− z2)

k
2
+is

](
1+Oc,δ(2

k+1s−
δ
2 )
)
.

Proof. Each z ∈ L comes with two non-degenerate critical points

u± = u±(z) = −
1

z
(1∓

√
1− z2).

In order to treat these two points independently we need to modify our partition of unity

{χn}n∈N0 . We start by choosing suitable test function in order to separate the critical

points. Let χ± be two smooth functions satisfying supp(χ−) ⊂ [−1
z , 0] and supp(χ+) ⊂

[−2
z ,−

1
z ]. Furthermore, we assume that

χ+(u+) = 1, χ−(u−) = 1 and
dj

dxj
χ± �j (1− z2)−

j
2 z−2j .

With this at our disposal we can compute the contribution of the critical points.

We start with u− by asymptotically evaluating

I
(−)
k (s; z) =

∫ ∞
−∞

χ−(u)αk(u)e
−isϕ(u;z)du.

The parameters in Lemma 2.1.2 are as follows. First, we have V1 � z−1 and K =

1
z [−1, 0]× [cs−1, 1−Cs−

1
3
+δ]. Further, recall that α(j)

k �j (k + 1)j( 1
z2

+ 1)−
k+1
2 zj on the

support of χ−. Thus

dj

dxj
αkχ− �j (1+ z2)−

k+1
2 zk+1

j∑
i=0

(
j

i

)
(k+ 1)i

√
1− z2

j−i
z3i−2j

�j
zk+1

(1+ z2)
k+1
2

(
z(k+ 1) +

√
1− z2
z2

)j
.

and we have X = zk+1

(z2+1)
k+1
2

and V = (zk +
√
1− z2/z2)−1. Naturally, V1 ≥ V as k > 0.

At last we observe that

ϕ′′(u, z)� (1− z)z2 and ϕ(j)(u; z)�j z
j ,

so that Y1 = 1− z, Y2 = 1 and Q = z−1. Plugging these values into Lemma 2.1.2 reveals

I
(−)
k (s; z) =

zk+2is√πe
iπ
4 eis(1+

√
1−z2)

2
k
2
+1+is√s(1+

√
1− z2)

k−1
2

+is
√
1− z2 +

√
1− z2

(
1+Oδ

(
2k+1s−

δ
2

))
.
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2.1 the method of stationary phase

Note that the necessary conditions are satisfied by assumption. Indeed

s
1
3 (1− z) ≥ Csδ ≥

(
5

c

)δ
sδ ≥ Zδ

implies s
1
3 Y1

Y
2
3

2

≥ Zδ. The condition V ≥ QZ
δ
2√

sY1
follows from

Z
δ
3

(
zk+

√
1− z2
z2

)
≤ (1+ c−2)

(
5

c

) δ
2

s
δ
2
+ 2

9 ≤ cCs
δ
2
+ 2

9 ≤ z
√
s(1− z).

The argument for χ+ in place of χ− is very similar. One obtains

I
(+)
k (s; z) =

∫ ∞
−∞

χ+(u)αk(u)e
−isϕ(u;z)du

=
zk+2is√πe

iπ
4 eis(1−

√
1−z2)

2
k
2
+1+is√s(1−

√
1− z2)

k−1
2

+is
√

1− z2 −
√
1− z2

(
1+Oδ

(
2k+1s−

δ
2

))
.

The final step is to complete (χ±)± to a partition of unity and show, using Lemma 2.1.1,

that the remaining contribution is absorbed in the error.

The result stated above follows by adding the contributions of the two critical points

together with elementary manipulations.

At this point we note that the ranges for z are quite complicated and far from optimal.

Furthermore, for most k we obtain a rather crude upper bound instead an asymptotic

formula. Nevertheless, it is handy to have some results for K-Bessel functions featuring

mixed order.

The transition region

Lemma 2.1.6. There is a constant c as well as functions b(z), r0(z), r1(z) and a(y) such that

Ik(s; z) = eisb(z)
(
r0(z)Ai(a(z)s

2
3 )s−

1
3 − r1(z)Ai′(a(z)s

2
3 s−

2
3

)
+Oc(s

− 2
3
−ε)

for k � s
1
6
− ε

2 and z ∈ (1− c, 1+ c). In particular,

Ik(s; z)�k s
− 1

3

for z ∈ (1− c, 1+ c).

Proof. This is a consequence of Lemma 2.1.3 after localising around the degenerate criti-

cal point (−1, 1) using a suitable modification of the partition of unity {χn}n∈N0 .

All together we recover the following standard bounds for the K-Bessel function.
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2.2 the whittaker model for representations of GL2 (R)

Corollary 2.1.7.

K k
2
+is(y)

Γ(k+1
2 + is)

�k,A


y−

k
2 min(s−

1
3 , s−

1
4 |s− y|−

1
4 ) if 0 < y < s+ cs

1
3 ,

y−
k
2 |y− s|−A if y ≥ s+ cs

1
3 .

Proof. According to (2.1.8) we have

K k
2
+is(y)

Γ(k+1
2 + is)

�k y
− k

2

∣∣∣Ik(s, y
s
)
∣∣∣ .

If y > s, then Lemma 2.1.4 yields

K k
2
+is(y)

Γ(k+1
2 + is)

�k y
− k

2 (y− s)−A.

In the range s− cs
2
3
+δ ≤ y ≤ s+ cs

1
3
+δ we refer to Lemma 2.1.6 and obtain the upper

bound y−
k
2 s−

1
3 . Lemma 2.1.5 produces the desired bounds in the range c′s

8
9 ≤ y ≤

s− cs
2
3
+δ. It remains to show that

K k
2
+is(y)

Γ(k+1
2 + is)

�k s
− 1

2 for 0 < y ≤ c′s
8
9 .

This follows from [38, Proposition 7.2] and Stirling’s approximation for the Γ-function.

Recently similar bounds have been established using the method of steepest descent

in [84]. Furthermore, if k = 0, these bounds are well known and commonly used in

analytic number theory. See [83, (3.1)] as an example.

2.2 the whittaker model for representations of GL2(R)

In this section we will give precise descriptions of special functions that appear in the

Whittaker models of irreducible representations of GL2(R).

Let χ1 and χ2 be two characters given by

χi : R× → C, x 7→ χi(x) = |x|siR sgn(x)mi for i = 1, 2.

We construct the space

B(χ1,χ2) =

{
f : G(R)→ C right SO2 finite :

f


a b

0 d

 g

 = χ1(a)χ2(d)
∣∣∣a
d

∣∣∣ 12 f(g)}.
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2.2 the whittaker model for representations of GL2(R)

The group G(R) acts on this function space and its completion by right translation. The

G(R)-representation arising in this way will be denoted by ρ(χ1,χ2). Note that usually

one considers (g,K)-modules or representation of the Hecke algebra in place of G(R)-

representations. By abuse of notation we will not distinguish between these here, this is

because for our purpose the naive perspective suffices.

By [53, Theorem 5.11] we know that ρ(χ1,χ2) is irreducible unless χ1χ
−1
2 = |·|it sgnm

for it ∈ Z and m ≡ 1(2). If ρ(χ1, ρ2) is irreducible, we write χ1 � χ2 for any representa-

tion equivalent to it. On the other hand, if χ1χ
−1
2 = |·|it sgnm for it ∈ N0 and m ≡ 1(2),

then B(χ1,χ2) has a unique invariant subspace Bs(χ1,χ2), which is infinite dimensional.

The restriction of ρ(χ1,χ2) to Bs(χ1,χ2) and all equivalent representations will be de-

noted by σ(χ1,χ2). Note that, if χ1χ
−1
2 = |·|−it sgnm for it ∈ N0 and m ≡ 1(2), then

the unique invariant subspace is finite dimensional. In this case σ(χ1,χ2) denotes the

representation on the resulting (infinite dimensional) quotient space.

The following classification is contained in [53, Theorem 5.11].

Theorem 2.2.1. Every admissible infinite dimensional representation of G(R) is of the form

χ1 � χ2 or σ(χ1,χ2) for some quasi characters χ1, χ2. The only equivalences in these families

are

χ1 � χ2 = χ2 � χ1

and

σ(χ1,χ2) = σ(χ2,χ1) = σ(sgn · χ1, sgn · χ2) = σ(sgn · χ2, sgn · χ1).

We write it = s1 − s2, m = m1 −m2 and is = s1 + s2. Note that the principal series

representation χ1 � χ2 is unitary if and only if t, s ∈ R or s ∈ R, it ∈ (−1, 1). Similarly,

the (limits of) discrete series representations σ(χ1,χ2) are unitarisable if and only if

s ∈ R. Further, the discrete series representations are square integrable and the principal

series with t, s ∈ R are tempered.

We start by looking at special elements in the space B(χ1,χ2). For k ≡ m mod 2 let

fk ∈ B(χ1,χ2) be defined by fk|K(k(θ)) =
(
eiθ
)k. The Peter-Weyl theorem together with

the Iwasawa decomposition implies

B(χ1,χ2) =
⊕

k≡m(2)

Cfk.

Identifying K with S1 in the obvious way leads to

fk|K(z) = zk, for z ∈ S1.
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2.2 the whittaker model for representations of GL2 (R)

By the definition of the induced representation one has

f(z(±1)n(x)a(y)k) = (−1)my
1
2
+s1f(k),

for x ∈ R, y ∈ R+ and k ∈ K. We associate a Whittaker function to f via the Jacquet

integral

Wk(n(x0)a(y)k(θ)︸ ︷︷ ︸
=g

) =

∫
N
fk(ωng)ψ(n)dn.

Note that for irreducible principal series representations (Wk)k∈m+2Z forms a natural

basis of the spaceW(χ1 � χ2;ψ).

In order to compute Wk we observe that ωn(x)a(y) = z(y)a(y)−1ωn(xy ). A simple

change of variables gives

Wk(n(x0)a(y)k(θ)) = e2πix0sgn(y)m |y|1+is
∫

R

e−2πixyfk(a(y)
−1ωn(x)k(θ))

dx√
2π

.

Next we note that

ωn(x) =

1 −x
x2+1

0 1


︸ ︷︷ ︸

=n(·)

 1√
x2+1

0

0
√
x2 + 1


︸ ︷︷ ︸

=z(
√
x2+1)a

(
1

x2+1

)

 −x√
x2+1

1√
x2+1

−1√
x2+1

−x√
x2+1


︸ ︷︷ ︸
=k

(
arg

(
−x+i√
x2+1

))
.

Projecting on the K-component produces the map

κ(ωn(·)) : R → S1

x 7→ −x+ i√
x2 + 1

= ei2 tan
−1(
√
x2+1+x).

Therefore

fk|K(κ(ωn(x))) =
(
−x+ i√
x2 + 1

)k
= ei2k tan

−1(
√
x2+1+x) ∈ S1.

We chose this particular inverse trigonometric function so that our phase will be smooth

on R and corresponds to our parametrisation of S1 with respect to angles between 0

and π. Thus

Wk(n(x0)a(y)k(θ))

= e2πix0eikθsgn(y)m2 |y|
1
2
+s2

∫
R

(x2 + 1)−
1
2
− it

2 e−2πixyei2k tan
−1(
√
x2+1+x) dx√

2π

= e2πix0eikθsgn(y)m2 |y|
1
2
+s2

∫
R

(−x+ i)k

(x2 + 1)
1
2
+ it

2
+ k

2

e−2πixy
dx√
2π

(2.2.1)

= (2π)−
1
2 e2πix0eikθsgn(y)m2 |y|

1
2
+s2 I(y; k, t).
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2.2 the whittaker model for representations of GL2(R)

We further analyse this integral, as it is useful to have expressions connecting Wk to

classical special functions. We observe that

(−x+ i)k

(x2 + 1)
1
2
+ it

2
+ k

2

= ik(1+ ix)
k
2
− 1

2
− it

2 (1− ix)−
k
2
− 1

2
− it

2 .

Thus, for <(it) ≥ 0, we can apply2 [36, 3.384.(9)] and get

Wk(a(y)) =


y
is
2

ikπ
it
2√

2Γ( 1+k+it
2

)
W k

2
, it
2
(4πy) if y > 0,

sgn(y)m2 |y|
is
2 ikπ

it
2√

2Γ( 1−k+it
2

)
W− k

2
, it
2
(4π |y|) if y < 0.

Up to constant this agrees with [66, (76)]. Further, if t ∈ R, we observe that

W0(a(y)) = sgn(y)m2

√
2π

it
2

Γ( 1+it2 )
|y|

1
2
+ is

2 K it
2
(2π |y|).

On the other hand, if it = k− 1 ∈N, then

Wk(a(y)) =


(2π)k−

1
2 ik

Γ(k) y
k
2
+ is

2 e−2πy if y > 0,

0 if y < 0.

.

Note that up to normalisation the last two examples are exactly the functions that ap-

pear in the classical Fourier expansion of Maaß forms and holomorphic modular forms

respectively. Due to the classification of irreducible representations, Theorem 2.2.1, we

have computed a basis for the Whittaker space for every infinite dimensional irreducible

admissible representation of G(R).

Our next goal is to check that, for irreducible, tempered, principal series χ1�χ2, Wk is

essentially L2-normalised. To do so we use the classical Plancherel theorem, exploiting

square integrability of Wk(·) for unitary principal series. Indeed we define

gk,it(x) =
(−x+ i)k

(x2 + 1)
1
2
+ it+k

2

.

Then (2.2.1) implies that Wk(a(y)) = [F(gk,it)](y). Thus we compute

‖Wk‖22 =

∫
R×

Wk(a(y))Wk(a(y))d
×y =

∫
R

[F(gk,it)](y)[F(gk,it)](y)
dy√
2π

=

∫
R

gk,it(x)gk,it(x)
dx√
2π

=

∫
R

(x2 + 1)−1
dx√
2π

=

√
π

2
.

We have shown the following lemma.

2 After analytic continuation of the integral representation to <(µ+ ν) = 1
2 .
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2.3 the whittaker model for representations of GL2 (C)

Lemma 2.2.2. For any k ∈N0 and any s, t ∈ R≥0 we have

‖Wk‖2 =
(π
2

) 1
4
.

Furthermore, if it = k− 1 one has

‖Wk‖22 =
πk−1√
2Γ(k)

.

The second part is a direct computation which we omit.

It is possible to obtain a complete asymptotic description of the size of Wk using the

method of stationary phase and (2.2.1). Because this is not directly relevant to the rest

of this thesis we will not pursue this here.

2.3 the whittaker model for representations of GL2(C)

Given two characters

χi(z) = |z|2si
(
z

|z|

)mi
, i = 1, 2 (2.3.1)

we associated the induced representation ρ(χ1,χ2) of G(C) acting on the completion of

B(χ1,χ2) =

{
f : G(C)→ C right SU2(R) finite :

f


a b

0 d

 g

 = χ1(a)χ2(d)
∣∣∣a
d

∣∣∣ f(g)}

by right translation. Note that ρ(χ1,χ2) is irreducible unless χ1χ
−1
2 = zpzq for p, q ∈ Z

and pq > 0. If ρ(χ1,χ2) is irreducible, we denote it by χ1 � χ2. Again, by abuse of

notation, this stands for the representation of G(C), all equivalent representations, the

representation of the Hecke algebra, and for the associated (g,K)-module.

Theorem 2.3.1. Every infinite dimensional admissible irreducible representation of G(C) is of

the form χ1 � χ2 for two quasi characters χ1, χ2 of C×.

This is [53, Theorem 6.2]. As in the real case we define the numbers

it = s1 − s2, is = s1 + s2 and m = m1 −m2.

In order to find a convenient basis for the Whittaker space we recall some basic rep-

resentation theory of SU(2). All irreducible representations of SU(2) are uniquely deter-
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2.3 the whittaker model for representations of GL2(C)

mined (up to equivalence) by dimension. We can model the irreducible representation

of dimension n+ 1 on,

Vn =
⊕
|q|≤n

2
,

q≡n
2
(1)

CPq for Pq = X
n
2
−qY

n
2
+q,

the space of homogeneous polynomials of degree n. The action σn is given by left trans-

lation. The invariant inner product is determined by

〈Pq,Pp〉Vn = δp=q(
n

2
− q)!(n

2
+ q)!.

We define the matrix coefficients

Φn
p,q(k) = 〈σn(k)Pp,Pq〉Vn .

An element f ∈ B(χ1,χ2) is uniquely determined by its restriction to SU(2) and

f |SU(2) ∈ L2(SU(2)). According to the Peter-Weyl theorem the set{
fn,p ∈ B(χ1,χ2) : fn,p|SU(2) = Φn

p,−m
2
,n ≡ m(2),n ≥ m, |p| ≤ n

2
and 2p ≡ n(2)

}
spans B(χ1,χ2). We will denote the Whittaker function associated to fn,p via the Jacquet-

integral by Wn,p.

Lemma 2.3.2. We have

Wn,p(a(y)) = y1+2s2(
n−m

2
)!(
n+m

2
)!

min(n+m
2

,n
2
−p)∑

l=max(m
2
−p,0)

(−1)
n
2
−p−l

(n
2 − p
l

)( n
2 + p

n+m
2 − l

)

·

[
(2πy)−p+

m
2

Γ(1+ l)Γ(it+ n
2 − l)

2Γ(1+ n
2 + it)Γ(1− p+ m

2 )

·1F2(1+ l; 1+ l− n

2
− it; 1− p+ m

2
; 4π2y2)

+(2πy)2it+n−p−2l+
m
2

Γ(l− n
2 − it)

2Γ(1+ n+m
2 − l− p+ it)

·1F2(1+
n

2
+ it; 1+

n+m

2
− l− p+ it, 1+

n

2
− l+ it; 4π2y2)

]
,

for y > 0.

Note that this determines Wn,p on all of G(C) due to its transformation properties.

However, due to the complexity of SU(2) this is not as clean as in the real case. In the

spherical case, n = p = 0, a similar computation appeared in [3].
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2.3 the whittaker model for representations of GL2 (C)

Proof. We have

Wn,p(a(y)) =

∫
C

fn,p(ωn(z)a(y))e(−2<(z))
dz

2π

= y1+2s2

∫
C

fn,p(ωn(z))e(−2y<(z))
dz

2π
.

Recall that

ωn(z) = n(?)

 1√
|z|2+1

0

0
√
|z|2 + 1

 k

 −z√
|z|2 + 1

,
1√
|z|2 + 1

 .

Furthermore, writing z in polar coordinates reveals

k

 −z√
|z|2 + 1

,
1√
|z|2 + 1

 = k[e−i
θ+π
2 , 0]k

[
r√

r2 + 1
,

1√
r2 + 1

]
k[e−i

θ+π
2 , 0].

Exploit that

Φn
p,−m

2
(k[e−i

θ+π
2 , 0]hk[e−i

θ+π
2 , 0]) = e−i(θ+π)(−p+

m
2
)Φn

p,−m
2
(h)

leads to

Wn,p(a(y)) = y1+2s2

∫ ∞
0

rfn,p(k[
r√
r2+1

, 1√
r2+1

])

(r2 + 1)1+2s1−2s2

∫ 2π

0
e−i(θ+π)(−p+

m
2
)−4πyri cos(θ) dθdr

2π
.

The θ-integral can be computed as follows. First, we write

I =

∫ 2π

0
e−i(θ+π)(−p+

m
2
)−4πyri cos(θ) dθ

2π
= 2

∫ π

0
cos(θ(−p+ m

2
))e−4πyri cos(θ)

dθ

2π
(2.3.2)

Applying [36, 3.715.(13)] gives

<(I) = −2
∫ π

0
cos(θ(−p+ m

2
)) sin(4πyri cos(θ))

dθ

2π
= sin(

π

2
(p− m

2
))J−p+m

2
(4πyr).

Similarly, by using [36, 3.715.(18)], we get

=(I) = 2

∫ π

0
cos(θ(−p+ m

2
)) cos(4πyri cos(θ))

dθ

2π
= cos(

π

2
(p− m

2
))J−p+m

2
(4πyr).

Combing real and imaginary part shows

I = ip−
m
2 J−p+m

2
(4πyr).

The matrix coefficient can be evaluated using the binomial expansion as follows.

fn,p

(
k[

r√
r2 + 1

,
1√

r2 + 1
]

)

= (
n−m

2
)!(
n+m

2
)!

rp−
m
2

(r2 + 1)
n
2

min(n+m
2

,n
2
−p)∑

l=max(m
2
−p,0)

(−1)
n
2
−p−l

(n
2 − p
l

)( n
2 + p

n+m
2 − l

)
r2l.
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2.3 the whittaker model for representations of GL2(C)

Finally, we compute the r-integral using [36, p. 6.565.8] with ρ = 2+ p+ 2l − m
2 , ν =

p− m
2 , a = 4πy, k = 1, and µ = it+ n

2 . One checks that all conditions are satisfied as

long as <(it) > −3
4 . We obtain∫ ∞

0

r1+p−
m
2
+2l

(r2 + 1)1+it+
n
2

J−p+m
2
(4πyr)dr (2.3.3)

= (2πy)−p+
m
2

Γ(1+ l)Γ(it+ n
2 − l)

2Γ(1+ n
2 + it)Γ(1− p+ m

2 )
· 1F2(1+ l; 1+ l− n

2
− it; 1− p+ m

2
; 4π2y2)

+ (2πy)2it+n−p−2l+
m
2

Γ(l− n
2 − it)

2Γ(1+ n+m
2 − l− p+ it)

· 1F2(1+
n

2
+ it; 1+

n+m

2
− l− p+ it, 1+

n

2
− l+ it; 4π2y2).

Inserting this in the l-sum gives the result.

In several cases this complex formula simplifies considerably.

Lemma 2.3.3. We have

Wm,p(a(y)) =
m!(2π)it+

m
2

Γ(1+ m
2 + it)

y1+
m
2
+isKp+it(4πy)

for all |p| ≤ m
2 , 2p ≡ m(2). Furthermore,

Wn,±n
2
(a(y)) = (−1)

n+m
2

n!(2π)it+
n
2

Γ(1+ n
2 + it)

y1+
n
2
+isK∓m

2
+it(4πy)

for all n > m, n ≡ m(2).

This agrees with the results given in [21, Section 4.2].

Proof. The additional assumptions imply that the l-sum contains exactly one element.

Evaluating the r-integral in (2.3.3) using [36, 6.565.(4)] leads to the desired formula.

We record the following lemma for later reference.

Lemma 2.3.4. If the representation π is spherical, we must have m = 0. The spherical element

is given by

|W0,0(a(z))| =
|y|Kit(4πy)

|Γ(1+ it)|
.

It satisfies

‖W0,0‖2 = π−22−
5
2 .
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3
T H E C A S E O F N O N - A R C H I M E D E A N F I E L D S

We turn to the ultrametric situation. Thus we assume that (F , |·|) is local field satisfying

the strong triangle inequality

|x+ y| ≤ max(|x| , |y|).

We further restrict ourselves to characteristic 0. Thus, F is a finite extension of Qp for

some p.

After recalling the p-adic method of stationary phase we will start a detailed analysis

of the Whittaker model. In contrast to the archimedean situation we use newform theory

to provide a suitable basis for the Whittaker space. As a consequence we can exploit the

connection to the local L-factors instead of the representation theory of K.

Philosophically the formula for the new vector obtained by inverting the local zeta

integral can be thought of as a p-adic Mellin-Barnes type representation. However, in

order to apply the method of stationary phase we need a suitable Fourier type integral.

The transition between the two representations requires some additional work.

The final outcome of this highly technical section are precise upper bounds for the

Whittaker new vector. We cover all of GL2(F ) in suitable coordinates and all possible

tempered, unitary, irreducible representations π. The results are summarised in Sec-

tion 3.4.4.

This part is heavily based on the paper [4] by the author. However, we give significatly

more background and go into greater detail here. In the stationary phase estimates later

on we go beyond the original source [4] by treating arbitrary local fields of odd residual

characteristic and giving more explicit evaluations.

3.1 the p-adic method of stationary phase

In this section we introduce the p-adic method of stationary phase. This is a well estab-

lished formalism used to evaluate or estimate complete exponential sums. However, it
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3.1 the p-adic method of stationary phase

is our point of view that such sums should be written as p-adic oscillatory integrals. In

that language the analogy between the archimedean method of stationary phase and the

p-adic one becomes very striking. There are numerous references devoted to establishing

the p-adic method of stationary phase as a versatile tool for the working analytic number

theorist. Let us mention a few. An easy to use formula is given in [51]. A more technical

but very convenient formulation, working with Taylor expansions of the phase, is given

in [62]. Finally, a more geometrically version can be found in [32]. All the references

mentioned so far deal essentially with sums of the form∑
m∈Z/pnZ

Φ(m)e

(
f(m)

pn

)
,

for a weight Φ : Z/pnZ → C and a phase f . In the context of this work we encounter

such sums in a different form. For a Schwartz-Bruhat function Φ ∈ S(Fn) with supp(Φ) ⊂

od and a phase f : supp(Φ)→ o we write

Sf (Φ;λ) =

∫
od

Φ(x)ψ(λf(x))dx.

This is an oscillatory integral completely analogous to the ones studied in archimedean

situation. If F = Qp; ψ is the standard additive character; λ = p−n; d = 1; Φ is constant

on a+ pnZp; and f(a+ pnZp) ⊂ f(a) + pnZp, then

Sf (Φ;λ) = p−n
∑

m∈Z/pnZ

Φ(m)e

(
−f(m)

pn

)
and we find ourselves in the classical setting.

As in the archimedean case the phase f and the weight Φ may depend on parameters.

But the p-adic setting introduces certain subtleties when defining regularity properties

of f . Nonetheless, definitions can be made precise and one can produce stationary phase

estimates similar to the archimedean ones. In the interest of space we do not go into this

here.

Instead we will mostly deal with f ∈ o[x] or f ∈ o[[x]]. Anyway we will encounter

situations featuring shadow- and light zone as well as the caustic locus. It is an interest-

ing feature, originating from character orthogonality, that if there are no critical points

we achieve asymptotic vanishing. On the other hand, if there are non-degenerate critical

points, the integral can be evaluate in terms of the certain multidimensional Gauß sums.

These are defined by

G(A$−s,B) =

∫
on
ψ(txAx$−s +B · x)dx for A ∈ GLn(o) and B ∈ Fn

and play essentially the role of the Fresnel integral.
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3.1 the p-adic method of stationary phase

3.1.1 Evaluation of Gauß sums

In this section we will evaluate the multidimensional quadratic Gauß sum G(A,B). This

is an essential tool for the evaluation of exponential integrals. Throughout this section

we assume that q is odd. This makes several computations slightly more convenient. For

later applications we only need one and two dimensional Gauß sums. Therefore we will

focus on these in some detail. We start by treating the one dimensional situation and

then move on to the two dimensional case.

Lemma 3.1.1 ([18], Lemma 6). Let ρ ∈ Z, A ∈ o×, and B ∈ F . Then, for q odd, we have

G(A$−ρ,B) =


min(q−

ρ
2 , 1)γF (A, ρ)ψ(−$ρB2

4A ) if B ∈ pmin(−ρ,0),

0 else,

where

γF (A, ρ) =


χF (A)ε(

1
2 ,χF ) if ρ > 0 is odd,

1 if ρ ≤ 0 or ρ is even.

Proof. Observe that, since the conductor of ψ is o, the case ρ ≤ 0 reduces to a complete

linear sum. For ρ ≥ 1 we calculate

G(A$−ρ,B) =
∑

x∈o/pρ
q−ρψ(A$−ρx2 +Bx)

∫
o
ψ(B$ρt)dt.

The last integral is 1 if B ∈ p−ρ, otherwise it is 0. Thus we assume B ∈ p−ρ. Completing

the square yields

G(A$−ρ,B) = q−ρψ

(
−$

ρB2

4A

) ∑
x∈o/pρ

ψ

(
A$−ρ

(
x+

$ρB

2A

)2
)
.

Note that due to our current assumption on B we have $ρB
2A ∈ o. We shift the summation

and obtain

G(A,B) = q−ρψ

(
−$

ρB2

4A

) ∑
x∈o/pρ

ψ(A$−ρx2).

We start the evaluation of the remaining sum with the special case ρ = 1:

G(A$−1,B) = q−1ψ

(
−$B

2

4A

) ∑
x∈(o/p)×

∑
χ∈X1,
χ2=1

χ(x)ψ(A$−1x) + 1


= ψ

(
−$B

2

4A

)
ζF (1)

−1
∑
χ∈X1,
χ2=1

∫
o×
χ(x)ψ(A$−1x)d×x+ q−1ψ

(
−$B

2

4A

)
.
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3.1 the p-adic method of stationary phase

By using the fact that {χ ∈ X1 : χ2 = 1} = {1,χF } we find

G(A$−1,B) = ζF (1)
−1G(A$−1,χF )ψ

(
−$B

2

4A

)
= q−

1
2χF (A)ε(

1

2
,χF )ψ

(
−$

1−2nB2

4A

)
.

If ρ > 1, we see that

G(A$−ρ,B)

= q−ρψ

(
−$

ρB2

4A

) ∑
x∈(o/pρ)×

∑
χ∈Xρ,
χ2=1

χ(x)ψ(A$−ρx) +
∑

x∈o/pρ−1

ψ(Aρ2−ρx2)


= ψ

(
−$

ρB2

4A

)
ζF (1)

−1
∑
χ∈Xρ,
χ2=1

∫
o×
χ(x)ψ(A$−ρx)d×x

+ q−ρψ

(
−$

ρB2

4A

) ∑
x∈o/pρ−1

ψ(Aρ2−ρx2).

Since q is odd, the only quadratic characters are still 1 and χF . Thus ρ > 1 implies∫
o×
χ(x)ψ(A$−ρx)d×x = G(A$−ρ,χ) = 0.

The stated equality follows by a simple inductive argument.

The evaluation of multi-dimensional Gauß sums can be reduced to the previous case

by a suitable diagonalisation argument. This is made precise in [32, Proposition 1.3]. We

explicate this procedure in the two dimensional case in the following lemma.

Lemma 3.1.2 ([4], Lemma 4.3). Let A ∈ Mat2×2(o) be a symmetric matrix, B ∈ F 2, ρ ∈

{0, 1}, and let q be odd. Then

∣∣∣∣G($−ρ2
A,B

)∣∣∣∣ ≤


q−
rk(Ap)

2 if ρ = 1, rk(Ap) ∈ {1, 2} and $B ∈ o2,

1 if ρ = 0 or Ap = 0 and B ∈ o2,

0 else

where Ap is the image of A in A ∈Mat2×2(o/p).

Proof. Since ρ ∈ {0, 1}, the quadratic Gauß sum depends only on Ap. If ρ = 0 or Ap = 0,

then we are simply dealing with a linear sum and the statement is obvious. Therefore

we assume ρ = 1 and Ap 6= 0 for the rest of the proof. Write

Ap =

a b

b c

 for a, b, c ∈ o/p.
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3.1 the p-adic method of stationary phase

If a 6= 0, we have

Ap =

 1 0

ba−1 1


a 0

0 a−1 det(Ap)


1 a−1b

0 1

 .

The obvious linear change of variables yields

G

(
$−1

2
A,B

)
= G

$−1
2

a 0

0 a−1 det(Ap)

 ,

 1 0

−a−1b 1

B


= G

(
$−1a

2
,B1

)
G

(
$−1 det(Ap)

2a
,B2 −

b

a
B1

)
.

Applying Lemma 3.1.1 to the remaining one dimensional Gauß sums gives

G

(
$−1

2
A,B

)
=



γ(Ap)ψ
(
−ωB2

1
2a

)
q−

1
2

if det(Ap) = 0, B1,B2 ∈ p−1 and B2 − b
aB1 ∈ o,

γ(Ap)ψ
(

−$
2 det(Ap)

(
aB2

1 − 2bB1B2 + cB2
2

))
q−1

if det(Ap) ∈ (o/p)×, and B1,B2 ∈ p−1,

0

else

with

γ(Ap) =


χF (

a
2 )ε(

1
2 ,χF ) if rk(Ap) = 1,

χF (det(Ap))ε(
1
2 ,χF )

2 if rk(Ap) = 2.

If a = 0 but c 6= 0, then the argument is essentially the same, one simply exchanges

the roles of a and c as well as B1 and B2.

If a = c = 0, then we must have b 6= 0. Observing0 b

b 0

 =

−1 1

1 1


 b

2 0

0 b
2


−1 1

1 1


and making a linear change of variables yields

G

(
$−1

2
A,B

)
= G($−1b,−B1 +B2)G($

−1b,B1 +B2)

= γ(Ap)ψ(
−$
2b

(B2
1 +B2

2))q
−1.

The bounds stated above are special cases of these explicit evaluations.
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3.1 the p-adic method of stationary phase

3.1.2 An explicit p-adic method of stationary phase and some tricks

In this section we will finally introduce a version ot the p-adic method of stationary

phase which will be used later on to evaluate the ramified Whittaker new vectors.

A useful tool to turn multiplicative oscillations in additive ones is the p-adic logarithm.

The following result is well known and will be used multiple times in the upcoming

computations.

Lemma 3.1.3 ([4], Lemma 4.1). Let e = e(F/Qp) be the absolute ramification index. We

define κF = d e
p−1e. For a multiplicative character χ with a(χ) ≥ κF there is bχ ∈ o×, uniquely

determined modulo pa(χ)−κF , such that

χ(1+ z$κF ) = ψ

(
bχ

$a(χ)
logF (1+ z$κF )

)
for all z ∈ o.

Furthermore, if a(χ)3 ≤ α ∈N, then there is bχ ∈ o× such that

χ(1+ z$α) = ψ

(
bχ

$a(χ)

(
z$α − z2

2
$2α

))
for all z ∈ o.

In particular, if a(χ)2 ≤ α ∈N, then

χ(1+ z$α) = ψ(zbχ$
α−a(χ)) for all z ∈ o.

Note that in the last two cases we do not make any assumption on κF .

The proof of this result can be found in [18, Section 2.3]. Next, we will recall some results

on quadratic congruences.

Lemma 3.1.4 ([56], Lemma 9.6). Let a, b, c ∈ o. We set

S = {x ∈ o/pn : ax2 + bx+ c ∈ pn},

∆ = b2 − 4ac = ∆′$δ0 for ∆′ ∈ o×.

If v(a) = 0, we have

S =

{
− b

2a
± Y

2a
$δ + α$n−δ : α ∈ o/pδ

}
(3.1.1)

with

Y =


0 if δ0 ≥ n,

Y0 if Y 2
0 = ∆′ and δ0 < n is even,

and δ =


bn2 c if δ0 ≥ n,

δ′ if δ0 = 2δ′ < n.
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3.1 the p-adic method of stationary phase

In particular,

]S ≤ 2qδ.

If v(a) > 0 and v(b) = 0, we have ]S = 1. Furthermore, the solution x0 ∈ S has valuation

v(c).

For |λ| = q and p periodic f the basic estimates for Sf (1o;$−1) rely on algebraic

methods and are highly non-trivial. As pointed out in [4, Section 4], this case reduces to

a complete exponential sum over the finite field o/p. In the one dimensional situation

we have the following very strong bound due to Weil, [86]. Let g(x) =
∏l
i=1(x− ξi)ai

be a rational function with coefficients in o/p. Furthermore, let χ be a multiplicative

character of (o/p)× such that no ai is a multiple of the order of χ. We have∣∣∣∣∣∣∣∣
∑
x∈o/p,

x 6=ξi for 1≤i≤l

χ(g(x))ψ($−1f(x))

∣∣∣∣∣∣∣∣ ≤ (N + l− 1)
√
q, (3.1.2)

for each polynomial f ∈ (o/p)[x] of degree N satisfying f(0) = 0. For d > 1 we have

to involve some heavy machinery and we need some additional assumptions. Let us

assume that f ∈ o[X1, . . . ,Xd] has degree Nf co-prime to p. We write Nf ,p for the degree

of the reduced polynomial f̃ ∈ (o/p)[X1, . . . ,Xd] and assume that the homogeneous

part of degree Nf ,p defines a smooth projective hypersurface. Then [57, Example 19.(5)]

yields ∣∣Sf (1od ;$−1)∣∣ ≤ (Nf ,p − 1)dq−
d
2 . (3.1.3)

If |λ| > q, the situation is completely different because there are several elementary

methods that can be used for the evaluation. These are parallel to the classical method

of stationary phase. More precisely, one will split the integral in suitable pieces each of

which can be expressed in terms of Gauß sums.

In the one dimensional situation over F = Qp an estimate for Sf (1Zp ,λ) allowing

very general phase functions f is given in [28, (5.3)]. We now translate this result in our

setting.

Lemma 3.1.5 ([28], (5.3); [4], Lemma 4.4). Let F = Qp for p > 2. Furthermore, let f be a

polynomial, with degree dp > 0 modulo p. If τ = v(f ′) and every α solving the critical point

congruence

$−τf ′(α) ∈ p (3.1.4)
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3.1 the p-adic method of stationary phase

has multiplicity less then M , then we have∣∣Sf (1Zp ;$
−m)

∣∣ ≤ (dp − 1)q−
1

M+1
(m−τ )

for all m ≥ τ + 2.

Points satisfying the congruence (3.1.4) are called critical points. As already mentioned

in [4], there are different types of critical points. If they have multiplicity one, they are

referred to as non-degenerate critical points. The contribution of non-degenerate critical

points is well behaved. Indeed, if there are only such critical points, one can evaluate

the corresponding oscillatory integral explicitly. On the other hand, if there are critical

points with multiplicity bigger than one, the situation becomes more complicated. Such

critical points are called degenerate critical points, their existence usually destroys square

root cancellation in Sf (Φ;λ). Analogously to the archimedean case degenerate critical

points are responsible for the appearance of new special functions. We define

Aiψ(a; b) = q−
v(a)
3

∫
o
ψ(ax3 + bx)dx,

which is a p-adic version of the Airy function. Note that Aiψ(a; b) = 0 if v(b) <

min(0, v(a)). In general we have the bound

|Aiψ(a, b)| ≤ 2.

The following lemma provides a very general device to treat p-adic oscillatory inte-

grals. It is a good example for the usual approach taken to evaluate highly ramified

(complete) exponential sums.

Lemma 3.1.6. Suppose that for m > κ ≥ m
3 we have

f(x+$κt) ∈ f(x) +$κ 〈g(x), t〉+ $2κ

2
ttAxt+ pm for all t ∈ od.

For some function g : od → od and a matrix A. Further, assume that Φ is pκ periodic. Define

Φχ1···χd = Φ ·
∏d
i=1 χi ◦ pri. We have

Sf (Φχ1,··· ,χd ,$
−m) = ζF (1)

dq−dκ
∑

x∈(o/pκ)d,
g(x)+h(x)∈p

Φ(x)χ1(x1) . . . χd(xd)ψ($
−mf(x))

·G
(
$2κ−m

2
(Bx −Ax),$

κ−m(g(x) + h(x))

)
for

g(x) =

(
bχi
xi
$m−a(χi)

)
1≤i≤d

and Bx = diag
(
bχ1

x21
$m−a(χ1), . . . ,

bχd
x2d
$m−a(χd)

)
.
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3.1 the p-adic method of stationary phase

Note that one can refine the congruence condition in the x-sum by evaluating the

Gauß sum. In one dimension this is similar to [18, Lemma 7]. The proof is straight

forward and left to the reader.

An important two dimensional example that lies at the heart of the upcoming sections

is the integral

K(χ1 ⊗ χ2, ($
−l1 ,$−l2), v$−l)

=

∫
o×

∫
o×
χ1(x1)χ2(x2)ψ(x1$

−l1 + x2$
−l2 + vx1x2$

−l)d×x1d
×x2

attached to the algebra E = F × F .

Lemma 3.1.7 ([4], Lemma 4.6). Suppose χ1 and χ2 are characters on F× such that a(χ1) ≥

a(χ2) ≥ 1. Put k = max(a(χ1), l) = 2r+ρ for some r ∈N0 and ρ ∈ {0, 1}. For 0 < l1, l2 ≤ k

and r > 0 we have

K(χ1 ⊗ χ2, ($
−l1 ,$−l2), v$−l)

= ζF (1)
2q−2r

∑
(x1,x2)∈S

χ1(x1)χ2(x2)ψ(x1$
−l1 + x2$

−l2 + vx1x2$
−l)

·G
(
$−ρ

2
Ax1,x2 ,$

−r−ρBx1,x2

)
for

Ax1,x2 =

−b1$k−a(χ1) vx1x2$
k−l

vx1x2$
k−l −b2$k−a(χ2)

 ,

Bx1,x2 =

b1$k−a(χ1) + x1$
k−l1 + vx1x2$

k−l

b2$
k−a(χ2) + x2$

k−l2 + vx1x2$
k−l

 ,

S = {x1,x2 ∈ (o/pr)× : Bx1,x2 ∈ (pr)2}

where b1 and b2 are the constants associated to the characters χ1 and χ2 using Lemma 3.1.3. In

particular we have

∣∣∣K(χ1 ⊗ χ2, ($
−l1 ,$−l2), v$−l)

∣∣∣
≤ ζF (1)2q−2r]S sup

x1,x2∈S

∣∣∣∣G($−ρ2
Ax1,x2 ,$

−r−ρBx1,x2

)∣∣∣∣ .
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3.1 the p-adic method of stationary phase

Proof. We use Lemma 3.1.3 to rewrite the integral as

K(χ1 ⊗ χ2, ($
−l1 ,$−l2), v$−l)

= ζF (1)
2q−2r

∑
x1,x2∈(o/pr)×

χ1(x1)χ2(x2)ψ(x1$
−l1 + x2$

−l2 + vx1x2$
−l)

·G
(
$−ρ

2
Ax1,x2 ,$

−r−ρBx1,x2

)
.

Using the support properties of the Gauß sum contained in Lemma 3.1.2 it is clear that

we can restrict the summation to S.

3.1.3 Evaluating twisted Kloosterman sums

We will end this section by applying the theory developed so far to twisted Kloosterman

sums (generalised Salié sums). These are oscillatory integrals of the form

Sχ(A,B,m) =

∫
o×
χ(x)ψ

(
Ax+Bx−1

$m

)
d×x.

Because Vol(o×, d×) = 1, the trivial bound is 1. If A,B ∈ o×, m = 1, and a(χ) ≤ 1 we

have the stronger bound

|Sχ(A,B, 1)| ≤ 2ζF (1)q
− 1

2 . (3.1.5)

This is essentially due to Weil. For a reference see [51, Chapter 11, Excercise 1]. We

will now apply the method of stationary phase to the situations m > 1. This has been

studied very well. However, we could not locate a reference dealing with general sums

Sχ(A,B,m) over arbitrary local fields F of characteristic 0. Classical references are [18,

27, 51, 56]. Furthermore, as the estimate of the K-Bessel function before, this is a good

exercise to get used to the p-adic method of stationary phase.

Lemma 3.1.8. Let q be odd, m ≥ 2, l ∈ N0, χ ∈ X a multiplicative character, and a ∈ o×. If

m > a(χ), then

Sχ(1, a$
l,m) =



ζF (1)q
−m

2
∑
± γF (±

√
a,m)χ(y±)ψ

(
2a
y±
$−m − bχ$−a(χ)

)
if l = 0 and a ∈ o2×,

0 else.

Here y± are the two solutions of y2+ ybχ$
m−a(χ)−a in o×. In the opposite situation,m < a(χ),

we have

Sχ(1, a$
l,m) = 0.
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3.1 the p-adic method of stationary phase

If m = a(χ) and l > 0, then

Sχ(1, a$
l,m) = ζF (1)γF (−2bχ,m)χ(y0)ψ((2y0 + bχ)$

−m)q−
m
2 ,

where y0 is the unique solution to y(y+ bχ) = a$l in o×.

Finally, assume m = a(χ) and l = 0. Let ∆ = b2χ + 4a and y± = − bχ
2 ±

√
∆
2 . If ∆ ∈ p and

dm4 e ≥ κF , then

Sχ(1, a$
l,m) =



ζF (1)q
−m

2
∑
± γF (±2

√
∆,m)χ(y±)ψ

((
2a
y±
− bχ

)
$−m

)
if ∆ ∈ o2×,

ζF (1)q
−m

2
+ v(∆)

4
∑
± γF (±(∆)

1
2
0 ,

v(∆)
2 +m)χ(y±)ψ

((
2a
y±
− bχ

)
$−m

)
if 0 < v(∆) < dm2 e even,

ζF (1)q
−m

3 χ(− bχ
2 )ψ(−

∆
2bχ
$−m)

·Aiψ
(
−4b4χ

3 $
3d r+ρ

2
e−m; (8b2χ − ∆$−2d

r+ρ
2
e)$3d r+ρ

2
e−m

)
if dm2 e ≥ v(∆),

0 else.

Proof. Let us start with the exceptional cases. Assume m > a(χ). Let us write m = 2r+ ρ

for r ≥ 1 and ρ ∈ {0, 1}. We will apply the method of stationary phase. Before we do so

let us recall the geometric series

a$l

y+ t$r
=
a$l

y

∑
j≥0

(
− t
y
$r

)j
,

which converges because r ≥ 1. Thus, since r ≥ a(χ)
2 , we use Lemma 3.1.3 to see that

Sχ(1, a$
l,m) = ζF (1)q

−r
∑

y∈(o/pr)×
χ(y)ψ

((
y+

a$l

y

)
$−m

)

G

(
a

y3
$l−ρ, [y2 + ybχ$

m−a(χ) − a$l]y−2$−r−ρ
)
.

Before we can evaluate the quadratic Gauß sum using Lemma 3.1.1 we have to solve the

congruence

y2 + ybχ$
m−a(χ) − a$l ∈ pr for y ∈ (o/pr)×.

If l > 0, then this has obviously no solution y ∈ o×. Otherwise the discriminant ∆ =

b2χ$
2m−2a(χ) + 4a is a unit and according to Lemma 3.1.4 we have

y± = −bχ
2
$m−a(χ) ± (∆) 1

2
.
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3.1 the p-adic method of stationary phase

Evaluating the Gauß sum gives the desired result.

If m ≤ a(χ), we use a similar trick. Write a(χ) = 2r + ρ and apply Lemma 3.1.3. We

arrive at

Sχ(1, a$
l,m) = ζF (1)q

−r
∑

y∈(o/pr)×
χ(y)ψ

((
y+

a$l

y

)
$−m

)

·G
(
a

y3
$l+2r−m − bχ

2y2
$−ρ, [y2$a(χ)−m + ybχ − a$l+a(χ)−m]y−2$−r−ρ

)
.

Thus, as before, we have to evaluate the Gauß sum. Note that, if m < a(χ), the latter

vanishes for all y ∈ o×. Therefore we assume m = a(χ) from now on. If l > 0, we look

at the congruence

y(y+ bχ) ∈ a$l + pr,

which has one solution y0 ∈ o×. Further, the quadratic term of the Gauß sum reduces to

− bχ
2y2
$−ρ. We conclude this case by appealing to Lemma 3.1.1.

Finally, we have to deal with the possibly degenerate situation a(χ) = m and l = 0.

We treat several cases according to the p-adic size of ∆ = b2χ+ 4a. This is the discriminant

of the quadratic equation y2 + ybχ − a = 0.

Case I: ∆ ∈ o×. This is the non-degenerate situation. By Lemma 3.1.4 we have two

solutions y± to the equation in question and we conclude using Lemma 3.1.1.

Case II: 0 < v(∆) < dm2 e. In this case we note that 2a− y±bχ ∈ p, so that

Sχ(1, a$
l,m) = ζF (1)q

−r
∑
y∈S

χ(y)ψ

((
y+

a$l

y

)
$−m

)
,

where S = {y± + α$r+ρ− v(∆)
2 : α ∈ o/p

v(∆)
2
−ρ} is given by Lemma 3.1.4. Here we used

the fact that S is empty if v(∆) is odd. Observe that r+ ρ− v(∆)
2 ≥ dm4 e ≥ κF and apply

Lemma 3.1.3. This leads to

Sχ(1, a$
l,m) =ζF (1)q

−r
∑
±
χ(y±)ψ

((
y± +

a$l

y±

)
$−m

)

·
∑

x∈o/p
v(∆)
2 −ρ

ψ

(
∓
bχ
√
(∆)0

2y3±
x2$ρ− v(∆)

2 +
a

3y4±
x3$r+2ρ− 3

2
v(∆)

)
.

If v(∆) = 2ρ > 0, our current assumption implies r > 1 in which case the terms of the

sum are trivial. For v(∆) > 2ρ we can run another stationary phase argument. In both

cases the remaining sums are easily evaluated and one obtains the result stated above.
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3.1 the p-adic method of stationary phase

Case III: v(∆) ≥ dm2 e. In this case we use Lemma 3.1.4, 3.1.3, and 3.1.1 to see that

Sχ(1, a$
l,m) = ζF (1)q

−rχ(−bχ
2
)ψ(− ∆

2bχ
$−m)

·
∑

x∈o/pt−d
r+ρ
2 e

ψ

(
− ∆
b2χ
x$d

r+ρ
2
d−m − 2∆

b3χ
x$2d r+ρ

2
d−m − 16ax3

3b4χ
$3d r+ρ

2
e−m

)
.

By completing the cube we can express the remaining sum in terms of Aiψ. We get

Sχ(1, a$
l,m) = ζF (1)q

−r+r−d r+ρ
2
e+d r+ρ

2
e−m

3 χ(−bχ
2
)ψ(− ∆

2bχ
$−m)

·Aiψ

(
−
4b4χ
3
$3d r+ρ

2
e−m; (8b2χ − ∆$−2d

r+ρ
2
e)$3d r+ρ

2
e−m

)
.

This completes the proof.

Throughout the proof we have seen non-degenerate and degenerate critical points. In

particular, the twisted Kloosterman sum features a transition region just as the K-Bessel

function. If we view l, m and a as parameters, we can also classify their degeneracy. The

caustic locus is given by

C =

{
m = a(χ), l = 0, a = −

b2χ
4

}
.

The light zone is

L = {m > a(χ), a ∈ o2×} ∪ {m = a(χ), l > 0, a ∈ o×}

∪

{
m = a(χ), l = 0, a 6∈ −

b2χ
4

+ p

}
.

The rest is made up by the shadow zone, where Sχ vanishes.

Remark 3.1.9. As there are different types of Bessel functions there are also other types of

Kloosterman sums. Let E be a quadratic extension of F and let dH denote the Haar probability

measure on the hypersurface Nr−1E/F (1). We define

Sξ(A|E) =
∫

Nr−1
E/F (1)

ξ(x)ψE(Ax)dHx,

for a multiplicative character ξ and A ∈ E.

This function does not come out of thin air as we will encounter it in our analysis of the

Whittaker new vector. However, this generalisation of the classical Kloosterman sum seem not

to be standard in the literature. A complete evaluation of these sums would be interesting but is

beyond the scope of this thesis. We will derive the estimates needed later on in an ad-hoc manner.
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3.2 computing finite fourier coefficients

3.2 computing finite fourier coefficients

This section lays the foundation for most of the computations in this chapter. We will

explicitly compute the finite Fourier expansion of local Whittaker new vectors. In doing

so we built on the circle of ideas introduced in [69]. Let π be an irreducible, admissible

representation of GL2(F ) and let Wπ be a normalised ψ-Whittaker new vector.

The new vector is an element of fundamental importance. Indeed, the set of vectors

Wπ(·), Wπ(·a($−1)), Wπ(·a($−2)), . . .

spans the complete Whittaker space. This can be extracted from [26]. Furthermore, we

have

Wπ(gt,l,va($
−i)) = Wπ(gt−i,min(0,i−l),v).

We conclude that by understanding the new vector on the matrices gt,l,v we understand

a very convenient basis of the whole space.1

One notes that the function

v 7→Wπ(gt,l,v)

is well defined for v ∈ o×/(1+ pl). This follows from the identity

gt,l,v(1+x$l) = gt,l,vn(vx).

Thus we can expand it in its finite Fourier expansion as follows.

Wπ(gt,l,v) =
∑
µ∈Xl

ct,l(µ)µ(v). (3.2.1)

The Fourier coefficients in question are the constants ct,l(µ). They can be computed

using the basic identity:

∞∑
t=−∞

q(t+a(µπ))(
1
2
−s)ct,l(µ) (3.2.2)

= ωπ(−1)ε(
1

2
,µπ)−1

L(s,µπ)

L(1− s,µ−1ω−1π π)

∞∑
a=0

Wπ(a($
a))q−a(

1
2
−s)G($a−l,µ−1).

The proof of this formula, given in [69, Propositon 2.23], is valid for any l ≥ 0 as long as

ωπ($) = µ($) = 1.

1 In general it is still hard to understand arbitrary vectors as they can be complex linear combinations of our

basis. In some cases there are more direct ways to compute some special vectors directly. One example of

such are the minimal vectors studied in [48].
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3.2 computing finite fourier coefficients

With the help of this identity we will give explicit expressions for the constants ct,l(µ)

defined above. The resulting representation of Wπ(gt,l,v) can be thought of as a p-adic

Mellin-Barnes representation.

The upcoming calculations work in great generality. Indeed, we can handle any non-

archimedean local field F , and any (not necessarily unitary) irreducible, admissible rep-

resentation π with unitary central character ωπ ∈ Xn. This section is organised in subsec-

tions, each of which deals with a particular type of GL2(F )-representation on its own.

We closely follow the exposition in [4, Section 2]. Further we end this section with a

summary adapted from [5].

3.2.1 Supercuspidal representations

Let π be a supercuspidal representation. Because L(s,µπ) = 1, for all µ, the basic identity

takes the simple form
∞∑

t=−∞
q(t+a(µπ))(

1
2
−s)ct,l(µ) = ωπ(−1)ε(

1

2
,µπ)−1G($−l,µ−1). (3.2.3)

By comparing coefficients we arrive at

ct,l(µ) =


ωπ(−1)G($−l,µ−1)

ε( 1
2
,µπ)

if t = −a(µπ),

0 else.

(3.2.4)

Evaluating the Gauß sum yields

ct,l(µ) =



ε( 12 ,ω
−1
π π) if l = 0, t = −n, and µ = 1,

−ζF (1)q−1ε( 12 ,ω
−1
π π) if l = 1, t = −n, and µ = 1,

ζF (1)q
− l

2 ε( 12 ,µ)ε(
1
2 ,µ
−1ω−1π π) if µ ∈ X′l, t = −a(µπ), and l > 0,

0 else.

These expressions essentially appeared in [69, Section 2.7].

3.2.2 Twists of Steinberg

If π = χSt, then the situation is slightly more complicated. This is because L(s, St) is

non-trivial.
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3.2 computing finite fourier coefficients

Lemma 3.2.1 ([4], Lemma 2.1). Let l ∈ N0 and µ ∈ Xl. If π = χSt for χ 6= 1, then the

constants ct,l(µ) are given by

ct,l(µ) =



ε( 12 ,µ
−1ω−1π π)G($−l,µ−1) if µ 6= χ−1 and t = −2a(µχ),

q−1G($−l,µ−1) if µ = χ−1 and t = −2,

−ζF (2)−1q−1−tG($−l,µ−1) if µ = χ−1 and t > −2,

0 else.

If π = St, then we have

ct,l(µ) =



qa(µ)−lG(−$−a(µ),µ) if µ 6= 1 and t = −l− a(µ),

−q−t−1 if µ = 1, l = 0, and t ≥ −1,

q−t−2l if µ = 1, l ≥ 1, and t ≥ −l,

−ζF (1)q−l if µ = 1, l ≥ 1, and t = −l− 1,

0 else.

Proof. If χ 6= 1 and µ 6= χ−1, then the basic identity is as in (3.2.3). It is easy to compare

coefficients.

We continue by considering χ 6= 1 and µ = χ−1. In this case we have

∞∑
t=−∞

q(t+1)( 1
2
−s)ct,l(χ

−1) = −ωπ(−1)
L(s, |·|

1
2 )

L(1− s, |·|
1
2 )
G($−l,χ).

For suitable s one can expand

L(s, |·|
1
2 )

L(1− s, |·|
1
2 )

= −q−
3
2
+s + ζF (2)

−1
∞∑
a=0

q−
a
2
−as.

Inserting this expression together with the explicit evaluation of the Gauß sum and

comparing coefficients completes this case.

Next we look at χ = 1 and µ 6= 1. Using the support of the Gauß sum, (1.3.1), and

evaluating the Whittaker function, (1.3.7), yields a basic identity of the form
∞∑

t=−∞
q(t+a(µπ))(

1
2
−s)ct,l(µ) = ε(

1

2
,µ−1π)G($−a(µ),µ−1)q−(l−a(µ))(

3
2
−s).

Note that a(µπ) = 2a(µ) and a(π) = n = 1. Since we are assuming µ 6= 1, we must have

l ≥ 1. We complete this case by observing that, because π = St,

ε(
1

2
,µ−1π)G($−a(µ),µ−1) = G(−$−a(µ),µ).
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3.2 computing finite fourier coefficients

Further, we consider χ = µ = 1 and l = 0. In this case the basic identity simplifies to
∞∑

t=−∞
q(t+1)( 1

2
−s)ct,0(1) = −L(s, |·|

1
2 ) = −

∞∑
a=0

q−a(
1
2
+s).

Again we can compare coefficients.

It remains to check the case χ = µ = 1 and l ≥ 1. The basic identity becomes

∞∑
t=−∞

q(t+1)( 1
2
−s)ct,l(1) = −q−(l−1)(

3
2
−s) L(s, |·|

1
2 )

L(1− s, |·|
1
2 )

(
q−

3
2
+sL(1− s, |·|

1
2 )− ζF (1)q−1

)
= −q−l(

3
2
−s)ζF (1)L(s, |·|

1
2 )(1− q

1
2
−s)

= −ζF (1)q−l(
3
2
−s) +

∑
a≥1

q−(a−l)s−
3
2
l− 1

2
a+1.

In the last step we expanded L(s, |·|
1
2 ) as a geometric series. The result is derived by

comparing coefficients.

3.2.3 Irreducible principal series

We turn to the situation π = χ1 � χ2. The invariants attached to π are given explicitly

in terms of χ1 and χ2. Further, the assumption ωπ ∈ Xn implies that χ1χ2($) = 1.

Some values for ct,l(µ) have been computed in [69, Proposition 2.39, 2.40]. We refine

and complete these computations in order to list precise expressions for all possible t, l

and µ.

Lemma 3.2.2 ([2], Lemma 2.2). Let π = χ1�χ2 with a(χi) > 0 for i = 1, 2. If χ1|o× 6= χ2|o× ,

then

ct,l(µ) =



ε( 12 ,µ
−1ω−1π π)G($−l,µ−1)

if a(µχ1), a(µχ2) 6= 0 and t = −a(µχ1)− a(µχ2),

−q−
1
2χi($−1)ε(

1
2 ,µ
−1ω−1π π)G($−l,µ−1)

if a(µχj) 6= a(µχi) = 0 for {j, i} = {1, 2}, and t = −a(µχj)− 1,

ζF (1)−1q
− t+a(µπ)

2 χi($t+a(µπ))ε( 12 ,µ
−1ω−1π π)G($−l,µ−1)

if a(µχj) 6= a(µχi) = 0 for {j, i} = {1, 2}, and t ≥ −a(µχj),

0

else.
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If χ1|o× = χ2|o× , then

ct,l(µ) =



ε( 12 ,µ
−1ω−1π π)G($−l,µ−1)

if a(µχ1), a(µχ2) 6= 0 and t = −a(µχ1)− a(µχ2),

q−1G($−l,µ−1)

if a(µχ1) = a(µχ2) = 0, and t = −2,

−q−
1
2 ζF (1)−1G($−l,µ−1)(χ1($) + χ2($))

if a(µχ1) = a(µχ2) = 0, and t = −1,

q−
t
2G($−l,µ−1)

(
− q−1ζF (1)−1(χ1($t+2) + χ2($t+2))

+ζF (1)−2
∑t

k=0 χ1($k)χ2($t−k)

)
if a(µχ1) = a(µχ2) = 0, and t ≥ 0,

0

else.

Proof. The case µ 6= χ1,χ2 is straight forward. We start by considering χ1 = µ−1 |·|c 6=

χ2 |·|2c. The same calculation will work with the roles of χ1 and χ2 interchanged. The

basic identity reads

∞∑
t=−∞

q(t+a(µπ))(
1
2
−s)ct,l(µ) = G($−l,µ−1)ε(

1

2
,µ−1ω−1π π)

L(s, |·|c)
L(1− s, |·|−c)

.

Expanding the quotient of L-factors into a power series and recalling χ1($) = q−c yields

L(s, |·|c)
L(1− s, |·|−c)

= −q−1χ1($
−1)qs + ζF (1)

−1
∞∑
a=0

χ1($
a)q−as. (3.2.5)

Inserting this in the basic identity enables us to compare coefficients, which concludes

this case.

In the end we consider the situation where both, χ1 and χ2, are unramified twists of µ.

Since the central character is trivial on the uniformiser we have χ1($) = χ−12 ($) = |$|cF
for some c ∈ C. The basic identity becomes

∞∑
t=−∞

qt(
1
2
−s)ct,l(µ) = ωπ(−1)G($−l,µ−1)

L(s, |·|c)L(s, |·|−c)
L(1− s, |·|c)L(1− s, |·|−c)

.
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3.2 computing finite fourier coefficients

We use (3.2.5) twice to obtain

L(s, |·|c)L(s, |·|−c)
L(1− s, |·|c)L(1− s, |·|−c)

= q−2q2s − q−1ζF (1)−1(χ1($) + χ2($))qs

+
∞∑
a=0

(
− q−1ζF (1)−1(χ1($

a+2) + χ2($
a+2)) + ζF (1)

−2
a∑
l=0

χ1($
l)χ2($

a−l)

)
q−as.

We may compare coefficients to conclude the proof.

Lemma 3.2.3 ([4], Lemma 2.3). Let π = χ1 � χ2 with n = a(χ1) > a(χ2) = 0. We have

ct,l(µ) =



µ(−1)ε( 12 ,µ
−1ω−1π )ζF (1)q

− l
2χ2($a(µωπ)−l)

if µ 6= ω−1π , l > 0, and t = −a(µωπ)− l,

ε( 12 ,ω
−1
π )q−

1
2
(t+n)χ2($t+2n)

if l = 0, and t ≥ −n,

−ωπ(−1)ζF (1)q−
1
2
(l+1)χ2($1−l)

if µ = ω−1π and t = −l− 1,

ωπ(−1)q−
t
2
−lχ2($−t−2l)

if µ = ω−1π and t ≥ −l,

0 else.

Note that by isomorphy this covers the case a(χ2) > a(χ1) = 0 as well.

Proof. From (1.3.7) we infer that

Wπ(a($
a)) = χ1($

a)q−
a
2 for a ≥ 0.

First, we consider µ 6= 1 and assume that µ is not an unramified twist of χ−11 . Using the

support of the Gauß sum we write the basic identity in the form

∞∑
t=−∞

q(t+a(µπ))(
1
2
−s)ct,l(µ)

= ε(
1

2
,µ−1ω−1π π)χ1($

l−a(µ))q−(l−a(µ))(1−s)G($−a(µ),µ−1)

= µ(−1)ε(1
2
,µ−1ω−1π )ζF (1)q

−l+ a(µ)
2 χ1($

l−a(µωπ))q(l−a(µ))s.

Comparing coefficients yields the desired constants.
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3.2 computing finite fourier coefficients

Next, we consider µ = ω−1π = χ−11 χ−12 . Again the basic identity reduces to
∞∑

t=−∞
q(t+a(µπ))(

1
2
−s)ct,l(µ)

= ε(
1

2
,χ1)

L(s,χ−12 )

L(1− s,χ2)
χ1($

l−a(µ))G($−a(µ),µ−1)q−(l−n)(1−s)

= ωπ(−1)ζF (1)χ1($
l)q−l+

n
2
L(s,χ−12 )

L(1− s,χ2)
q(l−n)s.

The quotient of L-factors can be evaluated using (3.2.5). One obtains
∞∑

t=−∞
q(t+a(µπ))(

1
2
−s)ct,l(µ) = −ωπ(−1)ζF (1)q−1−l+

n
2 χ2($

−l+1)q(l−n+1)s

+ωπ(−1)
∞∑
a=0

q−l+
n
2 χ2($

−a−l)q(−a−n+l)s.

With this at hand it is easy to evaluate ct,l(µ).

The last case to consider is µ = 1. This is a very degenerated situation which splits

into two sub cases. First, we look at l > 0. In this situation the basic identity has the

form
∞∑

t=−∞
q(t+a(π))(

1
2
−s)ct,l(1)

= ε(
1

2
,χ−11 )

L(s,χ2)

L(1− s,χ−12 )

( ∞∑
a=l

χ1($
a)q−a(1−s) − ζF (1)q−1χ1($

l−1)q−(l−1)(1−s)
)

= ε(
1

2
,χ−11 )χ1($

l)q−l(1−s)
(
L(1− s,χ−12 )− ζF (1)χ2($)q−s

)
L(s,χ2)

L(1− s,χ−12 )

= ζF (1)ε(
1

2
,χ−11 )χ1($

l)q−l(1−s)

This nice formula makes comparing coefficients easy.

Second, if l = 0, the situation is slightly different. Indeed the basic identity reads
∞∑

t=−∞
q(t+a(π))(

1
2
−s)ct,0(1) = ε(

1

2
,χ−11 )L(s,χ2) = ε(

1

2
,χ−11 )

∞∑
a=0

χ1($
−a)q−as.

This concludes the proof.

3.2.4 Summary

We will now summarise our findings focusing on non-zero situations. This is taken from

[5, Appendix A]. For future applications we slightly rescale the coefficients. We set

ct,l(µ) = c(π, l, t,µ)ζF (1)q
− l+t+a(µπ)

2 λµπ(p
t+a(µπ)+δµπ ),
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3.2 computing finite fourier coefficients

for some δµπ ∈ N which will be defined case by case. In most cases it turns out to be

the degree of the Euler-factor of µπ. This new constants satisfy

|c(π, l, t,µ)| ≤ 5q
1
2 tmax

i=1,2
(|αi|t), (3.2.6)

for αi = χi($) if π = χ1 � χ2 and αi = 1 otherwise. Note that, since we are dealing

with admissible, unitary representations π, we have |αi| = 1 except for χ1 equals χ2 up

to unramified twist.

Supercuspidal representations π. Recall that in this case λµπ(pm) = δm=0 and δµπ = 0

for all µ. This leads to the table below.

c(π, l, t,µ) µ = 1 µ ∈ Xl \ {1}

l = 0 ε( 12 , π̃)ζF (1)
−1 −

l = 1 −q−
1
2 ε( 12 , π̃) ε( 12 ,µ)ε(

1
2 ,µ
−1π̃)

l > 1 0 ε( 12 ,µ)ε(
1
2 ,µ
−1π̃)

Twists of Steinberg. Here we consider π = χSt for some ramified character χ. We

have

λχµπ(p
m) =


δm=0 if µ 6= χ−1,

q−
m
2 δm≥0 if µ = χ−1.

Set δµπ = 1 if µ = χ−1, and δµπ = 0 otherwise. One obtains the following evaluations.

c(π, l, t,µ) µ = 1 µ = χ−1 µ ∈ X′ \ {1,χ−1}

l = 0 ε( 12 , π̃)ζF (1)
−1 − −

l = 1 −ε( 12 , π̃)q
− 1

2 ε( 12 ,µ)q
− 3

2 if t ≤ −2 ε( 12 ,µ
−1π̃)ε( 12 ,µ)

−ε( 12 ,µ)
q
1
2

ζF (2)
if t > −2

l > 1 0 ε( 12 ,µ)q
− 3

2 if t ≤ −2 ε( 12 ,µ
−1π̃)ε( 12 ,µ)

−ε( 12 ,µ)
q
1
2

ζF (2)
if t > −2

Irreducible principal series. In this section we treat three cases. First, we look at

π = χ1 � χ2 with χ1|o× 6= χ2|o× . In this case δµπ = 1 if µ|o× = χ−1i |o× and 0 otherwise.

Furthermore,

λµπ(p
m) =


δm=0 if µ|o× 6= χ−1i |o× ,

χi($m)δm≥0 if µ|o× = χ−1i |o× .
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3.2 computing finite fourier coefficients

We get the following table.

c(π, l, t,µ) µ = 1 µ|o× = χ−1i |o× µ ∈ X′ \ {1,χ−1i }

l = 0 ε( 12 , π̃)ζF (1)
−1 − −

l = 1 −ε( 12 , π̃)q
− 1

2 −ε( 12 ,µ
−1π̃)ε( 12 ,µ)χ

−1
i ($)q−1 ε( 12 ,µ

−1π̃)ε( 12 ,µ)

if t ≤ −a(µπ)− 1

ε( 12µ
−1π̃)ε( 12 ,µ)χ

−1
i ($)ζF (1)−1

if t > −a(µπ)− 1

l > 1 0 −ε( 12 ,µ
−1π̃)ε( 12 ,µ)χ

−1
i ($)q−1 ε( 12 ,µ

−1π̃)ε( 12 ,µ)

if t ≤ −a(µπ)− 1

ε( 12µ
−1π̃)ε( 12 ,µ)χ

−1
i ($)ζF (1)−1

if t > −a(µπ)− 1

Next we look at π = χ1�χ2 where χ1|o× = χ2|o× . In this case δµπ = 2 if µ|o× = χ−11 |o×

and 0 otherwise. Furthermore,

λµπ(p
m) =


δm=0 if µ|o× 6= χ−11 |o× ,

χ1(pm+1)−χ2(pm+1)
χ1($)−χ2($)

δm≥0 if µ|o× = χ−11 |o×

We produce the following table.
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3.2 computing finite fourier coefficients

c(π, l, t,µ) µ = 1 µ|o× = χ−11 |o× µ ∈ X′ \ {1,χ−11 }

l = 0 ε( 12 , π̃)ζF (1)
−1 − −

l = 1 −ε( 12 , π̃)q
− 1

2 ε( 12 ,µ)q
−2 ε( 12 ,µ

−1π̃)ε( 12 ,µ)

if t ≤ −2

−ε( 12 ,µ)
q−1

ζF (1)

if t = −1

ε( 12 ,µ)(
1+q−1−q−2

ζF (1)2
λµπ(pt)
λµπ(pt+2)

− ζF (1)−1)

if t ≥ 0

l > 1 0 ε( 12 ,µ)q
−2 ε( 12 ,µ

−1π̃)ε( 12 ,µ)

if t ≤ −2

−ε( 12 ,µ)
q−1

ζF (1)

if t = −1

ε( 12 ,µ)(
1+q−1−q−2

ζF (1)2
λµπ(pt)
λµπ(pt+2)

− ζF (1)−1)

if t ≥ 0

Finally, we need to look at π = χ1 � χ2 with a(χ1) > a(χ2) = 0. In this case we have

λµπ(p
m) =


δm=0 if µ 6= ω−1π ,

χ2($m)δm≥0 if µ = ω−1π .

Also, δµπ = 1 if µ = ω−1π and 0 otherwise. For technical reasons we put δπ = l. One has

the following results.

c(π, l, t,µ) µ = 1 µ = ω−1π µ ∈ X′ \ {1,ω−1π }

l = 0 ε( 12 , π̃)ζF (1)
−1 − −

l > 1 ε( 12 , π̃)χ1($l)q−
l
2 −ωπ(−1)χ2($1−l)q−1 ε( 12 ,µ

−1π̃)ε( 12 ,µ)

if t ≤ −a(µπ)− 1

ωπ(−1)χ2($1−l)

if t > −a(µπ)− 1
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3.3 integral representations for whittaker new vectors

3.3 integral representations for whittaker new vectors

In this section, following [4, Section 3], we use our description of ct,l(µ) to evaluate

Whittaker new vectors on the special matrices gt,l,v. We will obtain expressions for the

local Whittaker functions featuring several (p-adic) special functions. These functions

are analogues of well known special functions that appear in the archimedean represen-

tation theory of GL2 and are interesting in their own right. Probably the most prestiges

function we will encounter is the Kloosterman sum and its twisted generalisation (gen-

eralised Salié sum). A more general function is

K(ξ,A,B) =

∫
O×

ξ(x)ψ(Tr(Ax) +BNrE/F (x))dEx,

which we associated to a multiplicative character ξ : E× → S1 on some étale algebra E

over F . Here A ∈ E and B ∈ F .

However, the focus of this section is to describe the support of the Whittaker functions

as precisely as possible. This will help us later on to exclude several choices for t and l

for which Wπ(gt,l,v) vanishes.

We consider each type of representation on its own. The case of supercuspidal rep-

resentations has already been considered in [69, Proposition 2.30]. However, in many

cases the sums of ε-factors simplify considerably.

The results in this section hold for any non-archimedean field F and any irreducible,

admissible, unitary representation π with central character ωπ ∈ Xn.

3.3.1 Dihedral supercuspidal representations

Here we will derive an expression of the Whittaker new vector for dihedral supercus-

pidal representations which goes beyond the one given in [69, Proposition 2.30]. The

following results hold for any dihedral representation even if 2 | q. However, in this case

not every supercuspidal representation is dihedral.

If π is dihedral supercuspidal, then so is π̃. Therefore we find a quadratic extension

E/F and a multiplicative character ξ such that π̃ = ωξ. We now use the properties of

dihedral supercuspidal representations, in particular (1.3.6), to calculate the Whittaker

function.
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Lemma 3.3.1 ([4], Lemma 3.1). If π is dihedral supercuspidal, then

Wπ(gt,l,v) =



ε( 12 , π̃) if l = 0 and t = −n,

γq
n
2K(ξ−1,Ω−

n
f , v$−l) if 0 < l < n

2 and t = −n,

γq−
t
2K(ξ−1,Ω

t
f , v$−l) if l = n

2 and − n ≤ t < 0,

γqlK(ξ−1,Ω−
2l
f , v$−l) if n2 < l < n and t = −2l,

ωπ(−v−1)ψ(−v−1$−l) if n ≤ l and t = −2l,

0 else.

Proof. First, we apply [73, Lemma 1.1.1] in the setting of E and obtain

ε(
1

2
, ξ · (µ−1 ◦NrE/F ))

= q
f
2
(n(ψE)−a(ξ·(µ−1◦NrE/F ))

∫
Ωn(ψE )−a(ξ·(µ−1◦NrE/F ))O×

ξ−1(x)µ(NrE/F (x))ψE(x)dµE(x).

Note that, if t = −a(µπ), we get

n(ψE)− a(ξ · (µ−1 ◦NrE/F )) =
t

f
.

With this at hand we proceed computing the Whittaker new vector for l > 0 using

(3.2.4). We obtain

Wπ(gt,l,v) =
∑

t=−a(µπ)

ε(
1

2
,µ−1π̃)G($−l,µ−1)µ(v)

= γq
t
2

∫
Ω
t
f O×

∫
o×
ξ−1(x)ψ(Tr(x) + v$−ly)

∑
µ∈Xl

µ(NrE/F (x)y
−1)dExd

×y

= γq−
t
2

∫
O×

∫
o×
ξ−1(Ω

t
f x)ψ(Tr(Ω

t
f x) + v$−ly)

∑
µ∈Xl

µ(NrE/F (x)y
−1)dExd

×y

= γq−
t
2

∫
O×

ξ−1(x)ψ(Tr(Ω
t
f x) + v$−lNrE/F (x))dEx.

If l = 0, the only term in the expansion of Wπ(gt,l,v) is ct,0(1), which makes this case

easy.

Finally, if l ≥ n, we have the matrix identity

gt,l,v

 0 1

$n 0

 = n(−v−1$t+l)z(v$n−l)gt−n+2l,0,v2

1 1+ v−1$l−n

0 −v−2

 .
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Furthermore, [69, Lemma 2.17, Corollary 2.27, Proposition 2.28] imply

ε(
1

2
,π)Wπ

g
 0 1

$n 0


 = ωπ(det(g))Wπ̃(g).

With this at hand we compute

Wπ(gt,l,v) = ε(
1

2
, π̃)Wπ̃

gt,l,v
 0 1

$n 0




= ωπ̃(v)ψ(−v−1$t+l)ε(
1

2
, π̃)Wπ̃(gt+2l−n,0,v2).

The expression claimed above follows by using the l = 0 case for Wπ̃.

Remark 3.3.2. It is clear from the proof that, if there is no µ such that−t = a(µπ) and a(µ) = l,

then Wπ(gt,l,v) = 0. In particular, if n0(π) = minµ∈X(a(µπ)), then Wπ(gt,l,v) = 0 for all

t > −n0(π). Even more, if π comes from an unramified extension E of F , then Wπ(gt,l,v) 6= 0

forces t to be even. On the other hand, if π comes from a ramified extension E of F , it is a

theorem due to Tunnell, [85, Proposition 3.5], that π is twist-minimal if and only if a(π) is odd.

We observe that in this case, if a(π) is even and l = a(π)
2 , then t = −n0(π) is the largest and

only odd value for t that can appear for non-zero Wπ(gt,l,v).

3.3.2 Twists of Steinberg

Throughout this subsection E will denote the algebra F ×F . In this case any multiplica-

tive character ξ on E× factors in ξ = (χ1 ◦ pr1) · (χ2 ◦ pr2) for two characters χ1 and

χ2 of F×. However, at the moment we will only encounter the special situation where

χ1 = χ2. In other words, ξ factors through the norm map. We will now compute the local

Whittaker functions in terms of K(ξ,A,B) and other well known exponential sums.

We start of with the simplest case.

Lemma 3.3.3 ([4], Lemma 3.2). For π = St we have

Wπ(gt,l,v) =



−q−t−1 if t ≥ −1 and l = 0,

q−t−2lψ(−$l+tv−1) if l ≥ 1 and −2l ≤ t,

0 else.
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Proof. By the definition of ct,l(µ) we have

Wπ(gt,l,v) =
∑
µ∈Xl

ct,l(µ)µ(v).

We will now insert the expressions given in Lemma 3.2.1. The interesting cases are

obviously t ≤ −l− 1 and l ≥ 1. The values for ct,l(µ) calculated above yield

W (gt,l,v) = q−t−2l
∑

µ∈X′−l−t

G(−$l+t,µ)µ(v)− δt=−l−1ζF (1)q−l

= q−t−2l
∑

µ∈X−l−t

G(−$−l−tv−1,µ)

= q−t−2l]X−l−t

∫
1+$−l−to

ψ(−$l+tv−1y)d×y

= q−t−2lψ(−$l+tv−1).

We move on to the slightly more complicated situation of π = χSt for a non trivial χ.

Lemma 3.3.4 ([4], Lemma 3.3). Let π = χSt where χ is a character such that a(χ) > 0 and

χ($) = 1. If a(χ) ≥ 1 and l 6= a(χ) = n
2 , then we have

W (gt,l,v) =



ε( 12 , π̃) if t = −n and l = 0,

q−
t
2 ζF (1)−2K(χ⊗ χ, ($

t
2 ,$

t
2 ), v$−l) if t = −max(n, 2l) and 0 < l < n,

χ2(−v−1)ψ(−v−1$−l) if t = −2l and l ≥ n, ,

0 else.

Finally, if a(χ) ≥ 1 and l = a(χ) = n
2 , we are in the transition region and have

W (gt,l,v) =



−ζF (2)−1ζF (1)q−1−
a(χ)
2
−tχ(v−1)ε( 12 ,χ

−1) if t > −2,

qζF (1)−2K(χ⊗ χ, ($−1,$−1), v$−l) if t = −2 and l = 1,

χ(v−1)ε( 12 ,χ
−1)ζF (1)−1q

1−a(χ)
2 S(1,−bχv−1, 1) if t = −2 and l > 1,

q−
t
2 ζF (1)−2K(χ⊗ χ, ($

t
2 ,$

t
2 ), v$−l) if − 2l ≤ t < −2 even,

0 else.

Proof. We start by expanding

Wπ(gt,l,v) =
∑
µ∈Xl

ct,l(µ)µ(v).
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Using Lemma 3.2.1 we first observe that, if t > −2, the only character µ ∈ Xl with non-

zero ct,l(µ) is µ = χ−1. Similarly, if l = 0, the only character to consider is µ = 1, which

contributes only if t = −2a(χ) = −a(π). We move on to the more interesting cases and

assume l > 0 and t ≤ −2.

If t = −2, we obtain

Wπ(g−2,l,v) = q−1G($−l,χ)χ−1(v) +
∑
µ∈Xl,
a(µχ)=1

ε(
1

2
,µ−1χ−1)2G($−l,µ−1)µ(v).

Reversing the evaluation of the Gauß sum given in (1.3.1) reveals

Wπ(g−2,l,v) = qζF (1)
−2

∑
µ∈Xl,
a(µχ)≤1

G($−1,µχ)2G(v$−l,µ−1) (3.3.1)

= qζF (1)
−2
∑
µ∈Xl

G($−1,µχ)2G(v$−l,µ−1).

To exploit cancellation in the µ-average we write the Gauß sums as an integral. This

leads to

Wπ(g−2,l,v) = qζF (1)
−2
∫
(o×)3

χ(y1y2)ψ(y1$
−1 + y2$

−1 + y3v$
−l)

·
∑
µ∈Xl

µ(y1y2y
−1
3 )d×y3d

×y2d
×y1.

We observe

∑
µ∈Xl

µ(y1y2y
−1
3 ) =


]Xl if y1y2y−13 ∈ 1+$lo,

0 else.

Using this to simplify the integral we obtain

Wπ(g−2,l,v)

= qζF (1)
−2]XlVol(1+$lo, d×)

∫
(o×)2

χ(y1y2)ψ(y1$
−1 + y2$

−1 + y1y2v$
−l)d×y1d

×y2

= ζF (1)
−2qK(χ⊗ χ, ($−1,$−1), v$−l).

If l = 1 = a(χ), we will leave this expression as it is. However, in the other cases we

write

Wπ(g−2,l,v) = qζF (1)
−2
∫
o×
χ(y1)ψ(y1$

−1)G($−1 + y1v$
−l,χ)d×y1
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instead. Here we have to consider two different cases. First, if l > 1, the Gauß sum

vanishes unless l = a(χ) (which would also imply a(χ) > 1). Thus, if l = a(χ), we

obtain

Wπ(g−2,a(χ),v) = q1−
a(χ)
2 ζF (1)

−1ε(
1

2
,χ−1)

∫
o×
χ(y1)χ

−1(y1v+$a(χ)−1)ψ(y1$
−1)d×y1

= χ(v−1)ε(
1

2
,χ−1)ζF (1)

−1q1−
a(χ)
2

∫
o×
χ−1(1+ v−1y−11 $a(χ)−1)ψ(y1$

−1)d×y1

= χ(v−1)ε(
1

2
,χ−1)ζF (1)

−1q1−
a(χ)
2 S(1,−bχv−1, 1).

In the last step we observed that, if 1 < l = a(χ), we have a(χ) − 1 ≥ a(χ)
2 and thus

Lemma 3.1.3 can be used to find the desired bχ ∈ o×.

Second, if l = 1, the situation is completely different. In this case we have

Wπ(g−2,1,v) = q1−
a(χ)
2 ζF (1)

−1ε(
1

2
,χ−1)

·
∫
−v−1+$1−a(χ)o×

χ(y1)χ
−1(y1v+$a(χ)−1)ψ(y1$

−1)d×y1.

If a(χ) > 1, we can rewrite this as follows.∫
−v−1+$1−a(χ)o×

χ(y1)χ
−1(y1v+$a(χ)−1)ψ(y1$

−1)d×y1

= ψ(
−1
v$

)

∫
$1−a(χ)o×

χ(y1 − v−1)χ−1(y1v− 1+$a(χ)−1)ψ(y1$
−a(χ))

ζF (1)dy1
|y1 − v−1|

= ψ(
−1
v$

)

∫
o×
χ(y1$

1−a(χ) − v−1)χ−1(y1$1−a(χ)v− 1+$a(χ)−1)︸ ︷︷ ︸
=1

ψ(y1$
−a(χ))d×y1

= 0.

This implies that, if a(χ) > 1 we have

Wπ(g−2,1,v) = 0.

Similarly, if t < −2, we get

Wπ(gt,l,v) =
∑
µ∈Xl,

t=−2a(µχ)

ε(
1

2
,µ−1χ−1)2G($−l,µ−1)µ(v) (3.3.2)

= q−
t
2 ζF (1)

−2
∑
µ∈Xl

G($
t
2 ,µχ)2G($−lv,µ−1).

At this point we expand the Gauß sums into integrals and use cancellation between the

characters µ ∈ Xl. This yields

Wπ(gt,l,v) = q−
t
2 ζF (1)

−2
∫
o×

∫
o×
χ(y1y2)ψ(y1$

t
2 + y2$

t
2 + y1y2v$

−l)d×y1d
×y2

= q−
t
2 ζF (1)

−2K(χ⊗ χ, ($
t
2 ,$

t
2 ), v$−l). (3.3.3)
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In several cases we can obtain further simplification by writing

Wπ(gt,l,v) = q−
t
2 ζF (1)

−2
∫
o×
χ(y1)ψ(y1$

t
2 )G($

t
2 + y1v$

−l,χ)d×y1.

Let us assume for the moment that −l 6= t
2 . This implies

∣∣∣y−11 $
t
2 + v$−l

∣∣∣ = max(ql, q−
t
2 ).

Therefore the Gauß sum vanishes whenever max(− t
2 , l) 6= a(χ). Thus, if the Whittaker

function is non-zero, we must have a(χ) = l > − t
2 or a(χ) = − t

2 > l.

At last we consider l = − t
2 . From (3.3.2) we deduce that a(µχ) = l. Since the support

of the Gauß sum implies µ ∈ X′l we can assume l ≥ a(χ). Whenever l < n we are happy

with the expression given in (3.3.3). On the other hand, if l ≥ n, we can evaluate the

Gauß sum and calculate

Wπ(gt,l,v) = q
−t−a(χ)

2 ζF (1)
−1ε(

1

2
,χ−1)

∫
−v−1+$l−a(χ)o×

χ

(
y1

1+ y1v

)
ψ(y1$

t
2 )d×y1

= q
a(χ)
2 ζF (1)

−1ε(
1

2
,χ−1)χ(v−1)ψ(

−1
v$l

)

∫
o×
χ($l−a(χ) − v−1y−11 )︸ ︷︷ ︸

=χ−1(−vy1)

ψ(y1$
−a(χ))d×y1.

This reduces to another Gauß sum which can be evaluated and almost everything can-

cels out.

3.3.3 Irreducible Principal Series

In this subsection we will treat the Whittaker functions associated to irreducible princi-

ple series representations. In this case we work with the algebra E = F × F . For two

characters χ1 and χ2 on F× we write χ1 ⊗ χ2 for the obvious character on E×.

We start with the most degenerate case. We are talking about π = ωπ |·|s � |·|−s. For

notational simplicity we will sometimes write χ1 = ωπ |·|s and χ2 = |·|−s. In this case we

exploit that K(ω−1π ⊗ 1, ·, ·) degenerates to completely explicit expressions in characters

obeying some congruence condition.
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Lemma 3.3.5. Let π = ωπ |·|s� |·|−s. In this situation n = a(π) = a(ωπ) and we have

Wπ(gt,l,v)

=



χ2($t+2n)q−
t+n
2 ε( 12 ,ω

−1
π ) if l = 0 and t ≥ −n,

q
l
2χ2($−t−2l)ε(

1
2 ,ω

−1
π ) if 0 < l ≤ bn2 c, t = −n− l,

and v ∈ b−1ωπ + pl,

ωπ(−v−1)ψ(−v−1$t+l)χ2($−t−2l)q
n−l
2 if dn2 e ≤ l < n, t = −n− l,

and v ∈ b−1ωπ + pn−l,

ωπ(−v−1)q−
t+2l
2 χ2($−t−2l)ψ(−v−1$t+l) if l ≥ n > 0 and t ≥ −2l,

0 else.

Proof. The strategy is, as before, to use Lemma 3.2.3 together with the finite Fourier

expansion, (3.2.1), of Wπ. One sees directly that, if l = 0, there is only one contribution.

The same is true for l > 0 and t > −l. Therefore we assume l > 0 and t < −l. We obtain

Wπ(gt,l,v) =
∑

µ∈Xl\{ω−1
π },

t+l=−a(µωπ)

ζF (1)q
− l

2χ2($
−t−2l)ε(

1

2
,µ−1ω−1π )µ(−v)

−δt=−l−1,
µ=ω−1

π

ωπ(−v−1)ζF (1)q−
l+1
2 χ2($

−l+1).

At this point we consider two cases. First, if l ≤ bn2 c, then we use [69, Lemma 2.37] to

obtain

ε(
1

2
,µ−1ω−1π ) = ε(

1

2
,ω−1π )µ(−bωπ ),

where bωπ is the constant attached to ωπ via Lemma 3.1.3. From this we deduce2

Wπ(gt,l,v) = ζF (1)q
− l

2χ2($
−t−2l)ε(

1

2
,ω−1π )

∑
µ∈Xl

µ(bχv)

=


q
l
2χ2($−t−2l)ε(

1
2 ,ω

−1
π ) if v ∈ b−1χ + pl,

0 else.

(3.3.4)

On the other hand, if l ≥ dn2 e, we write the Gauß sum as integral and take the character

sum inside the integral. This leads to

Wπ(gt,l,v) = ωπ(−v−1)χ2($
−t−2l)ζF (1)

−1q−
t
2

∫
1+$lo

ωπ(x)ψ(−xv−1$t+l)d×x.

2 This is basically the argument used in the proof of [69, Proposition 2.39].
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If l ≥ n, the character is constant in the range of integration. We obtain

Wπ(gt,l,v) = ωπ(−v−1)χ2($
−t−2l)ζF (1)

−1q−
t
2

∫
1+$lo

ψ(−xv−1$t+l)d×x

= ωπ(−v−1)χ2($
−t−2l)q−

t
2

∫
1+$lo

ψ(−xv−1$t+l)dx

= ωπ(−v−1)χ2($
−t−2l)q−

t
2
−lψ(−v−1$t+l)

∫
o
ψ(−xv−1$t+2l)dx︸ ︷︷ ︸

=δt≥−2l

.

Finally, for dn2 e ≤ l < n we can use Lemma 3.1.3 to compute

Wπ(gt,l,v) = ωπ(−v−1)ψ(−v−1$t+2l)χ2($
−t−2l)q

n−l
2

∫
o
ψ($l−n(bχ − v−1))dx.

The remaining integral can be evaluated using orthogonality of characters.

Remark 3.3.6. Note that, if χ ∈ X′n for n even, then the lemma above implies that

ε(
1

2
,χ) = χ(b−1χ )ψ(bχ$

−n),

for bχ ∈ o× given by Lemma 3.1.3. It is not hard to see that for n odd one has

ε(
1

2
,χ) = γF (

bχ
2
,n)χ(b−1χ )ψ(bχ$

−n).

One can check that this is consistent with twist stability. Indeed, if µ ∈ Xn
2

we have

ε(
1

2
,µχ) = γF (

bχ
2
,n)µ−1(bχ + bµ$

n−a(µ))χ−1(bχ + bµ$
n−a(µ))ψ(bχ$

−n + bµ$
−a(µ))

= µ−1(bχ)ε(
1

2
,χ).

Which is what we expect from [69, Lemma 2.37].

Remark 3.3.7. We can also give a nice integral representation for Wπ(gt,l,v). Indeed, for 0 <

l < n, one can compute that

Wπ(gt,l,v) = χ2($
−t−2l)ωπ(−v−1)ζF (1)−1q−

t
2Gl

(
−$

t+l

v
,ωπ

)
.

Where

Gl(y,χ) =

∫
1+pl

ψ(yx)ωπ(y)d
×y
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is an incomplete Gauß sum. This is the path taken in [4, Lemma 3.4]. Comparing this to the

results from Lemma 3.3.5 we obtain

Gl(y$
k,χ)

=



ε( 12 ,χ
−1)ζF (1)χ−1(y)q

− k
2 if l ≤ ba(χ)2 c, k = −a(χ) and y ∈ −bχ + pl,

ζF (1)ψ(y$k) if da(χ)2 e ≤ l, k = −a(χ) and y ∈ −bχ + pa(χ)−l,

0 else,

for χ ∈ X, y ∈ o× and 0 < l < n. This is an extension of the upper bound given in [4,

Remark 5.9].

Next we will look at another degenerate situation.

Lemma 3.3.8 ([4], Lemma 3.5). Let π = χ |·|s�χ |·|−s for a non trivial character χ. If a(χ) ≥

1 and l 6= a(χ) = n
2 , we have

W (gt,l,v) =



ε( 12 , π̃) if t = −n and l = 0,

q−
t
2 ζF (1)−2K(χ ◦NrE/F , ($

t
2 ,$

t
2 ), v$−l) if t = −max(n, 2l)

and 0 < l < n,

χ2(−v−1)ψ(−v−1$−l) if t = −2l and l ≥ n,

0 else.

Finally, if a(χ) > 1 and l = a(χ) = n
2 , we have the degenerate situation

W (gt,l,v) =



q−
t
2G(v$−l,χ)

(
− q−1ζF (1)−1(qs(t+2) + q−s(t+2))

+ζF (1)−2
∑t

k=0 q
s(t−2k)) if t ≥ 0,

−q−
1
2 ζF (1)−1G(v$−l,χ)(qs + q−s) if t = −1,

qζF (1)−2K(χ ◦NrE/F , ($
−1,$−1), v$−l) if t = −2 and l = 1,

χ(v−1)ε( 12 ,χ
−1)ζF (1)−1q

1−a(χ)
2 S(1,−bχv−1, 1) if t = −2 and l > 1,

q−
t
2 ζF (1)−2K(χ ◦NrE/F , ($

t
2 ,$

t
2 ), v$−l) if − 2l ≤ t < −2 even,

0 else.

81



3.3 integral representations for whittaker new vectors

Proof. Interesting situations occur only for t ≤ −2. For those cases we have

Wπ(gt,l,v) =
∑
µ∈Xl,

t=−2a(µχ)

ε(
1

2
,µ−1χ−1)2G(v$−l,µ−1) + δt=−2q

−1G(v$−l,χ)

= ζF (1)
−2q−

t
2

∑
µ∈Xl

G($
t
2 ,µχ)2G(v$−l,µ−1).

We have seen this exact sum already in (3.3.1) and (3.3.2). The rest of the proof is left to

the reader.

Finally, we treat the general irreducible principal series.

Lemma 3.3.9 ([4], Lemma 3.6). Let π = χ1 |·|s � χ2 |·|−s with a(χ1) ≥ a(χ2) > 0. If

l 6∈ {a(χ1), a(χ2)}, then

Wπ(gt,l,v) =



ε( 12 , π̃)

if l = 0 and t = −n,

ζF (1)−2q
− t

2 qs(a(χ1)−a(χ2))K(χ1 ⊗ χ2, ($−a(χ1),$−a(χ2)), v$−l)

if t = −n and 0 < l < a(χ2),

ζF (1)−2q
− t

2 qs(a(χ1)−l)K(χ1 ⊗ χ2, ($−a(χ1),$−l), v$−l)

if t = −l− a(χ1) and a(χ2) < l < a(χ1),

ζF (1)−2q
− t

2K(χ1 ⊗ χ2, ($−l,$−l), v$−l)

if t = −2l and a(χ1) < l < n,

ωπ(−v−1)ψ(−v−1$−l)

if t = −2l and l ≥ n ,

0

else.
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If l = a(χi) 6= a(χj) for {i, j} = {1, 2}, then

Wπ(gt,l,v) =



ζF (1)−2q
− t

2 qs(2a(χ1)+t)K(χ1 ⊗ χ2, ($−a(χ1),$a(χ1)+t), v$−l)

if l = a(χ2) and −n ≤ t < −a(χ1),

ζF (1)−2q
− t

2 qstG($−a(χ1),χ−12 χ1)G(v$−a(χ2),χ2)

if l = a(χ2) and t ≥ −a(χ1),

ζF (1)−2q
− t

2 qs(−t−2l)K(χ1 ⊗ χ2, ($l+t,$−l), v$−l)

if l = a(χ1) 6= a(χ2) and −2l ≤ t < −a(χ1),

ζF (1)−2q
− t

2 q−stG($−a(χ1),χ2χ
−1
1 )G(v$−a(χ1),χ1)

if l = a(χ1) and t ≥ −a(χ1),

0

else.

And if l = a(χ1) = a(χ2), then

Wπ(gt,l,v) =



ζF (1)−2q
− t

2
∑l

l2=1 q
s(−t−2l2)K(χ1 ⊗ χ2, ($t+l2 ,$−l2), v$−l)

+δt≥−a(χ−1
1 χ2)

ζF (1)−2q
− t

2

[
G(v$−l,χ1)G($−a(χ

−1
1 χ2),χ−11 χ2)q−st

+G(v$−l,χ2)G($−a(χ
−1
2 χ1),χ−12 χ1)qst

]
if −n ≤ t ≤ −2,∑

{i,j}={1,2} χi(v
−1$t+l)q−

t+a(χ−1
i

χj )+l

2 ε( 12 ,χi)ε(
1
2 ,χ

−1
i χj)

if t > −2,

0

else.
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Proof. Let us consider the interesting situation l > 0. For t > −2 the only contribution

comes from the characters µ ∈ {χ−11 ,χ−12 }which is easily written down. We thus assume

t ≤ −2. Applying the usual tricks we end up with

Wπ(gt,l,v) =ζF (1)
−2q−

t
2

∑
t=−l1−l2,
l1,l2>0

qs(l1−l2)
∑
µ∈Xl

G($−l1 ,µχ1)G($
−l2 ,µχ2)G(v$

−l,µ−1)

+ δt≥−a(χ−1
1 χ2)

ζF (1)
−2q−

t
2

[
G(v$−l,χ1)G($

−a(χ−1
1 χ2),χ−11 χ2)q

−st

+G(v$−l,χ2)G($
−a(χ−1

2 χ1),χ−12 χ1)q
st

]
. (3.3.5)

As earlier we can compress the µ-sum to K(χ1 ⊗ χ2, ($−l1 ,$−l2), v$−l). This gives

Wπ(gt,l,v) =ζF (1)
−2q−

t
2

∑
t=−l1−l2,
l1,l2>0

qs(l1−l2)K(χ1 ⊗ χ2, ($
−l1 ,$−l2), v$−l)

+ δt≥−a(χ−1
1 χ2)

ζF (1)
−2q−

t
2

[
G(v$−l,χ1)G($

−a(χ−1
1 χ2),χ−11 χ2)q

−st

+G(v$−l,χ2)G($
−a(χ−1

2 χ1),χ−12 χ1)q
st

]
. (3.3.6)

We will treat different ranges of l case by case.

First, consider 0 < l < a(χ2). In this case the δ-term does not contribute. Furthermore,

we are only in a non-zero situation if t = −n. This is because only l1 = a(χ1) and

l2 = a(χ2) contribute to the sum.

Next, we look at l > a(χ1). This case is quite similar. Indeed, the only contribution

comes from l1 = l2 = l, so that t = −2l. The δ-term can’t appear. If we further assume

l ≥ n, then it reduces to a normal Gauß sum involving χ2 and we obtain

Wπ(g−2l,l,v) = ζF (1)
−1ql−

a(χ1)
2 ε(

1

2
,χ−11 )

∫
−v−1+$−a(χ1)+lo×

χ2(y)χ
−1
1 (1+ vy)ψ(y$−l)d×y

= ωπ(−v−1)ψ(−v−1$−l).

Let us investigate a(χ2) < l < a(χ1). Again no δ-term occurs and the only non-zero

situation is t = −l− a(χ1) with l1 = a(χ1) and l2 = l.

If l = a(χ2) < a(χ1), we observe that for t ≥ −a(χ1) only the δ-term contributes and

we obtain

Wπ(gt,a(χ2),v) = ζF (1)
−2q−

t
2 qstG($−a(χ

−1
2 χ1),χ−12 χ1)G(v$

−a(χ2),χ2).

On the other hand, for −n ≤ t < −a(χ1), no δ-term occurs and we have l1 = a(χ1) and

l2 = −t− a(χ1).
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3.3 integral representations for whittaker new vectors

Similarly, when l = a(χ1) > a(χ2), only the δ-term contributes to t ≥ −a(χ1). This

gives

Wπ(g−a(χ1),a(χ1),v) = ζF (1)
−2q−

t
2 q−stG($−a(χ

−1
1 χ2),χ−11 χ2)G(v$

−a(χ1),χ1).

Therefore the interesting case is −2l ≤ t < −a(χ1). This forces l2 = l and l1 = −t− l.

Finally, we are left with the critical situation l = a(χ1) = a(χ2). Without loss of

generality we assume t ≥ −n = −2l. We can rewrite (3.3.6) as

Wπ(gt,l,v) =ζF (1)
−2q−

t+l
2

l∑
l2=1

qs(−t−2l2)K(χ1 ⊗ χ2, ($
t+l2 ,$−l2), v$−l)

+ δt≥−a(χ−1
1 χ2)

ζF (1)
−2q−

t
2

[
G(v$−l,χ1)G($

−a(χ−1
1 χ2),χ−11 χ2)q

−st

+G(v$−l,χ2)G($
−a(χ−1

2 χ1),χ−12 χ1)q
st

]
.

Remark 3.3.10. If a(χ1) = a(χ2) = l, one can see that Lemma 3.3.9 fails to provide a simple

integral representation of Wπ(gt,l,v). Instead we end up having a sum of several integrals. We

will see later, by investigating the K-integrals for different l2, that all but one or maximally two

terms in the sum are zero. However, we can also sketch a simpler argument here. We consider

two cases.

First, let t ≥ −2a(χ1χ
−1
2 ). Suppose there is µ such that −t = l1 + l2 with l1 = a(µχ1) and

l2 = a(µχ2). These are exactly the values of l1 and l2 we need to consider. Suppose l1 6= l2, then

a(χ1χ
−1
2 ) = a((µχ1) · (µχ2)

−1) = max(l1, l2).

But this implies −t < 2a(χ1χ
−1
2 ), which is a contradiction. Thus, for t ≥ −2a(χ1χ

−1
2 ), the only

possible configuration is l1 = l2 = − t
2 .

Second, let t < −2a(χ1χ
−1
2 ). Suppose that l1 = l2. Then a(χ1χ

−1
2 ) ≤ l1. But this implies

−t = 2l1 ≥ −a(χ1χ
−1
2 ), which is a contradiction. We conclude that l1 6= l2. Using the same

trick as above implies that max(l1, l2) = a(χ1χ
−1
2 ). This leaves us with exactly two possible

configurations, namely l1 = a(χ1χ
−1
2 ) and l2 = −a(χ1χ

−1
2 )− t or l2 = a(χ1χ

−1
2 ) and l1 =

−a(χ1χ
−1
2 )− t.
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3.3.4 Summary

For convenience we will summarise the results of this section in a condensed form. We

start by recalling the generalised Atkin-Lehner relation. Indeed, for every π one has3

Wπ(gt,l,v) = ε(
1

2
, π̃)ωπ̃(v)ψ(−v−1$t+l)Wπ̃(gt+2l−n,n−l,−v)

for 0 ≤ l ≤ n.

We state our expressions for the Whittaker new vector focusing only on the non-zero

configurations. Thus, every quadruple (π, t, l, v) not mentioned in the following implies

Wπ(gt,l,v) = 0.

First, we look at some general formulae that are valid for every π. With

L(s,π) =
∑
k∈Z

λπ(p
t)q−st

we have4

Wπ(gt,0,v) = ε(
1

2
, π̃)q−

t+n
2 λπ(p

t+n)

and

Wπ(gt,l,v) = ωπ̃(−v)ψ(−v−1$−l)q−
t+2l
2 λπ̃(p

t+2l)

for l ≥ n. We now treat the remaining cases of l. The best description of Wπ is available

for twist-minimal non-supercuspidal representations. The case π = St is covered by the

formulae given above. For π = ωπ |·|s� |·|−s we have

Wπ(gt,l,v) l t v

ε( 12 , π̃)q
l
2
−sl 0 < l ≤ bn2 c −n− l v ∈ b−1ωπ + pl

ωπ̃(−v)ψ(−v−1$−n)q
n−l
2
−s(l−n) dn2 e ≤ l < n −n− l v ∈ b−1ωπ + pn−l

Also twist-minimal supercuspidal representation have very nice properties, in partic-

ular concerning their support. However, at this point it seems more practical to treat

them with the remaining cases. Here we distinguish two main cases. If l 6= n
2 , we have

Wπ(g−max(n,2l),l,v) = Cπq
− t

2K(ξ,Aπ,l, v$
−l).

We record the values of Cπ, ξ and Aπ,l in the following table.

3 This is a combination of [69, Lemma 2.18, Corollary 2.26 and Proposition 2.28].
4 These can also be proven directly using Atkin-Lehner relations and the well known values of Wπ on the

diagonal. This is because the upper triangular matrices making up the small Bruhat cell can be written as

Ng∗,n,∗K1(n).
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3.3 integral representations for whittaker new vectors

π Cπ ξ Aπ,l

Supercuspidal ξ : E× → C× γ Ω−
max(n,2l)

f

such that π̃ = ωξ−1

χSt χ⊗ χ : F × F → C× ζF (1)−2 ($−
max(n,2l)

2 ,$−
max(n,2l)

2 )

χ1 |·|s� χ2 |·|−s χ1 ⊗ χ2 : F × F → C× ζF (1)−2 ($−max(a1,l),$−max(a2,l))

·qsmax(a(χ1),l)

·q−smax(a(χ2),l)

With the slight addition,

Wπ(gt,a(χ2),v) =



ζF (1)−2q
− t

2
+s(2a(χ1)+t)K(χ1 ⊗ χ2, ($−a(χ1),$a(χ1)+t), v$−l)

if − n < t < −a(χ1),

ε( 12 ,πmin)ε(
1
2 ,χ

−1
2 )χ−12 (v)q−

t+n
2 λπ̃min(p

t+a(χ1))

if − a(χ1) ≤ t

and

Wπ(gt,a(χ1),v) =



ζF (1)−2q
− t

2
−s(2a(χ1)+t)K(χ1 ⊗ χ2, ($a(χ1)+t,$−a(χ1)), v$−l)

if − 2a(χ1) < t < −a(χ1),

ε( 12 , π̃min)ε(
1
2 ,χ

−1
1 χ−11 (v))q−

t+2a(χ1)
2 λπmin(p

t+a(χ1))

if − a(χ1) ≤ t

if π = χ1 |·|s� χ2 |·|−s for a(χ1) > a(χ2) > 0, we cover everything outside the transition

range.

If l = n
2 , we are in the transition region and the results are slightly more complicated.

We define πmin = χπ for χ such that n0(π) = minξ a(ξπ) = a(χπ). Note that this is

not uniquely determined. For principal series representations we require πmin = |·|s �

χ−11 χ2 |·|−s. If we are assuming that ωπmin($) = 1, the only other choice is π̃min. In the

case of supercuspidal π we will only need the invariant n0(π) = a(πmin) which is well

defined. With this at hand the results of this section are reflected in the following table.
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π Wπ(gt,n
2
,v) t

π̃ = ωξ γq−
t
2K(ξ−1,Ω

t
f , v$−l) t ∈ [−n,−n0(π)]

and t
f ∈ Z

χSt ζF (1)−2q
− t

2 t ∈ [−n,−n0(π))

·K(χ ◦NrE/F , ($
t
2 ,$

t
2 ), v$−l) and t even

− ζF (1)
ζF (2)

ε( 12 ,χ
−1)χ−1(v)q−

n
4
− t+n0(π)

2 t ≥ −n0(π)

·λπmin(p
t+n0(π))

χ |·|s� χ |·|−s ζF (1)−2q
− t

2 t ∈ [−n,−2]

·K(χ ◦NrE/F , ($
t
2 ,$

t
2 ), v$−l) and t even

ε( 12 ,χ
−1)χ−1(v)q−

1
2
−n

4 λπmin(p) t = −1

ε( 12 ,χ
−1)χ−1(v)q−

t
2
−n

4 t ≥ 0

·(λπmin(p
t)− q−1λπmin(p)λπmin(p

t+1))

χ1 |·|s� χ2 |·|−s, ζF (1)−2q
− t

2
−s(a(χ1)−n2 ) t = −n

2 − a(χ1)

a(χ1) > a(χ2) > 0 ·K(χ1 ⊗ χ2, ($−a(χ1),$−
n
2 ), v$−l)

χ1 |·|s� χ2 |·|−s, q−
t+n0(π)

2
−n

4 t ≥ −n0(π)

a(χ1) = a(χ2) ·
[
ε( 12 , π̃min)ε(

1
2 ,χ

−1
1 )χ−11 (v)λπmin(p

t+n0(π))

+ε( 12 ,πmin)ε(
1
2 ,χ

−1
2 )χ−12 (v)λπ̃min(p

t+n0(π))

]
ζ(1)−2q−

t
2

[
qs(t+2n0(π)) −n0(π) > t,

·K(χ1 ⊗ χ2, ($−n0(π),$t+n0(π)), v$−l) t > −2n0(π)

+q−s(t+2n0(π))

K(χ1 ⊗ χ2, ($t+n0(π),$−n0(π)), v$−l)

]
ζ(1)−2q−

t
2K(χ1 ⊗ χ2, ($

t
2 ,$

t
2 ), v$−l) −n ≤ t ≤ −2n0(π)

Note that in the case a(χ1) = a(χ2) we also implemented the results from Lemma 3.4.15

below.
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3.4 the size of whittaker new vectors

3.4 the size of whittaker new vectors

In this section we estimate the size of Whittaker new vectors, extending [4, Section 5]. To

do so we will built on the integral representations for Wπ(gt,l,v) derived in the previous

section. This reduces the problem to estimate K(ξ,A,B) in several situations. Due to the

generality of this sum there are many cases which seem quite different in nature and

the estimation turns out to be Sisyphus work. This upcoming case study relies heavily

on repeated use of the method of stationary phase as described earlier. Throughout this

section we assume that F has odd residual characteristic.

3.4.1 Dihedral supercuspidal representations

There are two slightly different types of dihedral supercuspidal representations. We start

with representations associated to unramified quadratic extensions of E/F .

Lemma 3.4.1 ([4], Lemma 5.1). Let π be a dihedral supercuspidal representation associated to

an unramified quadratic extension E = F (
√
ζ) of F and a character ξ : E× → S1. Then we

have

Wπ(g)�F q
n
12 .

If κF = 1 and n ≥ 6, the implicit constant is less than 2.

Even more, for n > 2, we define k = max(n, 2l), and write bξ = b1 +
√
ζb2. We obtain the

following more detailed results. If 0 < l < n
2 , we have

Wπ(g−n,l,v) = γγF (ζNrE/F (b),
n

2
)ξ−1(x0 +

√
ζb2)ψ((x1 + b1)$

−n
2 ),

where x0 ∈ o× is the unique solution to

v$
k
2
−lx2 + x− (b1 + vζb22$

k−n
2
−l)$

k−n
2 = 0. (3.4.1)

If l = n
2 , NrE/F (b) /∈ o2× and ∆ = 1+ 4v2b22ζ + 4vb1 ∈ o×, we have

Wπ(g−n,n
2
,v) =



γ
∑
± γF (ζ(NrE/F (b)−NrE/F (x±)

2v2), n2 )ξ
−1(x± +

√
ζb2)ψ((x± + b1)$

−n
2 )

if ∆ ∈ o2×,

0 else
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where x± ∈ o× are the unique solutions to (3.4.1). If NrE/F (b) ∈ o2×, degenerate critical points

are possible and we end up with
∣∣∣Wπ(g−n,n

2
,v)
∣∣∣ ≤ 2max(q

1
2 , q

n
12 ). For t > −n we have the

upper bounds

Wπ(gt,n
2
,v)�


q−

n+t
4 if t < −n0(π),

q−
n+t
4

+
n0(π)
12 if t = −n0(π).

Finally, if n2 < l < n, we have

W−2l,l,v = (−1)lγξ−1(x0 +
√
ζb2$

l−n
2 )ψ(x0$

−l + b1$
−n

2 ),

where x0 ∈ o× is the unique solution to (3.4.1).

Proof. We start by recalling some facts concerning the extension E/F . Since it is un-

ramified we have e = 1, f = 2, and d = 0. In particular, n = 2a(ξ), a(ψE) = 0, and

Vol(O, dE) = 1. Furthermore, because the extension is unramified, we have ζ ∈ o× \ o2×.

Note that O = o⊕ o
√
ζ and O× = (o× ⊕ o

√
ζ) ∪ (o⊕ o×

√
ζ). We choose uniformisers

such that Ω = $. For x = a+ b
√
ζ we compute

NrE/F (1+ x) = (1+ a+ b
√
ζ)(1+ a− b

√
ζ) = 1+ Tr(x) + NrE/F (x). (3.4.2)

We put k = max(2l,n). According to Lemma 3.3.1 we need to consider t = −k if l 6= n
2

and 0 > t ≥ −k if l = n
2 , since otherwise Wπ(gt.l.v) vanishes. In these cases we have

Wπ(gt,l,v) = γq−
t
2

∫
O×

ξ−1(x)ψ($
t
2 Tr(x) +$−lvNrE/F (x))dEx. (3.4.3)

We write k
2 = 2r+ ρ for some r ∈N0 and ρ ∈ {0, 1}. First, we note that if r = 0, then

we must have ρ = 1 and thus a(ξ) = l = − t
2 = 1. By [69, Corollary 2.35] we have

Wπ(gt,l,v) ≤
√
2p.

90
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From now on we assume r ≥ 1. In this case we can calculate

Wπ(gt,l,v) = γq−
t
2

∫
O×

ξ−1(x)ψ
(
$

t
2 Tr(x) +$−lvNrE/F (x)

)
dEx

= γq−2r−
t
2

∑
x∈(O/Pr)×

ξ−1(x)ψ
(
$

t
2 Tr(x)

)
·
∫
O
ξ−1

(
1+

y

x
Ωr
)
ψE

(
Ωr+ t

2 y+
vΩ−l

2
NrE/F (x+ yΩr)

)
dEy

= γq−2r−
t
2

∑
x∈(O/Pr)×

ξ−1(x)ψ
(
$

t
2 Tr(x) + v$−lNrE/F (x)

)
·
∫
O
ψE

((
−bξΩ

k
2
−a(ξ) + xΩ

k
2
+ t

2 + vNrE/F (x)Ω
k
2
−l
)
yΩ−r−ρ

+

(
vΩ

k
2
−l

2
NrE/F (xy) +

bξΩ
k
2
−a(ξ)

2
y2

)
$−ρ

)
dEy.

Next we will transform the remaining integral in a 2-dimensional Gauß sum. To do so

we recall that O = o⊕ o
√
ζ and view the integral as an two dimensional integral over o.

The quadratic term is

Tr

(
v$

k
2
−l

2
NrE/F (xy) +

bξ$
k
2
−a(ξ)

2
y2

)
= ty

(
vNrE/F (x)$

k
2
−lA1 +$

k
2
−a(ξ)A2

)
y

for

A1 =

1 0

0 −ζ

 ,A2 =

 b1 ζb2

ζb2 ζb1

 ,

and y ∈ o2. This can be checked by a simple calculation. In particular det(A2) =

ζNrE/F (b). Since b ∈ O×, we have <(b) ∈ o× or =(b) ∈ o×, thus at least one entry

of vA1 +A2 is a unit.

Similarly we can write the linear term as

Tr
((
−bξ$

k
2
−a(ξ) + x$

k
2
+ t

2 + vNrE/F (x)$
k
2
−l
)
y
)
= 2tBy

for

B =

−b1$ k
2
−a(ξ) + x1$

k
2
+ t

2 + v(x21 − ζx22)$
k
2
−l

−b2$
k
2
−a(ξ) + x2$

k
2
+ t

2

 .

In this notation we obtain

Wπ(gt,l,v) = γq−2r−
t
2

∑
x∈S×

ξ−1(x)ψ($
t
2 Tr(x) + v$−lNrE/F (x))

·G
(
$−ρ

(
vNrE/F (x)$

k
2
−lA1 +$

k
2
−a(ξ)A2

)
, 2$−r−ρB

)
. (3.4.4)
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Here we restricted the sum to

x ∈ S× =
{
x ∈ (O/prE)

× : − bξΩ
k
2
−a(ξ) + xΩ

k
2
+ t

2 + vNrE/F (x)Ω
k
2
−l ∈ Pr

}
,

since otherwise the Gauß sum vanishes due to Lemma 3.1.2. Writing x = x1 + x2
√
ζ we

reformulate the congruences defining S× to

−b1$
k
2
−a(ξ) + x1$

k
2
+ t

2 + v(x21 − ζx22)$
k
2
−l ∈ pr,

−b2$
k
2
−a(ξ) + x2$

k
2
+ t

2 ∈ pr,

for x1 or x2 in o×.

We will compute the set S× in several cases and deduce the size of Wπ(gt,l,v) using

(3.4.4).

Case I: 0 < l < n
2 . In this situation we have t = −k = −n and the structure of S× is

very simple. Indeed, we have

x2 ∈ b2 + pr.

This leads to the quadratic congruence

v$
k
2
−lx21 + x1 − (b1 + ζvb22$

k
2
−l) ∈ pr.

In the notation of Lemma 3.1.4 this puts us in the situation where v(b) = 0 and v(a) =

k
2 − l > 0. Thus there is one solution. Even more, if b2 6∈ o×, then x2 is not. This forces

b1 ∈ o× and the unique solution satisfies z0 = x1 + x2
√
ζ ∈ O×. We obtain

Wπ(gt,l,v) = γqρξ−1(z0)ψ($
t
2 Tr(z0) + v$−lNrE/F (z0))G($

−ρA2, 2$
−r−ρB).

Furthermore, since det(A2) = ζNrE/F (b) ∈ o× andA2 has entries in o, we use Lemma 3.1.2

to see that

Wπ(gt,l,v) = γγF (ζNrE/F (b),
n

2
)ξ−1(x1 +

√
ζb2)ψ((x1 + b1)$

−n
2 ),

where x1 ∈ o is the only solution of

v$
k
2
−lx2 + x− (b1 + vζb22$

k
2
−l) = 0.

Case II: l = n
2 . In this case k = n = 2l and −n ≤ t < 0. We call x2 admissible if it

satisfies

x2$
k
2
+ t

2 ∈ b2 + pr.
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In order to determine the structure of S× we have to solve the quadratic congruence

vx21 + x1$
k
2
+ t

2 − (b1 + vζx22) ∈ pr,

for each admissible x2. To simplify notation we write a = k
2 +

t
2 and b = v(b2).

Case II.1: t = −n. In this situation we have exactly one admissible x2 given by

x2 = b2 ∈ o/pr.

Abusing notation we will identify x2 with the fixed representative b2 ∈ o. The quadratic

equation for x1 has discriminant ∆ = ∆(v) = 1+ 4v2b22ζ + 4vb1. If ∆ ∈ o×, we have up

to two possibilities for x1, so that ]S× ≤ 2. We now turn towards the matrix vA1 +A2.

We can compute

det(vNrE/F (x)A1 +A2) = ζNrE/F (bξ)− ζNrE/F (x)
2v2.

Note that for certain compositions of v, b1, and b2 the case det(vNrE/F (x)A1 +A2) ∈ p

can not be excluded. However, if NrE/F (b) is not a square, then the determinant in

question is always a unit. Thus, if ∆ ∈ o2×, we use Lemma 3.1.2 and obtain the desired

evaluation. On the other hand, if NrE/F (b) ∈ o2× we can not exclude situations where

∆ ∈ o× and the determinant degenerates. In these cases we estimate trivially to get a

bound of 2
√
q.

Unfortunately, viewing ∆ as an quadratic equation in v it turns out that, if NrE/F (b) ∈

o2×, there are possibilities for v such that ∆ ∈ p. If this happens, we use Lemma 3.1.4 to

parametrise the set S× and define

A± = − 1

2v
+ b2

√
ζ ± Y

2v
$δ ∈ O×.

Inserting the so obtained parametrisation in (3.4.4) yields

Wπ(gt,l,v) = qρ
∑
±
γ±ψ($

t
2 Tr(A±) + vNrE/F (A±)$

−l)

·
∑

x∈o/pδ
ξ−1(A± + xΩr−δ)ψ((1± Y $δ)x$−ρ−r−δ + vx2$−ρ−2δ)

·G
(
$−ρ

(
vNrE/F (x)A1 +A2

)
, 2$−r−ρBx

)
. (3.4.5)

Here we make the convention that γ± = γ
2 if δ ≥ r and γ± = γ otherwise.

Note that

x2 = b2 and x1 ∈ −
1

2v
+ p.
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3.4 the size of whittaker new vectors

Further, we have

b1 + NrE/F (x)v ∈ −2vζb22 + p and b1 −NrE/F (x)v ∈ −
1

2v
+ p ⊂ o×.

In particular, b1 −NrE/F (x)v is a unit and det(vNrE/F (x)A1 +A2) ∈ p. We obtain

Ap =

 −ζb2
b1−NrE/F (x)v

1

−1 0


− 1

2v 0

0 0


 −ζb2
b1−NrE/F (x)v

−1

1 0

 .

The Gauß sum can be evaluated using Lemma 3.1.2. Recall, that the degeneracy of the

Gauß sum imposes a stronger congruence condition on x1. Indeed we find

x1 = −
1

2v
± Y

2v
$δ + α$r+ρ−δ, for α ∈ o/pδ−ρ.

Since E/F is an unramified we have κE = κF . Therefore we can make use of the p-adic

logarithm over E without convergence issues and apply Lemma 3.1.3 to write

Wπ(gt,l,v)

= qδ−
ρ
2 γ(Ap)

∑
±
γ±ξ

−1(A±)ψ($
t
2 Tr(A±) + vNrE/F (A±)$

−l)

·
∫
o
ψ

(
(1± Y $δ)x$−r−δ + vx2$ρ−2δ

− Tr
(

bξ
Ω2r+ρ

logE

(
1+

x

A±
Ωr+ρ−δ

)))
dx.

Next we open the Taylor expansion of the logarithm and obtain

I =

∫
o
ψ(a1x$

−r−δ + a2x
2$ρ−2δ + a3x

3$r+2ρ−3δ)dx,

for

a1 = 1± Y $δ − Tr
(
bξ
A±

)
= 0,

a2 = v+
1

2
Tr
(
bξ
A2
±

)
and

a3 = −1

3
Tr
(
bξ
A3
±

)
.

Our remaining task is to find further cancellation in I . Furthermore we can check that

a2 ∈ ∆o.

In particular, ∆ = 0 implies a1 = a2 = 0. We further compute

a3 ∈
4b21 − ζb22

12v2NrE/F (A±)3
+ p,
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3.4 the size of whittaker new vectors

which implies that a3 ∈ o×. Thus, in the worst case scenario, we obtain I �F q
r
3
+ 2

3
ρ−δ.

We conclude ∣∣∣Wπ(g−n,n
2
,v)
∣∣∣�F 2q

n
12 .

Case II.2: t
2 + a(ξ) < r and t > −n0(π). This and the following cases are slightly

(computationally) involved. For brevity we only treat the case ρ = 0. As can be seen

from the previous case the general situation is very similar but introduces some more

details to keep track of. These appear to be purely technical and do not effect the end

result.

Under the current assumptions we have 0 < a < b. Further, we may assume that
a
2 ≥ κF , since otherwise bounding trivially produces the desired answer.

In our cases all admissible x2 are given by

x2 = b2$
−a + α$r−a for α ∈ o/pa.

The discriminant governing the possible solutions for x1 is

∆(x2) = η0(1+ η1α$
b+r−2a + η2α

2$2r−2a),

for

η0 = 4vb1 +$2a + 4v2ζb22$
−2a, η0η1 = 8v2ζ(b2)0, and η0η2 = 4v2ζ.

We see that η0, η1, η2 ∈ o×. Furthermore, in order to have solutions for x1 we need to

assume that vb1 ∈ o2×, since this implies η0 ∈ o2×. We will do so and write η0 = λ2. We

find

x1 = −
$a

2v
± Y

2v
,

where Y 2 = ∆. Upon noting that x1 is well defined modulo pr we can expand

Y = Y (α) = λf(α),

where

f(x) =
√
1+ η1x$b+r−2a + η2x2$2r−2a.

Inserting this into (3.4.4) yields

Wπ(gt,n
2
,v) = γq−aψ

((
b1 −

$2a

2v

)
$−2r

)
·
∑

±,α∈o/pa
ξ−1(x1(α) +

√
ζx2(α))ψ

(
±Y (α)

2v
$

t
2

)
.
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3.4 the size of whittaker new vectors

To continue we write a = 2s+ δ. Let us consider the following expansion:

± Y (y+$sβ)

2v
= b0(y) + βb1(y)$

min(r−a,b−a)+r−a+s + b2(y)β
2$2r−2a+2s

+ b3(y)β
3$b+3r−4a+3s + . . . ,

for

b0(y) = ±Y (y)

2v
,

b1(y) = 2vζ
(b2)0$max(0,b−r) + y$max(0,r−b)

Y (y)
and

b2(y) = ±4v2ζb1 + vζ$2a

Y (y)3
.

Note that Y (y+$sβ)$
t
2 can be truncated after the quadratic term. Furthermore,

x1(y+ β$s) +
√
ζx2(y+ β$s) = C0(y) +C1(y)β$

r−a+s +C2(y)β
2$2r−2a+2s

+C3(y)β
3$b+3r−4a+3s + . . . ,

with coefficients

C0(y) = b0(y)−
$a

2v
+
√
ζ((b2)0$

b−a + y$r−a) ∈ o× +
√
ζp,

C1(y) =
√
ζ + b1(y)$

min(b−a,r−a) ∈ p+
√
ζ,

C2(y) = b2(y), and C3(y) = b3(y).

Expanding the logarithm yields

$−a(ξ) logE(. . . ) =
C1(y)

C0(y)
β$−r−a+s +

(
− C1(y)2

2C0(y)2
+
C2(y)

C0(y)

)
β2$−2a+2s

+

(
C1(y)3

C0(y)3
− C1(y)C2(y)

C0(y)2
+
C3(y)

C0(y)
$b−a

)
β3$r−3a+3s + · · · .

After putting things together we obtain

Wπ(gt,n
2
,v) =γq

−sψ

((
b1 −

$2a

2v

)
$−2r

) ∑
±,y∈o/ps

ξ−1(C0(y))ψ
(
b0(y)$

t
2

)

·
∫
o
ψE

((
b1(y)

2
$min(b,r) − bξ

C1(y)

C0(y)

)
β$−r−a+s

+

(
bξC1(y)2

2C0(y)2
−
bξC2(y)

C0(y)
+
b2(y)

2
$a

)
β2$−2a+2s

− bξ
(
C1(y)3

3C0(y)3
− C1(y)C2(y)

C0(y)2
+
C3(y)

C0(y)
$b−a

)
β3$r−3a+3s + . . .

)
dβ.
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3.4 the size of whittaker new vectors

Before dealing with the important terms we compute that

NrE/F (C0(y)) =
b1
v
+
$2a

2v2
∓ Y (y)$a

2v2
.

The linear term turns out to be ±4ζb1y
λf (y)

$r. Furthermore, one checks that the quadratic

term is contained in $ao×. Combining these two facts leaves us with up to one choice

for y modulo ps and a quadratic Gauß sum. We obtain the desired bound

Wπ(gt,l,v)� 2q−
a
2 = 2q−

n+t
4 .

Case II.3: t = 2v(b2)− n and t
2 < −r − ρ. As before we assume ρ = 0 for technical

convenience. All admissible x2 are given by

x2 = (b2)0 + α$r−a, α ∈ o/pa.

We assume that

∆ = ∆(x2) = $2a + 4vb1 + 4v2ζx22 = Y 2$2δ + pr

and deal with the case Y = 0 later. Note that, if δ = 0, the analysis is analogous to the

previous case and we will omit it here. With this at hand,

x1 = −
$a

2v
± Y $δ

2v
+ β$r−δ, β ∈ o/pδ.

We define

c±(x2) = −
$a

2v
± Y $δ

2v
+
√
ζx2

and get

Wπ(gt,l,v) = γq−a
∑

x2=(b2)0+α$r−a,
α∈o/pa

∑
±
ξ−1(c±(x2))ψ(b1$

−l − $2a−l

2v
± Y $a+δ−l

2v
)

·
∑

β∈o/pδ
ξ−1(1+

β

c±(x2)
$r−δ)ψ(($a ± Y $δ)β$−r−δ + vβ2$−2δ).

Expanding the p-adic logarithm and straight forward computations reveal that the β-

sum reads

∑
β∈o/pδ

ψ

(
− 2ζ(b2)0

NrE/F (c±(x2))
αβ$−δ

+

(
Y b1
v

+
Y $2a

2v2
− 2ζ(b2)0α(Y $

r−δ +$r−δ+2a)

)
β2$a−δ

2vNrE/F (c±(x2))2
+ . . .

)
.
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3.4 the size of whittaker new vectors

We have to consider two cases. First, suppose δ ≤ a. In this case we are dealing with a

linear sum, which vanishes whenever α 6∈ pδ. The result is,

Wπ(gt,l,v) = γqδ−a
∑

x2=(b2)0+α$δ+r−a,
α∈o/pa−δ

∑
±
ξ−1(c±(x2))ψ

(
b1$

−l − $2a−l

2v
± Y $a+δ−l

2v

)
.

This can be handled exactly as in the previous case. Note that, if v(∆) ≥ r and d r2e ≤ a,

the analysis is analogous.

Second, if δ > a, the β-sum is a quadratic Gauß sum, which is non-zero only when

α ∈ pa. Thus the α-sum collapses completely. However, in this case we have to consider

the cubic term in the β-sum. We will show the computation for the worst case scenario

v(∆) ≥ r. Indeed, if this is the case, we compute

∑
β∈o/pδ

ψ

((
−8v2ζ(b2)0α+ ∆$a−r

NrE/F (c±(x2))4v2
$a

)
β$−δ

+
ζx22

4vNrE/F (c±(x2))2

(
1

v
− 1

)
β2$2a−2δ − b1 + p

2vζ(b2)40
β3$a−3δ+r

)
.

We obtain the upper bound

|Wπ(gt,l,v)| ≤ 2q−
n+t
4
− t

12 .

Case II.4: t
2 ≥ −r− ρ. In particular, v(b2) ≥ r and the congruence condition degener-

ates to

NrE/F (x) ∈
b1
v
+ pr.

From (3.4.4) it follows that we have to evaluate

Wπ(gt,n
2
,v) = γγF (b1, ρ)q

−2r− t
2
− ρ

2

∑
x∈(O/Pr)×,

NrE/F (x)∈
b1
v
+pr

ξ−1(x)ψ
(
$

t
2 Tr(x) + v$−lNrE/F (x)

)
.

We make the Ansatz

x2 = y+$κβ.

If y is chosen such that ζy2 + b1
v ∈ o2×, then

x1 = ±
√
ζx22 +

b1
v

= ±f(x2) = ±f(y)±
ζy

f(y)
β$κ ± ζb1

2vf(y)3
β2$2κ

∓ ζ2b1y

vf(y)5
β3$3κ ± · · · .
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3.4 the size of whittaker new vectors

Summing over β results in the sum

∑
β∈o/pr−κ

ψ

(
2ζ

f(y)

(
∓(b2)0$b−a ± y

)
β$κ+ t

2

±
(
ζb1 + ζ2v(b2)0y$b−a

vf(y)3

)
β2$2κ+ t

2 + . . .

)
.

Here we assume that κ ≥ κF . Thus, after choosing κ = b− t
4c, we see that there is one

such y modulo pκ. Therefore the situation under consideration contributes�F 2q−
a
2 .

We still have to account for those x2 which force x1 ∈ p. This can only happen if

− b1
ζv ∈ o2×. If this is the case, we exchange the roles of x1 and x2. Indeed, we put

x1 = $y+ α$κ and f(x) =

√
− b1
vζ

+
x2

ζ
,

so that

x2 = ±f($y)±
$y

ζf($y)
α$κ ∓ b1

2vζ2f($y)3
α2$2κ ± b1$y

vζ3f($y)5
α3$2κ ± · · · .

The α-sum reads

ψ(b1$
−l + 2y$1+ t

2 )ξ−1($y±
√
ζf($y))

∑
α∈o/pr−κ

ψ

(
2

[
1∓ (b2)0

f($y)
$b−a

]
α$κ+ t

2

± (b2)0$y

2ζf($y)3
β2$b−a+2κ+ t

2 + . . .

)
.

We see that this can not contribute unless a = b. We further observe that for the latter

sum to be non-zero we need

1± (b2)0
f($y)

∈ p.

However, this contradicts ζy2 + b1
v ∈ o2× for y ∈ (b2)0 + p. We conclude that, depending

on v and bξ, we either have contributions from x1 ∈ p or x1 ∈ o× but never from

both cases simultaneously. To conclude this case we examine the worst case situation
b1
v + (b2)20ζ = 0. Choosing κ = b− t

4c produces a linear α-sum and we arrive at

Wπ(gt,l,v) = γγF (b1, ρ)ψ(b1$
−l)q−

n
4
− t

2
−κ

·
∑

±; y∈o/pκ−1,

f ($y)∓(b2)0∈pd−
t
4 e

ξ−1($y±
√
ζf($y))ψ(2y$1+ t

2 ).

99



3.4 the size of whittaker new vectors

Writing y = x$d
d− t4 e

2
e for x ∈ o/pκ−1−d

d− t4 e
2
e and computing the Taylor expansion of f

at 0 produces the bound

Wπ(gt,l,v) = γγF (b1, ρ)ψ(b1$
−l)ξ−1(

√
ζ(b2)0)q

−n
4
− t

2
−1−d d−

t
4 e
2
e

·
∫
o
ψ

(
4x3

3ζ(b2)20
$d
d− t4 e

2
e+3+ t

2 + . . .

)
dx� q−

n+t
4
− t

12 .

This completes our treatment of the transition region.

Case III: n2 < l. Here we have k = 2l = −t. Observe that

x2 ∈ b2$l−a(ξ) + pr

is no unit. This leads to the condition

vx21 + x1 + (b1$
l−a(ξ) − vζb22$2l−n) ∈ pr, for x1 ∈ (o/pr)×.

In particular, we use Lemma 3.1.4 with v(a) = v(b) = v(∆) = 0 and find that ]S× ≤

2. Even more, since x1 is only admissible if it is a unit, we find that S× = {x0 +
√
ζb2$

l−a(χ)} where x0 ∈ o× is the unique solution to

vx2 + x+ (b1$
l−a(ξ) − vζb22$2l−n) = 0.

The S×-sum in (3.4.4) has only one term and we get

Wπ(g−2l,l,v) = (−1)lγξ−1(x0 +
√
ζb2$

l−n
2 )ψ(x0$

− t
2 − b1$−

n
2 ).

This was the last case to consider and the proof is complete.

Remark 3.4.2. Note that if n = 2, l = 1 and t = −2 we have

Wπ(gt,l,v) = γq−1
∑
x∈F×

q2

ξ̃−1(x)ψFq2
(x+ xq + ṽxq+1).

This is a sum over a finite field. However, due to the large exponent, Weil’s bound (3.1.2) only

gives the estimate

|Wπ(gt,l,v)| ≤ q+ 1.

This is worse than the local bound in this case.

Remark 3.4.3. Let us make some remarks concerning twist-minimal supercuspidal representa-

tions. For simplicity let us assume that κF = 1. There is bξ ∈ O× such that

ξ(x) = ψE

(
bξ

Ωa(ξ)
logE(x)

)
, (3.4.6)
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3.4 the size of whittaker new vectors

for all x ∈ 1+P. Furthermore, we can write bξ = b1 + b2
√
ζ as above. We make some observa-

tions.

First, since Tr ◦ logE = logF ◦NrE/F and ξ does not factor through the norm, we have b2 6∈

p
a(ξ)
E .

Second, let χ = ξ · (µ ◦NrE/F ) and let bχ, bξ ∈ O× and bµ ∈ o× be the numbers attached via

the logarithm. We have

ψE(
bχ

Ωa(χ)
logE(x)) = χ(x) = ξ(x)µ(NrE/F (x))

= ψE(
bξ

Ωa(ξ)
logE(x))ψF (

bµ

$a(µ)
logF (NrE/F (x)))

= ψE

([
bξ

Ωa(ξ)
+

bµ

Ωa(µ)

]
logE(x)

)
for all suitable x. Suppose that a(µπ) < a(π), in other words π is not twist-minimal, then we

must have a(µ) = a(ξ) = a(π)
2 >

a(µπ)
2 = a(χ). In particular,

O× 3 Ωa(χ)−a(ξ) (bξ + bµ)︸ ︷︷ ︸
b1+bµ+b2

√
ζ

≡ bχ mod Pa(χ).

Because bµ is in F this implies (b1 + bµ) ∈ p and b2 ∈ p.

We conclude that, for a(π) > 2, π is twist-minimal if and only if b2 ∈ o×. Furthermore,

n0(π) = n− 2v(b2). If a(π) = 2, the representation is automatically twist-minimal.

Concerning the degeneration of Whittaker new vectors we can say the following. If π is

twist-minimal, we might encounter degenerate critical points leading to large values of Wπ.

However, Wπ features nice support properties. More precisely, we can always assume t =

−max(n, 2l) since otherwise the new vector vanishes. Further, we can always find a twist µ

such that NrE/F (bχ) 6∈ o2× which ensures that there are no degenerate critical points and we

get the expected size. If π is not twist-minimal, the support degenerates and degenerate critical

points appear for t = −n and t = −n0(π).

We turn to supercuspidal representations associated to ramified extensions of F .

Lemma 3.4.4 ([4], Lemma 5.2). Let π be a dihedral supercuspidal representation associated to

a ramified quadratic extension E/F and a multiplicative character ξ. Then we have

Wπ(g)�F q
n
12 .

If κF = 1, the implicit constant is bounded by 2.
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3.4 the size of whittaker new vectors

Furthermore, if 0 < l < n
2 , we have

Wπ(g−n,l,v)

=



γγE(2bξ, 1)ξ
−1(x0 + Ωb2)ψ(x0$−

n
2 + b1$

−n
2 ) if n is even and 2l > dn2 e,

γξ−1(b1 + Ωx0)ψ((x0 + b2)$
n−1
2 ) if n is odd and 2l > dn2 e,

ε( 12 ,π)ψ(v$
−lNrE/F (bξ)) if 2l ≤ dn2 e,

where x0 ∈ o is the unique solution to

v$
n
2
−lx21 + x1 − b1 + vb22$

n
2
−l+1 = 0 if n is even,

−v$
n+1
2
−lx22 + x2 − b2 + vb21$

n−1
2
−l = 0 if n is odd.

In the transition region l = n
2 we have the bound

|Wπ(gt,l,v)| � 2q−
n+t
4
− t

12 .

Even more, if t 6= −n,−n0(π), we have the stronger bound |Wπ(gt,l,v)| � 2q−
n+t
4 .

Finally, if n2 < l < n, then we have

Wπ(g−2l,l,v) = γγE(2v, 1)ξ
−1(x0 + Ω=(bξΩ2l−n))ψ((x0 +<(bξΩ2l−n))$−l),

where x0 ∈ o× is the unique solution to

vx21 + x1 − v$=(bξΩ2l−n)2 −<(bξΩ2l−n) = 0.

Proof. Since E/F is a ramified extension we have f = 1, e = 2 and d = 1. In particular,

n(ψE) = −1 and the additive measure on E is normalised so that

Vol(D,µE) = q−
1
2 .

Without loss of generality we assume that E = F (
√
$) and choose Ω =

√
$. The

identity (3.4.2) still holds.

The log-conductor of π is given by n = a(π) = a(ξ) + 1. We observe that

|Wπ(g−n,0,v)| =
∣∣∣∣ε(12, π̃)

∣∣∣∣ = 1.
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Thus we can assume l > 0 and define k = max(a(ξ), 2l− 1) = 2r+ ρ. Using Lemma 3.3.1

and Lemma 3.1.3 we compute

Wπ(gt,l,v) =γq
− t

2K(ξ−1,Ωt, v$−l)

=γq−
t
2
−r

∑
x∈(O/Pr)×

ξ−1(x)ψ(Tr(xΩt) + v$−lNrE/F (x))

·
∫
O
ψE

(
vNrE/F (xt)

2
Ωk−2l+1−ρ−1 +

bξ
2
t2Ωk−a(χ)−ρ−1 (3.4.7)

+
(
−bξΩk−a(ξ) + xΩk+1+t + vNrE/F (x)Ωk−2l+1

)
tΩ−r−ρ−1

)
dEt.

We need to estimate this for t ≥ −k if l = n
2 and for t = −k − 1 otherwise. In all these

cases the remaining integral reduces to a quadratic Gauß sum over E. Thus we can

restrict the x-sum to

S = {x ∈ (O/Pr)× : − bξΩk−n+1 + xΩk+t+1 + vNrE/F (x)Ωk−2l+1 ∈ Pr}.

Case I: 0 < l < n
2 . Due to the support properties of Wπ we can assume that t = −n =

−a(ξ)− 1. Obviously k = a(ξ). The set S is determined by the congruence

− bξ + x+ vNrE/F (x)Ωn−2l ∈ Pr.

If n− 2l ≥ r, there is exactly one solution. Namely x = bξ modulo Pr. Otherwise we

write x = x1 + x2Ω. If n is even, this leads to the two congruences

−b1 + x1 + vNrE/F (x)$
n
2
−l ∈ pd

r
2
e,

−b2 + x2 ∈ pb
r
2
c.

Using Lemma 3.1.4 we observe that there is a unique solution (x1,x2) ∈ o/pd
r
2
e× o/pb

r
2
c.

Furthermore, one quickly checks that x1 is a unit. If n is odd, we have to solve

−b1 + x1 ∈ pd
r
2
e,

−b2 + x2 + vNrE/F (x)$
n−1
2
−l ∈ pb

r
2
c.

instead. We find x = b1+
√
ζx0, where x0 is the unique solution in o to the corresponding

quadratic equation determining x2.
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3.4 the size of whittaker new vectors

We recall n(ψE) = −1, Vol(D,µE) = q−
1
2 and k − l − ρ > 0. With this in mind we

evaluate the quadratic Gauß sum and obtain

Wπ(g−n,l,v)

=



γγE(2bξ, 1)ξ
−1(x0 + Ωb2)ψ(x0$−

n
2 + b1$

−n
2 ) if n is even and 2l > dn2 e,

γξ−1(b1 + Ωx0)ψ((x0 + b2)$
n−1
2 ) if n is odd and 2l > dn2 e,

ε( 12 ,π)ψ(v$
−lNrE/F (bξ)) if 2l ≤ dn2 e.

Case II: l = n
2 . In this case k = 2l − 1 = a(ξ) and ρ = 1. We write x = x1 + x2Ω

and bξ = b1 + b2Ω, to transform the congruence condition defining S into a system of

congruences over F . For simplicity we consider further subcases.

Case II.1: t ≥ −n
2 − 1. In this case the congruence defining S degenerates too

NrE/F (x) ∈
b1
v
+ pd

r
2
e.

This case can only occur if v(b2) ≥ b r2c. We get

Wπ(gt,l,v) = γγE(bξ, 1)ψ(b1$
−l)q−

t
2
−r−1

∑
x∈O/Pr,

NrE/F (x)=
b1
v

ξ−1(x)ψ(Tr(xΩt)).

Note that the latter sum in non-empty if and only if b1v ∈ o2×. We will assume so for

the rest of this case. Take

x2 = y+ α$κ for α ∈ o/pb
r
2
c−κ.

Any given x2 determines x1 up to sign by the (convergent) Taylor expansion of the

square root. Indeed,

x1 = ±f(y)±
$y

f(y)
α$κ +

$b1
2vf(y)3

α2$2κ ± · · · ,

for f(y) =
√

v
b1
+$y2. We compute

ξ(x)−1 =ψE

(
−
(
bξ(±f ′(y) + Ω)

±f(y) + Ωy

)
$κ−r−1α

+

(
bξ(±f ′(y) + Ω)2

(±f(y) + Ωy)2
−

±f ′′(y)bξ
(±f(y) + Ωy)

)
$2κ−r−1α2 + . . .

)
=ψ

(
±2(b2)0
f(y)

α$b−r−1+κ ± (b2)0y

(f(y)3)α2$b+1−r+κ + . . .

)
.
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3.4 the size of whittaker new vectors

If t is even, then Tr(xΩt) = 2x1$
t
2 and we obtain

Wπ(gt,l,v) = γγE(bξ, 1)ψ(b1$
−l)q−

t
2
−d r

2
e−κ−1

∑
±,y∈o/pκ

ξ−1(±f(y) + Ωy)ψ(±2f(y)$
t
2 )

·
∫
o
ψ

(
± 2

f(y)
(y± (b2)0$

b−a)α$κ+ t
2
+1 ± (b1v

−1 + (b2)0y$
b−a+1)

α2$2κ+ t
2
+1

f(y)3
+ . . .

)
.

Thus, choosing κ = b− t+2
4 c, collapses the y-sum to one term and produces the estimate

|Wπ(gt,l,v)| � 2q−
n+t
4 .

If t is odd, things turn out slightly different. Indeed, Tr(xΩt) = 2x2$
t+1
2 , so that we

find

Wπ(gt,l,v) = γγE(bξ, 1)ψ(b1$
−l)q−

t
2
−d r

2
e−κ−1

∑
±,y∈o/pκ

ξ−1(±f(y) + Ωy)ψ(2y$
t+1
2 )

·
∫
o
ψ

(
± 2

f(y)
(f(y)± (b2)0$

b−r− t+1
2 )α$κ+ t+1

2 ± (b2)0yα2$1+b−r+2κ

f(y)3
+ . . .

)
.

This forces b = r + t+1
2 . Furthermore, taking κ = b− t+1

4 c, the integral only features a

linear phase. This introduces an additional congruence condition on y, which reads

f(y)± (b2)0 ∈ pd−
t+1
4
e.

Note that, depending on b2, only + or − can contribute. Without loss of generality

we assume it to be +. Furthermore, we only investigate the worst case situation when

(b2)20 − b1
v = 0. We can parametrise the possible y’s by

y = β$κ′ for κ′ =

⌈
d− t+1

4 e
2

⌉
.

Further, we find that

f(y) =

√
b1
v
+

v

4b1
β2$2κ′+1 + · · · .

Inserting these observations in our formula for Wπ gives

Wπ(gt,l,v) = γγE(bξ, 1)ψ(b1$
−l)qd−

t+1
4
e−d r

2
e− 1

2

·
∑

y∈o/pb−
t+1
4 c,

f (y)±(b2)0∈pd−
t+1
4 e

ξ−1(±f(y) + Ωy)ψ(2y$
t+1
2 )

= γγE(bξ, 1)ξ
−1

(√
b1
v

)
ψ(b1$

−l)q2d−
t+1
4
e−κ′−d r

2
e− 1

2

·
∫
o
ψ

(
4v(b2)0
3b1

√
v

b1
β3$3κ′+1+ t+1

2 + . . .

)
dβ.
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3.4 the size of whittaker new vectors

We obtain the upper bound

|Wπ(gt,l,v)| � 2q−
n+t
4
− t

12 .

Recall that the only odd value t that gives a non-zero outcome is t = −n0(π).

Case II.2: n+ t > 0 even and t < −n
2 − 1. We set b = v(b2) and a = l+ t

2 . We arrive at

the congruences

−b1 + x1$
a + vx21 − v$x22 ∈ pd

r
2
e,

−b2 + x2$
a ∈ pb

r
2
c.

The first equation is quadratic in x1 with discriminant ∆(v,x2) = $2a + 4v(b1 +$vx22).

Since bξ ∈ O× we have b1 ∈ o× and therefore ∆ ∈ o×. There are up to two solutions

modulo pd
r
2
e for x1 for each given x2. Furthermore, we can assume that

x2 = (b2)0$
b−a + α$b

r
2
c−a for α ∈ o/pa.

Thus the two congruences define a set S modulo Pr given by

S = {−$
a

2v
± Y (x2)

2v
+ Ωx2 : x2 = (b2)0$

b−a + α$b
r
2
c−a for α ∈ o/pa}

for Y (x2) =
√

4vb1 + 4$v2x22 +$2a. In particular, we are assuming that 4vb1 ∈ o2×,

since otherwise the set S is empty.

We have to deal with the sum

Wπ(gt,l,v) = γq−
t
2
−r−1ψ

(
b1$

−l − $a+ t
2

2v

)

·
∑
±,x2

ξ−1
(
−$

a

2v
± Y (x2)

2v
+ Ωx2

)
ψ

(
±Y (x2)

2v
$

t
2

)
.

Write a = 2s+ δ and x2 = y+α$b
r
2
c−s−δ, for y ∈ o/pb

r
2
c−s−δ and y ∈ (b2)0$b−a+ pb

r
2
c−a.

The Taylor expansion of Y (x2) at y reads

Y (x2) = Y (y) +
4v2y

Y (y)
α$1+b r

2
c−s−δ +

8$v3b1 + 2v2$2a

Y (y)3
α2$2b r

2
c−a−δ · · · .

Thus, with

C0(y) = ±
Y (y)

2v
− $a

2v
+ Ωy,

C1(y) = ±
2vy$

Y (y)
+ Ω and

C2(y) = ±
4v2b1$+ v$2a

Y (y)3
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3.4 the size of whittaker new vectors

we obtain

Wπ(gt,l,v) =γq
−s− 1

2ψ

(
b1$

−l − $a+ t
2

2v

) ∑
y∈o/pb

r
2 c−s−δ,

y∈(b2)0$b−a+pb
r
2 c−a

ξ−1 (C0(y))ψ

(
±Y (y)

2v
$

t
2

)

·
∫
o
ψE

((
−
bξC1(y)

C0(y)
± vy$a+1

Y (y)

)
α$−d

r
2
e−1−s−δ

+

(
bξC1(y)2

2C0(y)2
−
bξC2(y)

C0(y)
+
C2(y)$a+1

2

)
α2$2b r

2
c−r−1−a−δ + · · ·

)
dα.

As in the case of an unramified extension we can compute the linear and the quadric

contributions to find the following. The linear term is of the form(
4b1y

NrE/F (C0(y))Y (y)
+ p

)
α$s−d r

2
e.

Furthermore, the quadratic term is contained in pa+1. This leads to the bound

|Wπ(gt,l,v)| � q−
n+t
4 .

Case II.2: 2l+ t > 0 odd and t < −n
2 − 1. We write 2l+ t = 2β − 1 for some β ∈ N.

We have to solve the congruences

−b2 + x1$
β−1 ∈ pb

r
2
c, (3.4.8)

−v$x22 +$βx2 − b1 + vx21 ∈ pd
r
2
e. (3.4.9)

Looking at the first congruence reveals that, unless β − 1 = v(b2) < b r2c, there are no

solutions for x1 ∈ o×. Thus, without loss of generality, we assume the latter. There are

qβ−1 solutions for x1. Namely

x1 = (b2)0 + α$b
r
2
c−b, for α ∈ o/pb.

Let Sx1 be the set of admissible x2 given x1. Note that Sx1 is empty unless v(b2)20− b1 ∈ p.

In non-empty situations we have

Sx1 =

{
$β−1

2v
± Y (x1)

2v
$δ + β$d

r
2
e−1−δ : β ∈ o/pδ+1

}
.

Here ∆(x1) = $2β−2 + 4v(vx21 − b1)$−1 = Y (x1)2$2δ with the usual convention that

δ = b d
r
2
e−1
2 c and Y (x1) = 0 if ∆(x1) ∈ pd

r
2
e−1. Let us execute the β-sum first. To shorten

notation we write x = z0(x1) + β$d
r
2
e−1−δΩ and −e = 2d r2e − r− 1. We arrive at

Wπ(gt,l,v) = γγE(bξ, 1)q
1
2
−b

∑
x1∈(o/pr)×

ψ(Tr(z0(x1)Ω)$
t−1
2 + v$−lNrE/F (z0(x1)))

ξ−1(z0(x))
∑

β∈o/pδ+1

ξ−1(1+
β

z0(x1)
$d

r
2
e−1−δΩ)

·ψ(($b ∓ Y (x1)$
δ)β$d

r
2
e−1−δ−r − vβ2$2d r

2
e−2δ−r−2).
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To investigate the phase of this integral we note that

NrE/F (z0(x1)) =
b1
v
− $2β−1

2v2
∓ Y (x1)

2v2
$β+δ.

We logarithmically expand ξ−1 and compute the resulting linear, quadratic and cubic

term. This produces the β-sum:

∑
β∈o/pδ+1

ψ

((
(b2)0α+ α2$b

r
2
c−b
) 2β

NrE/F (z0(x1))
$−δ−1

+
(
±2vY (x1)$

δ+b + ∆
) b1β2

2v2
$−2δ−e +

(
b1(b2)20
3v

+ p

)
β3$d

r
2
e+b−3δ−1−e + . . .

)
.

If b > δ, then this reduces to a linear sum. Furthermore, we pick up the condition α ∈

pδ+1. One can deal with the remaining sum as before. In the case b ≤ δ and Y (x1) 6= 0

we obtain the strict condition α = 0 and bounding the remaining exponential sum gives

a satisfying result. We are left with the most degenerate case Y (x1) = 0, in which the

valuation of the cubic coefficient forces the condition α = 0. We obtain the bound

|Wπ(gt,l,v)| � 2q−
n+t
4
− t

12 .

Case II.3: t = −2l. If this is the case, there is only one admissible x2 given by x2 =

b2 + pb
r
2
c. Everything boils down to the quadratic congruence

vx21 + x1 −$vb22 − b1 ∈ pd
r
2
e

with discriminant

∆ = 1+ 4vb1 + 4v2b22$.

Depending on the p-adic size of ∆ we have to examine different cases.

First, assume v(∆) ≥ 1. Then x1 is of the form

x± =


− 1

2v ±
Y
2v$

δ + α$d
r
2
e−δ if ∆ = Y 2$2δ for some δ < 1

2d
r
2e for α ∈ o/pδ,

− 1
2v + α$d

r
2
e−δ if v(∆) ≥ d r2e with δ = b12d

r
2ec and α ∈ o/pδ.

We define B± to be the α independent part of x±. This determines x ∈ S up to Pr. We

obtain

S = {B± + α$d
r
2
e−δ + b2Ω : α ∈ o/pδ}.
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3.4 the size of whittaker new vectors

Next, we reinsert this parametrisation in (3.4.7). Each element of S is of the shape

A± + αΩ2d r
2
e−2δ, for A± = B± + b2Ω. We find

Wπ(g−n,n
2
,v) =

∑
±
γ±γE(−2v, 1)ξ−1(A±)ψ(Tr(A±) + v$−lNrE/F (A±))∑

α∈o/pδ,
β∈o/p

ξ−1(1+
α

A±
Ω2d r

2
e−2δ)

·ψ(2(1+ vB±)α$
−b r

2
c−δ−1 + vα2$2d r

2
e−r−2δ−1).

We use Lemma 3.1.3 to transform ξ into an additive oscillation. The Taylor expansion of

logE is given by

−Tr
(

bξ

Ωa(ξ)+1
logE(1+

α

A±
Ω2d r

2
e−2δ)

)
=
∑
j≥1

(−1)j

j
Tr

[
bξ

Aj±
αj

]
$jd r

2
e−r−jδ−1.

Since r− 4δ ≥ 0 we can truncate after the third term. Writing bξ

Aj±
= a′j + a′′jΩ allows us

to take a closer look at the coefficients. We give more explicit descriptions in the critical

case B± = − 1
2v .

Tr
[
bξ
A±

]
= 2a′1 =

∆
NrE/F (A±)

− 2(1+ vB±),

Tr
[
bξ
A2
±

]
= 2a′2 ∈ −v+ ∆o,

Tr
[
bξ
A3
±

]
= 2a′3 ∈

2b1B
3
±

NrE/F (A±)3
α3 + p ⊂ o×.

This shows

Wπ(g−n,n
2
,v)

=
∑
±
γ±γ±γE(−2v, 1)ξ−1(A±)ψ(Tr(A±) + v$−lNrE/F (A±))

·
∑

α∈o/pδ
ψ(−2

3
a′3α

3$3d r
2
e−r−1−3δ + (v+ a′2)α

2$2d r
2
e−r−1−2δ

+ 2(1+ v<(A±)− a′1)α$−b
r
2
c−1−δ).

In particular, the worst case turns out to be cubic cancellation. Even more, if ∆ = 0,

we are left with a clean cubic coefficient and obtain∣∣∣Wπ(g−n,n
2
,v)
∣∣∣ ≤ 2q

r+1
6 = 2q

n
12 .
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3.4 the size of whittaker new vectors

If ∆ ∈ o×, one obtains

Wπ(g−n,n
2
,v) ≤ 2.

The details are left to the reader.

Case III: n2 < l. In this case we have k = 2l− 1, ρ = 1 and t = −k− 1 = −2l. In order

to compute S we write x = x1 + x2Ω and obtain the system of equations

−b′2 + x2 ∈ pb
r
2
c,

vx21 + x1 − v$x22 − b′1 ∈ pd
r
2
e,

where b′1 + b′2Ω = bξΩ2l−n. Because 2l > n, we obtain a quadratic equation for x1 with

discriminant in o×. Thus, due to the special shape of this equation, we obtain exactly

one x0 ∈ (O/Pr)× solving the quadratic congruence. We have

S = {x0} ⊂ (O/Pr)×.

Inserting this parametrisation of S in (3.4.7) yields

Wπ(g−2l,l,v) = γγE(2v, 1)ξ
−1(x0)ψ(Tr(Ωtx0) + v$−lNrE/F (x0)).

In particular, |Wπ(g−2l,l,v)| ≤ 1.

Remark 3.4.5. We observe that, if π is a twist-minimal supercuspidal representation coming

from a ramified extension E/F , then there are no degenerate critical points and we get explicit

evaluations of Wπ(gt,l,v) in every case as well as the very satisfying bound |Wπ(g)| ≤ 1. How-

ever, if π is not twist-minimal, then there are always v for which there are degenerate critical

points.

3.4.2 Twists of Steinberg

In this section we analyse the behaviour of Wπ when π is a twist of Steinberg. If π = St,

a complete evaluation is given in Lemma 3.3.3. If χ has large enough ramification, we

can use the method of stationary phase to derive (more or less) explicit evaluations of

the Whittaker new vector. This is captured in the next lemma.

Lemma 3.4.6 ([4], Lemma 5.5). Let π = χSt for some unitary character χ with a(χ) > 1. We

can evaluate the Whittaker function explicitly as follows.
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3.4 the size of whittaker new vectors

If l 6= n
2 , 0, then

Wπ(gt,l,v) =


χ2(x0)ψ((x0 − b)$−

k
2 ) if t = −k,

0 else,

where x0 is the unique solution to v$
k
2
−lx2 + x+ b$

k
2
−a(χ) = 0 satisfying v(x0) = 0.

If l = n
2 and −2 > t > −n, then Wπ(gt,l,v) = 0 unless −bv ∈ o2×. In the latter case we

observe that

Wπ(gt,l,v) = q−
n+t
4 γF (−

b

2
, l)ψ(−b$−l)

·
∑
±



γF (±Y ,− t
2 )χ(−

b
v )ψ(±2Y $

t
2 )

if Y 2 = − b
v ∈ o2× and t ≥ −2d l2e,

γF (2v,− t
2 )χ

(
b A±+x0$

− t2−b
l
2 c

vA∓−x0$−
t
2−b

l
2 c

)
ψ
(
A±$

t
2 + x0$

b l
2
c
)

if Y 2 = −4bv+$n+t = ∆ ∈ o2× and t < −2d l2e,

where x0 ∈ o solves (3.4.13) below and A± = −$l+
t
2

2v ±
Y
2v .

If − t
2 = l = n

2 , we define ∆ = 1− 4vb. One has

Wπ(gt,l,v) = q
n
12γF (−2v, l)χ−1(4v2)ψ(

3

4v
$−

n
2 )

·Aiψ(−16bv3$d
l
2
e+2{ l

2
}−3b 1

2
d l
2
ec;∆$−b

l
2
c−b 1

2
d l
2
ec),

for v(∆) ≥ d l2e, and dn4 e ≥ κF ; and

Wπ(gt,l,v) = δ∆∈F 2×q
v(∆)
4

∑
±
γF (−1±

√
∆, ρ)γF (∆±

√
∆, l− v(∆)

2
)

· χ2(− 1

2v
±
√

∆
2v

)ψ($−
n
2 (

∆− 3

4v
)),

for 0 < v(∆) < d l2e, and dn4 e ≥ κF or v(∆) = 0.

The cases l = 0, l ≥ n or t ≥ −2 have been treated to our satisfaction in Lemma 3.3.4

and are ignored at this point.

Proof. Define k = max(n, 2l). For 0 < l < n and t < −2 Lemma 3.3.4 implies

Wπ(gt,l,v) = ζF (1)
−2q−

t
2K(χ ◦NrE/F , ($

t
2 ,$

t
2 ), v$−l),
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for E = F × F . We will evaluate the oscillatory integral K starting from the prototype

given in Lemma 3.1.7. To do so we need to investigate the structure of the critical set S

in several cases.

Case I: 0 < l < n
2 . In this situation we have k = n = −t. The matrix Ax1,x2 given

in Lemma 3.1.7 is diagonal modulo p and independent of x1 and x2. Furthermore, the

congruence conditions for (x1,x2) ∈ S read

x1 − x2 ∈ pr,

v$
k
2
−lx21 + x1 + b ∈ pr.

By Lemma 3.1.4 we conclude that ]S = 1. Therefore we have

Wπ(gt,l,v) = qρ
∑

(x0,x0)∈S

χ2(x0)ψ(2x0$
− k

2 + v$−lx20)

G(− b
2
$−ρ, (b+ x0 + vx20$

k
2
−l)$−r−ρ)2.

By Lemma 3.1.2 we arrive at

Wπ(gt,l,v) = χ(x0)
2ψ((x0 − b)$−

k
2 )

where x0 is the unique solution of v$
k
2
−lx21 + x1 + b = 0 satisfying v(x0) = 0.

Case II: l = n
2 . This is the transition region where the Whittaker function can be

non-zero for several t. Recall that the congruences defining S are

b+$l+ t
2x1 + vx1x2 ∈ pr, (3.4.10)

b+$l+ t
2x2 + vx1x2 ∈ pr. (3.4.11)

Case II.1: −a(χ)− ρ ≤ t < −2. The congruences simplify to x1x2 ∈ − b
v + pr and has a

unique solution x2 for each x1 ∈ (o/pr)×. Using the fact that the S-sum in Lemma 3.1.7

is well defined modulo pr we obtain

Wπ(gt,a(χ),v) = q−
t
2
−2rχ

(
− b
v

)
ψ
(
−b$−a(χ)

) ∑
x∈(o/pr)×

ψ

(
x$

t
2 − x−1 b

v
$

t
2

)

G

$−ρ
2

−b −b
−b −b

 ,$r+ t
2

 x

− b
vx


 .

Evaluating the Gauß sum using Lemma 3.1.2 yields

G

$−ρ
2

−b −b
−b −b

 ,$r+ t
2

 x

− b
vx


 = γF (−

b

2
, ρ)q−

ρ
2
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if t ≥ −a(χ) or t = −a(χ) − 1 and x2 ∈ − b
v + p. Otherwise, the Gauß sum vanishes.

Thus, for t ≥ −a(χ), we get

Wπ(gt,a(χ),v) = γF

(
− b
2
, ρ

)
χ

(
− b
v

)
ψ
(
−b$−l

)
ζF (1)

−1q−
t
2
−r− ρ

2S1

(
1,− b

v
,− t

2

)
.

Evaluating the Kloosterman sum using Lemma 3.1.8 reveals

Wπ(gt,a(χ),v) = q−
t
4
−n

4

∑
±
γF

(
− b
2
, ρ

)
γF

(
±Y ,− t

2

)
χ

(
− b
v

)
ψ((±2Y $

t
2 − b)$−l)

(3.4.12)

if Y 2 = − b
v ∈ o2×. Otherwise, the Whittaker function vanishes.

For t = −a(χ) − 1, we observe that the critical points of the Kloosterman sum are

congruent to Y modulo p. Thus, we also arrive at (3.4.12).

Case II.2: −n < t < −a(χ)− ρ. The first congruence, (3.4.10), can be rewritten as

x1 ∈ −b($l+ t
2 + vx2)

−1 + pr.

Substituting this in the second congruence, (3.4.11), yields

vx22 +$l+ t
2x2 + b ∈ p−

t
2
−r−ρ.

It is easy to see that the discriminant of this equation satisfies v(∆) = 0. We can

parametrise x2 using Lemma 3.1.4. We compute

Wπ(gt,l,v) = q−
t
2
−l+ρχ(−b)ψ(−b$−l)

∑
x2

χ(x2)χ
−1(vx2 +$l+ t

2 )ψ(x2$
t
2 )

·G

v2x22
2

−b −b
−b −b

$−ρ,$r+ t
2

 0

vx22 + x2$
l+ t

2 + b


 .

We use Lemma 3.1.4 to parametrise the family x2 and set A± = −$l+
t
2

2v ±
√

∆
2v ∈ o× to

shorten notation. Observe that vA± +$
t
2
+l = −vA∓. For5 −t ≥ 2κF + a(χ)− ρ we can

use Lemma 3.1.3 and get

Wπ(gt,l,v) = q
ρ
2 γF (−

b

2
, ρ)
∑
±
χ

(
bA±
vA∓

)
ψ(A±$

t
2 − b$−l)

·
∫
o
ψ

∑
j≥2

b

j
((−1)jAj± −A

j
∓)

(
−vt
b

)j
$−(

t
2
+r)j−l

 dt.

5 Note that since t is even this always holds if κF = 1. In case this assumption fails we can still estimate the

x2-sum trivial and obtain
∣∣Wπ(gt,l,v)

∣∣ ≤ 2. However, this is not as satisfactory as an explicit evaluation.
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One checks that A2
±−A2

∓ = ±
√

∆
v2
$l+ t

2 . Furthermore, the binomial expansion shows that

((−1)jAj± −A
j
∓) ∈ pl+

t
2 . Evaluating the remaining oscillatory integral yields

Wπ(gt,l,v) = q−
t
4
−n

4 ψ(−b$−l)γF (−
b

2
, ρ)

·
∑
±
γF

(√
∆

2b
,− t

2

)
χ

(
b
A± + x0$

− t
2
−b l

2 c
vA∓ − x0$−

t
2
−b l

2 c

)
ψ
(
A±$

t
2 + x0$

b l
2
c − b$−l

)
,

where x0 ∈ o is the unique solution to

∑
j≥2
−v
(
−v
b
x
)j−1 (−1)jAj± −Aj∓

$l+ t
2

$−rj−(j−1)
t
2 = 0. (3.4.13)

Case II.3: t = −n. In this case we have to solve the congruences

x1 − x2 ∈ pr,

vx21 + x1 + b ∈ pr.

The quadratic congruence has discriminant

∆ = ∆(v) = 1− 4bv.

For some v the discriminant might be (p-adically) small, so that there are many solutions

for x1. In this case we have to argue slightly more carefully.

Using Lemma 3.1.4 we parametrise

S =

{(
− 1

2v
± Y

2v
$δ + α$r−δ,− 1

2v
± Y

2v
$δ + α$r−δ

)
∈ ((o/pr)×)2 : α ∈ o/pδ

}
.

(3.4.14)

We set

A± = − 1

2v
± Y

2v
$δ

and γ± = 1 if v(∆) < r and γ± = 1
2 otherwise. We can rewrite the Gauß sum from

Lemma 3.1.7 as

G

$−ρ
4

−1 1

1 1


−b− vx21 0

0 −b+ vx21


−1 1

1 1

 ,$−r−ρBx1,x2


= G

(
$−ρx1

4
, 0

)
G

(
−$−ρ

4
(−2b− x1),$−r−ρ(x1 + vx21 + b)

)
.
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First, we consider the degenerate case, v(∆) > 0. In particular, we have −2b− x1 ∈ p and

v(∆) ≥ 2 > ρ. Therefore, we obtain the stronger congruence vx21 + x1 + b ∈ pr+ρ. Using

our parametrisation of S in Lemma 3.1.7 yields

Wπ(gt,l,v) = q
ρ
2

∑
±
γF (A±, ρ)χ

2(A±)ψ($
−n

2 (2A± + vA2
±))

·
∑

α∈o/pδ−ρ
χ2(1+

α

A±
$r+ρ−δ)ψ((1± Y $δ)α$−r−δ + vα2$ρ−2δ).

For dn4 e ≥ κF we apply Lemma 3.1.3 and get

Wπ(gt,l,v) = qδ−
ρ
2

∑
±
γF (A±, ρ)χ

2(A±)ψ($
−n

2 (2A± + vA2
±))

·
∫
o
ψ( (1± Y $δ +

2b

A±
)︸ ︷︷ ︸

= −∆
2vA±

+Y 2$2δ

2vA±
∈pr+ρ

t$−r−δ + (v− b

A2
±
)︸ ︷︷ ︸

∈ ∆∓Y$δ
2vA2
±

+pr+ρ

t2$ρ−2δ +
2b

3A3
±
t3$r+2ρ−3δ)dt.

The sum is truncated after the third term because 2r− 4δ ≥ 0. It is obvious that the cubic

coefficient is a unit. If v(∆) ≥ r+ ρ, we have

Wπ(gt,l,v) = q
n
12γF (−2v, ρ)χ−1(4v2)ψ(

3

4v
$−

n
2 )Aiψ(−16bv3$r+2ρ−3δ;∆$−r−δ).

If ρ < ∆ < r+ ρ, we arrive at

Wπ(gt,l,v) = q
δ
2

∑
±
γF (−1±

√
∆, ρ)γF (∆±

√
∆, δ− ρ)

· χ2

(
− 1

2v
±
√

∆
2v

)
ψ

(
$−

n
2

(
∆− 3

4v

))
. (3.4.15)

Note that in this case Wπ(gt,l,v) vanishes when ∆ 6∈ F 2×.

Second, if 0 = v(∆), one easily checks that (3.4.15) holds as well.

Case III: n2 < l < n. Here we have k = 2l and the Whittaker function is non-zero only

for t = −k. The congruence conditions defining S yield the system of equations

x1 − x2 ∈ pr,

(x1 +
1

2v
)2 ∈ 1

4v2
− b

v
$

k
2
−a(χ) + pr ⊂ o×.

The quadratic equation has a unique solution modulo pr which is in o×. Thus ]S = 1.

From Lemma 3.1.7 and Lemma 3.1.2 we obtain

Wπ(g−2l,l,v) = χ(x0)
2ψ((x0 − b$

k
2
−a(χ))$−

k
2 )

where x0 is the unique solution of vx21 + x1 + b$
k
2
−a(χ) = 0 satisfying v(x0) = 0.

This was the last case to be considered and the proof is complete.
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Corollary 3.4.7. If π = χSt with a(χ) ≥ 1, then

Wπ(g)�F q
n
12 and sup

g
|Wπ(g)| �F q

n
12 .

Even more, if dn4 e ≥ κF , the implicit constant in the upper bound is less than 2.

Proof. If the necessary conditions on κF , t and n are full-filled, the explicit evaluations

given above imply imply the desired bound. If a(χ) = 1, l = 1, and t = −2, we have

Wπ(g−2,1,v) = qζF (1)
−2K(χ ◦NrE/F , ($

−1,$−1), v$−1)

= q
1
2 ζF (1)

−1ε(
1

2
,χ−1)

∫
o×\(−v−1+p)

χ

(
x

1+ vx

)
ψ($−1x)d×x.

This is an exponential sum over a finite field and (3.1.2) implies

|Wπ(gt,l,v)| ≤ 2.

In all the remaining cases trivial estimates are sufficient.

The lower bounds follow from∣∣∣Wπ(g−n,n
2
, 1
4b
)
∣∣∣ = q

n
12

∣∣∣∣∣Aiψ

(
−$

r+2ρ−3d r
2
e

4b2
; 0

)∣∣∣∣∣ .

Remark 3.4.8. If we write
√

1− 4bv$|
n
2
−l| = 1 + fb(v)$|

n
2
−l| for the (in F convergent)

power series

fb(v) = 2bv− 2b2v2$|
n
2
−l| + 4b3v3$2|n2−l| − 10b4v4$|3

n
2
−l| + · · · ,

then we have

Wπ(gt,l,v) = ωπ

(
fb(v)

2v

)
ψ

((
fb(v)

2v
− b
)
$−

n
2

)
as long as 0 < l < n

2 . The case n > l > n
2 can be treated similarly. Indeed one obtains

x0 = − 1
v + fb(v)$

l−n
2 .

Remark 3.4.9 ([4], Remark 5.6). There are several other ways to evaluate the integral K(χ ◦

NrE/F , ·, ·). For example one may compute that

K(χ ◦NrE/F , ($
−k,$−k), v$−l) =

∫
o×
χ(x)ψ(xv$−l)S1(1,x, k)d

×x.

For k > 1 the Kloosterman sum can be evaluated and one is left with a twisted quadratic Gauß

sum. The remaining sum is amenable to the (1-dimensional) method of stationary phase. This

turns out to be similar in spirit to the calculation in [18, Lemma 10].
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3.4.3 Irreducible principal series

The last category of representations to deal with are principal series representations. It

is already known from [69] that in certain degenerate situations the Whittaker function

can be as large as the local bound [69, Corollary 2.35]. We consider several different

situations starting with one that is similar to the twisted Steinberg representations.

Lemma 3.4.10 ([4], Lemma 5.7). Let π = χ |·|s� χ |·|−s for some s ∈ iR∪ (−1
2 ,

1
2 ). Then we

have

Wπ(g)�F q
n
12 and sup

g
|Wπ(g)| �F q

n
12 .

Even more, for t < −2 and a(χ) > 1 we can evaluate the Wπ(gt,l,v) explicitly and obtain the

same expressions as in Lemma 3.4.6.

Note that in practice (as long as the Ramanujan conjecture is not known in general)

one might encounter real parameters s as constitutes of automorphic representations.

However, in this case, one can restrict s ∈ (−7/64, 7/64) which is the currently best

known bound towards the conjecture. See [8]. We ignore the unitary complementary

series representations with |s| ∈ (1/2, 1) since in this case Wπ(gt,n
2
,v) does not seem to

be bounded for t > n
4 .

Proof. As in the proof of Lemma 3.3.8 we see that for t ≤ −2 we are in the same situation

as for π = χSt. The remaining cases can be estimated trivially using Lemma 3.3.8.

We move on to the unbalanced principal series π = χ1 � χ2 with unramified χ2.

Lemma 3.4.11 ([4], Lemma 5.8). Let π = χ |·|s � |·|−s for s ∈ iR and put n = a(χ) > 0.

Then

|Wπ(g)| ≤ q
1
2
bn
2
c.

This follows from [69, Corollary 2.35] as well as from our explicit expressions given

in Lemma 3.3.5. In [69, Proposition 2.39] it is shown that this bound is sharp. Note that

this features the case of twist minimal principal series representations.

We move towards more generic situations.

Lemma 3.4.12 ([4], Lemma 5.10). Let π = χ1 |·|s � χ2 |·|−s be a irreducible principle series

representation. Also assume a(χ1) > a(χ2) and s ∈ iR. Define m = max(2l,n). We have the

following evaluations for the Whittaker new vector.
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If l < a1
2 ,

Wπ(gt,l,v) =ε(
1

2
, π̃)q−

t+n
2

+s(t+n)

·



χ−12 (1− vb1$a2−l) if l < a2 and t = −n,

χ−12 (−vb1 +$n+t) if l = a2 and − n < t < −a1

or t = −n and v 6∈ b−11 + p,

χ−12 (1− vb1) if l > a2, t = −a1 − l and v ∈ b−11 +$l−a2o×,

0 else.

If a12 ≤ l ≤ a2,

Wπ(gt,l,v) =



ε( 12 , π̃)q
− t+n

2
+s(t+n)χ1(b

−1
1 (x0$t+2a1 + bχ−1

1 χ1
))χ−12 (−b2x−10 )

·ψ(x0$t+a1 + b2$
−a2)

if l < a2 and t = −n or l = a2 and −n < t < −a2

or l = a2, t = −n, and v 6∈ b−11 + p,

0 else,

where x0 ∈ o× is the unique solution to

vx2$t+2a1 + x($t+n + vbχ−1
1 χ2

) + b2 = 0.

If a2 < l < a1+a2
2 and ba22 c ≥ κF ,

Wπ(gt,l,v) =



ε( 12 , π̃)q
− t+n

2
+s(t+n)χ−11 (1+ x0($a1−l)χ2(− x0

vb2
)ψ(x0v−1$−l + b2$

−a2)

if t = −l− a1 and v ∈ b−11 +$l−a2o×,

0 else,

where x0 ∈ o× is the unique solution to (3.4.19) below.

If l = a1+a2
2 , a22 ≥ κF , and ∆ = β2 − 4b1b2 ∈ o×,

Wπ(g−l−a1,l,v) = q
l−a2

2 ε(
1

2
,χ−11 )χ−12 (v)

∑
±
γF (v(1−

β√
∆
), a2)

· χ2(x±)χ
−1
1 (1+$

a1−a2
2 x±)ψ(x±v

−1$−
l
2 ),
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where the sum is understood to be taken over the (up to two) solutions of (3.4.22). If ∆ ∈ p, we

have the upper bound

|Wπ(g−l−a1,l,v)| ≤ 2q
l
2
−a2

3 .

If a1+a22 < l < a1 and ba22 c ≥ κF ,

Wπ(gt,l,v) =



q
a1−l

2
+s(a1−l)χ2(b2vx

−1
0 )χ1(−v−1 − v−1x0$l−a2)

·ψ(−v−1(1+ x0$
l−a2)$−a1 − b2$−a2)

if t = −l− a1 and v ∈ b−11 +$a1−lo×

0 else,

where x0 ∈ o× is the unique solution to (3.4.23) below.

If a1 ≤ l < n,

Wπ(gt,l,v) =



q−
t+2l
2
−s(t+2l)χ1(x0)χ2(x0$t+2l − bχ−1

1 χ2
)ψ(x0$t+l − b2$−a2)

if l = a1 and t > −2l or l = a1, t = −2l, and v 6∈ b−11 + p

χ1(x1 + bχ−1
1 χ2

$l−a1)χ2(x1)ψ(x1$−l − b2$−a2),

if a1 < l < n and t = −2l,

0 else,

where x0 ∈ o× (resp. x1 ∈ o×) is the unique solution to

vx2$t+ 2l+ x($t+2l − vbχ−1
1 χ2

) + b1 = 0 (resp. vx2 + x(1+ vbχ−1
1 χ2

) + b2$
l−a2 = 0).

Proof. To simplify notation we write a1 = a(χ1) and a2 = a(χ2) and put k = max(a1, l) =

2r+ ρ. For i = 1, 2 we set bi = bχi ∈ o× for the constant associated to χi via Lemma 3.1.3.

We will focus on the cases 0 < l < n and t < −a1. We have to understand

K(χ1 ⊗ χ2, ($
−l1 ,$−l2), v$−l)

for suitable 0 < l1, l2 ≤ l. If l is small, we find it easier to exploit the stability of ε-

factors directly instead of using the method of stationary phase. This is similarly to the

approach taken in [69, Proposition 2.40].

Case I: l ≤ a1
2 and t < −a1. In this case we have l1 = a1, and l2 = −t− a1. Since we

assume t < −a1, the δ-term in (3.3.5) does not contribute. We have

Wπ(gt,l,v) = ζF (1)
−2q−

t
2 qs(l1−l2)

∑
µ∈Xl

G($−a1 ,µχ1)G($
−l2 ,µχ2)G(v$

−l,µ−1).
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Recall from [69, Lemma 2.37] that

ε(
1

2
,µ−1χ−11 ) = ε(

1

2
,χ−11 )µ(−b1).

This implies

G($−a1 ,µχ1) = ζF (1)q
−a1

2 µ(−b1)ε(
1

2
,χ−11 ).

Inserting this expression above yields

Wπ(gt,l,v) = ζF (1)
−1q−

a1+t
2 qs(l1−l2)ε(

1

2
,χ−11 )

∑
µ∈Xl

G($−l2 ,µχ2)G(−vb1$−l,µ−1).

We can evaluate the µ-sum by writing the Gauß sum as an integral, taking the µ-sum

inside, and exploiting full cancellation. One arrives at

Wπ(gt,l,v) = ζF (1)
−1q−

a1+t
2 qs(l1−l2)ε(

1

2
,χ−11 )G($t+a1 −$−lvb1,χ2).

By evaluating the remaining Gauß sum we obtain

Wπ(gt,l,v) = ε(
1

2
, π̃)q−

t+n
2

+s(t+n)

·



χ−12 (1− vb1$a2−l) if l < a2 and t = −n,

χ−12 (−vb1 +$n+t) if l = a2 and − n < t < −a1

or t = −n and v 6∈ b−11 + p,

χ−12 (1− vb1) if l > a2, t = −a1 − l and v ∈ b−11 +$l−a2o×,

0 else.

Case II: a1
2 < l < a2. In this case we have l1 = a1, l2 = a2 and t = −n. Note

that a1 − a2 ≥ r implies a2 ≤ a1
2 . This situation was covered in Case I, so that we

assume a1− a2 < r. Our starting point is Lemma 3.1.7 together with Lemma 3.3.9. Using

Lemma 3.1.2 we compute the Gauß sum to be

G

(
$−ρ

2
Ax1,x2 ,$

−r−ρBx1,x2

)
= q−

ρ
2 γF (−

b1
2
, ρ),

whenever x1 and x2 satisfy

b1 + x1 + vx1x2$
a1−l ∈ pr and b2$

a1−a2 + x2$
a1−a2 + vx1x2$

a1−l ∈ pr+ρ.

This can be reformulated to

x1 ∈ x2$a1−a2 + bχ−1
1 χ2

+ pr,

x22v$
a1−l + x2(1+ vbχ−1

1 χ2
$a2−l) + b2 ∈ pr+ρ+a2−a1 .
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According to Lemma 3.1.4 x2 ∈ o× is uniquely determined modulo pr+a2−a1 . If x0 is the

unique solution to

x2v$a1−l + x(1+ vbχ−1
1 χ2

$a2−l) + b2 = 0

in o×, then we have

S = {(x0$a1−a2 − b1 + b2$
a1−a2 ,x0 + α$r+ρ+a2−a1) : α ∈ o/pa1−a2−ρ}.

We insert this parametrisation in the S-sum from Lemma 3.1.7. Elementary rearrange-

ments yield

Wπ(gt,l,v)

= q
a2
2
−r+s(t+2a1)γF (−

b1
2
, a1)

∑
(x1,x2)∈S

χ1(x1)χ2(x2)ψ(x1$
−a1 + x2$

−a2 + vx1x2$
−l)

q
a2
2
+s(t+2a1)γF (−

b1
2
, a1)χ1(x0$

a1−a2 + bχ−1
1 χ2

)χ2(x0)ψ(x0$
−a2 + bχ−1

1 χ2
$−a1)

· ζF (1)−1Gr+ρ+a2−a1(−b2$−a2 ,χ2).

After checking that r+ a2 − a1 ≤ a2
2 we apply Remark 3.3.7 and obtain

Wπ(gt,l,v) = qs(t+2a1)γF (−
b1
2
, a1)ε(

1

2
,χ−12 )χ1(x0$

a1−a2 + bχ−1
1 χ2

)χ−12 (−b2x−10 )

·ψ(x0$−a2 + bχ−1
1 χ2

$−a1).

In view of Remark 3.3.6 we get

Wπ(gt,l,v) = ε(
1

2
, π̃)qs(t+n)χ1(b

−1
1 (x0$

a1−a2 + bχ−1
1 χ2

))χ−12 (−b2x−10 )ψ((x0 + b2)$
−a2).

Case III: a12 < l = a2. We find k = 2r = a1, l1 = a1, and l2 = −t− a1 for −a1 > t ≥ −n.

The situation turns out to very similar to the one in Case II. Let x0 be the solution of

vx2$t+2a1 + x($t+n + vbχ−1
1 χ2

) + b2 = 0.

Note that if t = −n and v ∈ b−11 + p then this has no solution in o. According to

Lemma 3.1.7 we obtain

Wπ(gt,a2,v) = γF (−
b1
2
, a1)q

− t+a1
2
−r+s(t+2a1)χ1(x0$

t+2a1 + bχ−1
1 χ2

)ψ(x0$
t+a1 − b1$−a1)

·
∑

α∈o/pa1−a2−ρ
χ2(x0 + α$a2−r)ψ(($t+n + vx0$

t+2a1 + vbχ−1
1 χ2

)α$−r).
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We rewrite this as

Wπ(gt,a2,v) = γF (−
b1
2
, a1)q

− t+a1
2

+s(t+2a1)ζF (1)
−1χ1(x0$

t+2a1 + bχ−1
1 χ2

)

·ψ(x0$t+a1 + bχ−1
1 χ2

$−a1)χ2(x0)Ga2−r(−b2$−a2 ,χ2).

Using Remark 3.3.7 and Remark 3.3.6 we arrive at

Wπ(gt,a2,v) =



ε( 12 , π̃)q
− t+n

2
+s(t+n)χ1(b

−1
1 (x0$t+2a1 + bχ−1

1 χ2
))

·χ−12 (−b2x−10 )ψ(x0$t+a1 + b2$
−a2)

if − n < t < −a1 or t = −n and v 6∈ b−11 + p,

0 else.

Case IV: l = a1. We have l1 = −t− l and −a1 > t ≥ −2l. The congruences defining S

can be simplified to

x2 ∈ x1$t+2l + b1 − b2$a1−a2 + pr,

x21v$
t+2l + x1(vb1 +$t+2l − vb2$a1−a2) + b1 ∈ pr.

Depending on t the behaviour can be quite different. The matrix Ap turns out to be

Ap =

 −b1 vx1x2

vx1x2 0

 .

Case IV.1: t > −2l. In this case we have (vb1 + $t+2l − vb2$a1−a2) ∈ o×. Thus,

Lemma 3.1.4 implies that S = {x0} for x0 ∈ o× solving

x2v$t+2l + x($t+2l − vbχ−1
1 χ2

$a1−a2) + b1 = 0. (3.4.16)

We obtain

Wπ(gt,a1,v) = q−
t+2l
2
−s(t+2l)χ1(x0)χ2(x0$

t+2l − bχ−1
1 χ2

)ψ(x0$
t+l − b2$−a2).

Case IV.2: t = −2l. Each x1 determines a unique x2 modulo pr. The quadratic congru-

ence determining x1 reads

vx21 + x1(vb1 + 1− vb2$a1−a2) + b1 ∈ pr

and has discriminant

∆ = (1+ vb1 − vb2$a1−a2)2 − 4vb1 = (1− vb)2 − 4vb2$
a1−a2 .
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We can rewrite the quadratic equation as

(2vx1 + 1+ vb)2 ∈ ∆ + pr,

for b = b1 − b2$a1−a2 . Suppose that v(∆) > 0. In particular, 1 − vb ∈ p. So that any

admissible x1 satisfies

x1 ∈ −
1

2v
− b1

2
+ p.

Each admissible x1 determines a unique x2 by

x2 ∈ x1 + b+ pr ⊂ − 1

2v
+
b1
2
+ p ⊂ p.

But we need x2 to be a unit. We conclude that if v(∆) > 0, then S = ∅ and therefore

Wπ(g−2a1,a1,v) = 0.

If v(∆) = 0, we have ]S = 1. This is because when x± are the two solutions of (3.4.16),

then we have x+ ∈ p and x− ∈ o×. We get

Wπ(g−2a1,a1,v) =


χ1(x−)χ2(x− − bχ−1

1 χ2
)ψ((x− − b2)$−l) if v 6∈ b−11 + p

0 else.

Case V: a1 < l < n. Here we have t = −2l, and l1 = l2 = l. The set S from Lemma 3.1.7

is given by the system of congruences

x1 ∈ x2 − b1$l−a1 + b2$
l−a2 + pr,

vx22 + x2(1− vb1$l−a1 + vb2$
l−a2) + b2$

l−a2 ∈ pr.

One can check that the discriminant of the quadratic equation determining x2 satisfies

∆ ∈ 1+ p. Therefore S = {x0}, where x0 ∈ o× is the unique solution to

vx2 + x(1+ vbχ−1
1 χ2

$l−a1) + b2$
l−a2 = 0.

Furthermore,

Ap =

 0 vx1x2

vx1x2 0

 .

Thus we obtain

Wπ(g−2l,l,v) = χ1(x0 − bχ−1
1 χ2

$l−a1)χ2(x0)ψ(x0$
−l − b2$−a2).
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Case VI: max(a12 , a2) < l < a1. This constitutes the transition region and it turns out

that the approach we took before mutates into very messy calculations. We therefore

choose to take a different approach. We calculate

K(χ1 ⊗ χ2, ($
−a1 ,$−l), v$−l)

=

∫
o×
χ2(x2)ψ($

−lx2)G($
−a1(1+$a1−lvx2),χ1)d

×x2

= ε(
1

2
,χ−11 )ζF (1)q

−a1
2

∫
o×
χ−11 (1+$a1−lvx)χ2(x)ψ(x$

−l)d×x.

Using the same trick in the x2 integral yields

K(χ1 ⊗ χ2, ($
−a1 ,$−l), v$−l) =

∫
o×
χ1(x1)ψ($

−a1x1)G($
−l(1+ vx),χ2)d

×x1

=ε(
1

2
,χ−12 )χ1(−

1

v
)ψ(−v−1$−a1)ζF (1)q

a2
2
−l

·
∫
o×
χ1(1− v$l−a2x)χ−12 (x)ψ(x$l−a1−a2)d×x.

We insert these expressions in Lemma 3.3.9 and obtain

Wπ(g−l−a1,l,v) = χ2(v
−1)ε(

1

2
,χ−11 )ζF (1)

−1q
l
2
+s(a1−l)

·
∫
o×
χ−11 (1+$a1−lx)χ2(x)ψ(v

−1x$−l)d×x, (3.4.17)

as well as

Wπ(g−l−a1,l,v) = ε(
1

2
,χ−12 )[χ1χ

−1
2 ](−1

v
)ψ(−v−1$−a1)ζF (1)−1q

n−l
2

+s(a1−l)

·
∫
o×
χ1(1+$l−a2x)χ−12 (x)ψ(−v−1x$l−a1−a2)d×x. (3.4.18)

Note that estimating the integrals trivially recovers the local bound given in [69, Corol-

lary 2.35]. We will use the 1-dimensional method of stationary phase to find further

cancellation. We consider different cases.

Case VI.1: a2 < l < a1+a2
2 . We start from the integral appearing in (3.4.17). Suppose

a2 = 1 then the current situation implies l < a1+1
2 but obviously this yields l ≤ a1

2 which

is excluded from Case IV. Thus we assume a2 > 1 and write a2 = 2r + ρ for ρ ∈ {0, 1}

and r ∈N. Assuming a1 − l ≥ κF , for any max(r,κF ) ≤ κ ≤ a2, we calculate

Wπ(g−l−a1,l,v)

= χ2(v
−1)ε(

1

2
,χ−11 )q

l
2
−κ+s(a1−l)

∑
y∈(o/pκ)×

χ−11 (1+ y$a1−l)χ2(y)ψ(v
−1y$−l)

·
∫
o
ψ

(
− b1
$a1

logF (1+
t$κ+a1−l

1+$κy$a1−l ) +
b2
$a2

(
t

y
$κ − t2

2y2
$2κ) + v−1t$κ−l

)
dt.
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The Taylor expansion of the logarithm reads

− b1
$a1

logF (1+
t$κ+a1−l

1+$κy$a1−l ) =
∑
j≥1

(−1)jb1tj

j
(1+ y$a1−l)−j$jκ+(j−1)a1−jl.

We first observe that, since l < a1+a2
2 , we can choose κ = r and truncate the Taylor

expansion after the 1st term. We get

Wπ(g−l−a1,l,v) = χ2(v
−1)ε(

1

2
,χ−11 )q

l
2
−κ+s(a1−l)

∑
y∈(o/pκ)×

χ1(1+ y$a1−l)χ2(y)

·ψ(v−1y$−l)G
(
− b2
2y2

$−ρ,

((
v−1 − b1

1+ y$a1−l

)
$a2−l +

b2
y

)
$−r−ρ

)
.

We see straight away that there is a unique solution x0 ∈ o× to

v−1y2$a1+a2−2l + y((v−1 − b1)$a2−l + b2$
a1−l) + b2 = 0 (3.4.19)

if and only if

1− vb1 ∈ $l−a2o×.

Evaluating the Gauß sum yields

Wπ(g−l−a1,l,v) =



ε( 12 , π̃)q
l−a2

2
+s(t+n)χ−11 (1+ x0$

a1−l)χ2(
−x0
vb2

)ψ(x0v $
−l + b2$

−a2)

if v ∈ b−11 +$l−a2o×,

0 else,

as long as ba22 c ≥ κF .

Case IV.2: l = a1+a2
2 . Note that this implies that a1 and a2 have the same parity so that

n must be even. Similar to Case IV.1, assuming a1 − a2 ≥ 2κF , we deduce from (3.4.17)

that

v−1 − b1 = β$
a1−a2

2 for some β = β(v,χ1) ∈ o×.

Assume ba22 c ≥ κF and split up the integral from (3.4.17) in qr-pieces as above. Using

suitable Taylor expansions we can write

Wπ(gt,l,v) = χ2(v
−1)ε(

1

2
,χ−11 )q

l
2
−r

∑
y∈(o/pr)×

χ2(y)χ
−1
1 (1+$

a1−a2
2 y)ψ(

y

v
$−

a1+a2
2 )

·G
((

b1
2(1+ y$a1−l)2

− b2
2y2

)
$−ρ,

v−1y2 + y(β + b2$
a1−l) + b2

y(1+ y$a1−l)

)
.

Thus we have to investigate the equation

v−1y2 + y(β + b2$
a1−l) + b2 ∈ pr (3.4.20)
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with discriminant

∆ = (β + b2$
a1−l)2 − 4

b2
v
.

If y solves this congruence, then we can compute that

b1
2(1+ y$a1−l)2

− b2
2y2
∈ v

4y2
(∆∓ β

√
∆) + p. (3.4.21)

Note that the existence of
√

∆ in F is necessary for the existence of solutions y. If ∆ ∈ o×,

we are in a non-degenerate situation. In particular, since v−1 ∈ b1 + p we have ∆ ∈ o× if

and only if β2− 4b1b2 ∈ o×. Further, we remark that, if
√

∆ ∈ ±β + p, then we only have

one solution to the congruence which is a unit. Evaluating the Gauß sum yields

Wπ(gt,l,v) = q
l−a2

2 ε(
1

2
,χ−11 )χ−12 (v)

∑
±
γF (v(1−

β√
∆
), a2)χ2(x±)

· χ−11 (1+$
a1−a2

2 x±)ψ(x±v
−1$−

l
2 ),

where x± ∈ o× are the only solutions to

v−1y2 + y(β + b2$
a1−l) + b2 = 0. (3.4.22)

Depending on the number of such solutions the ±-sum can have 0, 1 or 2 terms.

We still need to consider the case ∆ ∈ p. In this case the y-sum is potentially long. By

using Lemma 3.1.4 we obtain

Wπ(gt,l,v) = χ2(v
−1)ε(

1

2
,χ−11 )q

l
2
−rψ(A±v

−1$−
a1+a2

2 )

·
∑

y∈(o/pδ−ρ)×
χ2(A± + y$r+ρ−δ)χ−11 (1+A±$

a1−a2
2 + y$

a1+ρ
2
−δ)ψ(

y

v
$−δ−

a1−ρ
2 ).

After expanding the characters using Lemma 3.1.3 it is clear that we get an oscillatory

integral with a cubic phase. Even more, only χ2 contributes to the leading coefficient.

Thus, as many times before, we get the bound

|Wπ(gt,l,v)| ≤ 2ql−
a2
3 .

At this point we could give an expression for Wπ involving the p-adic Airy function but

we will not pursue this here.
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Case VI.3: l > a1+a2
2 . This case is very similar to Case IV.1. However, one uses (3.4.18)

instead of (3.4.17). We assume that a2
2 ≥ κF . For κ = r we have

Wπ(gt,l,v) =ε(
1

2
,χ−12 )[χ−11 χ2](−v)ψ(−v−1$−a1)q

n−l
2
−κ+s(a1−l)

·
∑

y∈(o/pκ)×
χ1(1+ y$l−a2)χ−12 (y)ψ(−v−1y$l−a1−a2)

·G
(
− b2
2y2

$−ρ,

(
−v−1$l−a1−r−ρ − b2$

−r−ρ

y
+
b1$

l−a1−r−ρ

1+ y$l−a2

))
.

We deduce that

v ∈ b−11 +$a1−lo×

is necessary for the Whittaker vector to be non-zero. Evaluating the Gauß sum gives

Wπ(gt,l,v) = χ2(b2vx
−1
0 )χ1(−v−1 − v−1x0$l−a2)

·ψ(−v−1(1+ x0$
l−a2)$−a1 − b2$−a2)q

a1−l
2

+s(a1−l),

where x0 ∈ o× is the unique solution to

− v−1x2$2l−a1−a2 + x((b1 − v−1)$l−a1 + b2$
l−a2)− b2 = 0. (3.4.23)

Corollary 3.4.13. Let π = χ1 |·|s � χ2 |·|−s be an irreducible principle series representation

with a(χ1) > a(χ2) and s ∈ iR. One has

Wπ(g) ≤ 2q−
t+max(2l,n)

2 ,

as long as n is odd or b1b2 6∈ o2×. If n is even and b1b2 ∈ o2×, we get the weaker bound

|Wπ(gt,l,v)| � q
n
4
−a2

3 .

The implicit constant is bounded by 2 if κF = 1.

Proof. If l 6∈ (a2, a1), then the claim follows directly from the expressions given in

Lemma 3.3.9 and 3.4.12.

Thus, we have to deal with the remaining cases. First note that the general upper

bound follows trivially from the local bound as long as a2
2 ≤ κF . Thus, we can assume

without loss of generality that a2 is large enough. If a2 < l < a1+a2
2 , the claimed estimate

follows from the expression given in Lemma 3.4.12. The same is true for a1+a2
2 < l < a1

and l− a2.
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Finally, we treat the case l = a1+a2
2 . If a2 = 1, we compute

Wπ(g−l−a1,l,v) = χ2(v
−1)ε(

1

2
,χ−11 )q

l
2
−1

∑
y∈(o/p)×

χ2(y)χ
−1
1 (1+$

a1−1
2 y)ψ(v−1y$−

a1+1
2 )

= χ2(v
−1)ε(

1

2
,χ−11 )q

l
2
−1

∑
y∈(o/p)×

χ2(y)ψ

(
$−1

(
yβ

v
+
b1y

2

2

))
.

The remaining sum can be treated using Weil’s bound (3.1.2). One arrives at

|Wπ(g−l−a1,l,v)| ≤ 2q
l−a2

2 .

The remaining cases were covered in the previous lemma.

Remark 3.4.14. The condition b1b2 ∈ o2× is sensitive under twists. Thus, there is a twist of π

with the same conductor but no degenerate critical point. In other words, we can twist the large

value of Wπ away. This was not possible for twists of Steinberg where we can always create a

degenerate critical point by choosing v accordingly.

As preparation for the last situation we prove some estimates for

Kl2 = K(χ1 ⊗ χ2, ($
t+l2 ,$−l2), v$−l) (3.4.24)

when a(χ1) = a(χ2) = l > 1.

Lemma 3.4.15 ([4], Lemma 5.11). Suppose6 a(χ1) = a(χ1) = l ≥ 8κF .

First, consider a(χ1χ
−1
2 ) ≤ dn4 e. If −2a(χ1χ

−1
2 ) < t < a(χ1χ

−1
2 ), we have

Kl2 =



q−
n
4 ζF (1)χ

−1
2 (v) ε(χ−12 , 12 )Sχ1χ

−1
2

(
1,− b2

v $
2a(χ1χ

−1
2 )+t, a(χ1χ

−1
2 )
)

if l2 = −a(χ1χ
−1
2 )− t,

q−
n
4 ζF (1)χ

−1
1 (v) ε(χ−11 , 12 )Sχ2χ

−1
1

(
1,− b1

v $
2a(χ1χ

−1
2 )+t, a(χ1χ

−1
2 )
)

if l2 = a(χ1χ
−1
2 ),

0 else.

If t ≤ −2a(χ1χ
−1
2 ), Kl2 6= 0 if and only if l2 = − t

2 . We find that

K− t
2
= q−

n
4 ζF (1)χ

−1
2 (v) ε(χ−12 ,

1

2
)Sχ1χ

−1
2

(
1,−b2

v
,− t

2

)
, (3.4.25)

6 The numerical value 8κF is taken for safety reasons. It is obvious from the proof, that when F = Qp, one

can use 1 instead.
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for −2a(χ1χ
−1
2 ) ≥ t ≥ −2dn4 e. In the range −2dn4 e > t > −n we find that

K− t
2
= ζF (1)

2q−
n
4
+ t

4 ε(
1

2
,χ−12 )

∑
±
γF (x±,−

t

2
)χ1(x±)χ

−1
2 ($a1+

t
2 + vx±)ψ($

t
2x±),

(3.4.26)

where x± ∈ o× are the unique solutions to

vx2 + x(vbχ1χ
−1
2
$−

t
2
−a(χ1χ

−1
2 ) +$a1+

t
2 ) + b1 = 0.

Second, we look at a(χ1χ
−1
2 ) > dn4 e. In the range −a(χ1χ

−1
2 ) > t > −2a(χ1χ

−1
2 ), the

integral Kl2 is non-zero for l2 = −a(χ1χ
−1
2 )− t and l2 = a(χ1χ

−1
2 ). If l2 = −a(χ1χ

−1
2 )− t,

we obtain the expressions

Kl2 = ζF (1)
2q−

n
4
−
a(χ1χ

−1
2 )

2 ε(χ−12 ,
1

2
)ε(χ−11 χ2,

1

2
)χ−12 (v)ψ

(
b2$

t+a(χ1χ
−1
2 )

vbχ1χ
−1
2

)
,

for −a(χ1χ
−1
2 ) > t ≥ −a(χ1χ

−1
2 )− dn4 e; and, for −a(χ1χ

−1
2 )− dn4 e > t > −2a(χ1χ

−1
2 ), we

have

Kl2 = ζF (1)
2q−

a1+a(χ1χ
−1
2 )

2 ε(
1

2
,χ−12 )γF (−2bχ1χ2 , a(χ1χ

−1
2 ))

· χ1(x0)χ
−1
2 ($t+a(χ1χ

−1
2 )+a1 + vx0)ψ($

−a(χ1χ
−1
2 )x0),

where x0 ∈ o× is the unique solution to

vx2 + x(vbχ1χ
−1
2

+$t+a(χ1χ
−1
2 )+a1) + b1$

t+2a(χ1χ
−1
2 ) = 0.

In the range−2a(χ1χ
−1
2 ) ≥ t > −n, the only non-zero situation is l2 = − t

2 . If t 6= −2a(χ1χ
−1
2 ),

we recover the expression (3.4.26). If t = −2a(χ1χ
−1
2 ) and ∆ = (bχ1χ

−1
2

+ $a1−a(χ1χ
−1
2 )

v )2 −
4b1
v ∈ o×, then we get (3.4.26) as well. However, if ∆ ∈ p we encounter degenerate critical points.

In this case we still have the upper bound∣∣∣K− t
2

∣∣∣ ≤ 2ζF (1)
2q−

a1
2
+ t

6 . (3.4.27)

Finally, if t = −2a1 and ∆ = (1− vbχ1χ
−1
2
$a1−a(χ1χ

−1
2 ))2 − 4vb2 ∈ o2×, we have

Ka1 = ζF (1)
2q−a1

∑
±
χF ((x± − b2)2 + b1b2)χ1(x± − bχ1χ

−1
2
$a1−a(χ1χ

−1
2 ))

· χ2(x±)ψ((x± − b1)$−a1),

where

x± = − 1

2v
+
b1 − b2

2
±
√

∆
2v
∈ o×.
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However, if ∆ ∈ p we have degenerate critical points. In this case we have the upper bound

(3.4.27) holds. Note that, if a(χ1χ
−1
2 ) < a1 this can always happen. If, on the other hand,

a(χ1χ2) < a1, then there are critical points if and only if −1 ∈ o2×.

Proof. An important invariant in the following calculations will be v(b1 − b2). Note that

we have

b1 − b2 = bχ1χ
−1
2
$a(χ1)−a(χ1χ

−1
2 ).

We write Sl2 for the set S defined in Lemma 3.1.7 to keep track of the l2 dependence. We

set a1 = 2r+ ρ as usual.

Case I: a1 − l2, a1 + l2 + t ≥ r. This leads to a very simple structure of Sl2 . Indeed the

congruence condition can be transformed into

x2 = −
b2
vx1

+ pr and b1 − b2 ∈ pr.

Thus, if v(b1− b2) ≥ r, then every x1 ∈ (o/pr)× determines a unique x2. Otherwise Sl2 is

empty. Even more, by investigating the Gauß sum appearing in Lemma 3.1.7 we observe

that the matrix has rank 1. This imposes stronger conditions on x1 and possibly b1 − b2.

For −l2 − t ≥ l2, we compute

Kl2 = q−2r−
ρ
2 ζF (1)

2χ2

(
−b2
v

)
ψ(−b2$−l)γF (−2b2, a1)

·
∑

x1∈(o/pr)×
[χ1χ

−1
2 ](x1)ψ

(
x1$

t+l2 − b2
vx1

$−l2
)

= q−
a1
2 ζF (1)χ

−1
2 (v) ε(χ−12 ,

1

2
)Sχ1χ

−1
2

(
1,−b2

v
$−2l2−t,−l2 − t

)
.

In the last step we used Remark 3.3.6 to identify the epsilon factor and we ignored the

conditions on x1 that may appear for ρ = 1 since these conditions match the critical

points of the twisted Kloosterman sum. Finally, let us use some facts concerning the

support of twisted Kloosterman sums from Lemma 3.1.8. If −l2 − t = a(χ1χ
−1
2 ), we

encounter two cases. First, if −2l2 − t = 0, then t = −2a(χ1χ
−1
2 ) and l2 = − t

2 . In

this case we can encounter degenerate critical points. Otherwise, if −2l2 − t > 0, then

l2 = −t − a(χ1χ
−1
2 ). In particular, t > −2a(χ1χ

−1
2 ). If −l2 − t < a(χ1χ

−1
2 ), then the

twisted Kloosterman sum vanishes. Second, if −l2 − t > a(χ1χ
−1
2 ) ≥ 1, then due to the

support of twisted Kloosterman sums the only non-zero situation is t = −2l2 and we

have square root cancellation.

For l2 ≤ −l2 − t, the same argument with x1 and x2 interchanged yields

Kl2 = q−
a1
2 ζF (1)χ

−1
1 (v) ε(χ−11 ,

1

2
)Sχ2χ

−1
1

(
1,−b1

v
$2l2+t,−l2

)
.
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Taking Lemma 3.1.8 into account completes this part of the proof.

Case II.1: a1 − l2 ≥ r > a1 + l2 + t. In this situation the set Sl2 is slightly more compli-

cated. It is described by the congruences

x2 = −
b2
vx1

+ pr and x1$
a1+l2+t = −b1 + b2 + pr.

We observe that this implies a(χ1χ
−1
2 ) > a1

2 , since otherwise there are no solutions for

x1. Furthermore, Sl2 is empty unless l2 = −t− a(χ1χ
−1
2 ). We can parametrise x1 by

x1 = −bχ1χ
−1
2

+ α$a(χ1χ
−1
2 )−r−ρ for α ∈ o/pa1−a(χ1χ

−1
2 ).

The degenerate shape of Ap further implies

x1$
a1+l2+t − x2$a1−l2 ∈ −b1 + b2 + pr+ρ.

This automatically imposes some conditions on α. Indeed, we get

α ∈


pρ if a1 − l2 ≥ r+ ρ,

− b2
vb
χ1χ
−1
2

+ pρ if a1 − l2 = r.

Each choice of x1 determines x2 by

x2 = −
b2
vx1

=
b2
v

∑
j≥0

αj

bj+1

χ1χ
−1
2

$ja(χ1χ
−1
2 )−jr.

Note that, if a(χ1χ
−1
2 ) = a1, det(Ap) ∈ o× and there is a unique x1 and Ap is non-

degenerate. Thus we obtain

Kl2 = ζF (1)
2q−

n
4
−
a(χ1χ

−1
2 )

2 ε(χ−12 ,
1

2
)ε(χ−11 χ2,

1

2
)χ−12 (−v)ψ

(
b2$

t+a(χ1χ
−1
2 )

vbχ1χ
−1
2

)
. (3.4.28)

Assuming the contrary we use the parametrisation above and write

Kl2 =χ1(−bχ1χ
−1
2
)χ−12

(
vbχ1χ

−1
2

)
ψ

(
−bχ1χ

−1
2
$−a(χ1χ

−1
2 ) +

b2
vbχ1χ

−1
2

$t+a(χ1χ
−1
2 )

)

· ε(1
2
,χ−12 )ζF (1)

2q−a1+
ρ
2

∑
α∈o/pa1−a(χ1χ

−1
2 )−ρ

[χ1χ
−1
2 ]

(
1− α

bχ1χ
−1
2

$a(χ1χ
−1
2 )−r

)

·ψ

α$−r + b2
v

∑
j≥1

αj

bj+1

χ1χ
−1
2

$t+(j+1)a(χ1χ
−1
2 )−jr

 .

The linear term in the remaining sum is b2$
2a(χ1χ

−1
2 )+t−r

vb2
χ1χ
−1
2

. After observing that t ≤ −2a(χ1χ
−1
2 )

is excluded by the current assumptions we observe that the quadratic term is dominated
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by −b−1
χ1χ

−1
2

2−1$a(χ1χ
−1
2 )−2r. Thus the Gauß sum is non-zero whenever t ≥ −a(χ1χ

−1
2 )−

r. We find that (3.4.28) remains true. The case a1 − l2 = r, corresponding to t =

−a(χ1χ
−1
2 )− r− ρ is slightly different, but the result turns out to be the same.

Case II.2: a1 − l2 < r ≤ a1 + l2 + t. This case is exactly the same as the previous

one. After exchanging roles of χ1 and χ2 we find that we must have a(χ1χ
−1
2 ) > r and

l2 = a(χ1χ
−1
2 ). Also the rest of the argument remains essentially the same and as long

as t ≥ −a(χ1χ
−1
2 )− r one arrives at (3.4.28) with χ1 and χ2 interchanged.

Case III: a1 + t + l2, a1 − l2 < r and t > −2l. We observe that −l2 > −a1, since

otherwise we are in the situation where t = −2l. We compute

Kl2 =

∫
o×
χ1(x1)G(($

a1−l2 + vx1)$
−a1 ,χ2)ψ($

t+l2x1)d
×x1

= ζF (1)q
−a1

2 ε(
1

2
,χ−12 )

∫
o×
χ1(x1)χ

−1
2 ($a1−l2 + vx1)ψ($

t+l2x1)d
×x1.

Using the p-adic logarithm yields

Kl2 = ζF (1)
2q−

a1
2
−κε(

1

2
,χ−12 )

∑
x∈(o/pκ)×

χ1(x)χ
−1
2 ($a1−l2 + vx)ψ($t+l2x)

·
∫
o
ψ

(
t($a1+l2+t +

b1
x
− vb2
vx+$a1−l2 )$

κ−a1

−
∑
j≥2

(−1)j

j
tj
(
b1
xj
− b2v

j

(vx+$a1−l2)j

)
$jκ−a1

)
dt,

for every κ ≥ κF . From the linear term we obtain the quadratic congruence

vx2$a1+l2+t + x(vbχ1χ
−1
2
$a1−a(χ1χ

−1
2 ) +$2a1+t) + b1$

a1−l2 ∈ pκ,

which is necessary for the t-integral to be non-zero. For this congruence to have a so-

lution it is required that at least two of its terms have the same valuation. We con-

sider the corresponding cases. Note that the cases a1 + l2 + t = 2a1 + t < a1 − l2 and

a1 + l2 + t > 2a1 + t = a1 − l2 can not occur due to our restrictions on t.

Case III.1: l2 + t < −l2 and a1 − a(χ1χ
−1
2 ) ≤ 2a1 + t. These assumptions imply that

there are solutions only if l2 = −t− a(χ1χ
−1
2 ) and in particular a(χ1χ

−1
2 ) > r + ρ. We

choose κ = ba(χ1χ
−1
2 )

2 c. This is possible if we assume a1 > 4κF . Under the current

assumptions we can truncate the sum in the integral after the second term. We are left

with a quadratic Gauß sum. Looking at the entries carefully reveals that there is exactly

one admissible x for which we can evaluating the Gauß sum to get

Kl2 = ζF (1)
2q−

a1+a(χ1χ
−1
2 )

2 ε(
1

2
,χ−12 )γF (−2bχ1χ2 , a(χ1χ

−1
2 ))

· χ1(x0)χ
−1
2 ($a1−l2 + vx0)ψ($

t+l2x0),
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where x0 ∈ o× is the unique solution to

vx2 + x(vbχ1χ
−1
2

+$a1−l2) + b1$
−t−2l2 = 0.

Case III.2: l2 + t > −l2 and a1− a(χ1χ
−1
2 ) ≤ 2a1 + t. This is dual to Case III.1 and can

be treated by exchanging the roles of x1 and x2. As a result we find that l2 = a(χ1χ
−1
2 ).

The expression for Kl2 is as expected.

Case III.3: t = −2l2 6= −2a(χ1χ
−1
2 ). If a(χ1χ

−1
2 ) > r + ρ, we choose κ = b l22 c. This is

possible since l2 > a(χ1χ
−1
2 ) > a1

2 > 2κF . A familiar arguments yields

Kl2 = ζF (1)
2q−

a1
2
+ t

4 ε(
1

2
,χ−12 )

∑
±
γF (x±,−

t

2
)χ1(x±)χ

−1
2 ($a1−l2 + vx±)ψ($

t+l2x±),

(3.4.29)

where x± ∈ o× are the solutions to the equation

vx2 + x(vbχ1χ
−1
2
$l2−a(χ1χ

−1
2 ) +$a1−l2) + b1 = 0. (3.4.30)

In particular, x−± exist if and only if −vb1 ∈ o2×.

If a(χ1χ
−1
2 ) ≤ r+ ρ, we argue slightly different. We note that the current assumptions

imply that −n < t < −2r− 2ρ. The quadratic term in the t-integral is given by

−

(
b1vx

x2(vx+$a1+
t
2 )2

+O(p)

)
t2$2κ+ t

2 .

We choose κ = −b t4c and take solutions x± of (3.4.30). In particular, we assume that

−vb1 ∈ o2×. Evaluating the remaining Gauß sum yields the same result as in (3.4.29).

Case III.4: t = −2a(χ1χ
−1
2 ). Note that the current configuration implies a(χ1χ

−1
2 ) ≥ r.

For this situation there might exists degenerate critical points. We have to solve the

congruence

x2 + x(bχ1χ
−1
2

+
$a1−a(χ1χ

−1
2 )

v
) +

b1
v
∈ pa(χ1χ

−1
2 )−κ.

If the discriminant ∆ = (bχ1χ
−1
2

+ $a1−a(χ1χ
−1
2 )

v )2 − 4b1
v is a unit, we may argue as above.

Let us assume ∆ ∈ p and focus on upper bounds. We write a(χ1χ
−1
2 ) = 2r′ + ρ′, choose

κ = r′ and parametrise

x = −
bχ1χ

−1
2

2
− $a1−a(χ1χ

−1
2 )

2v
± Y

2
$δ + α$r′+ρ′−δ for α ∈ o/p−ρ

′+δ
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and

Y =


0 if v(∆) ≥ r′ + ρ′,

Y0 if v(∆) < r′ + ρ′ and (∆)0 = Y 2
0 ,

and

δ =


b r
′+ρ′

2 c if v(∆) ≥ r′ + ρ′,

δ0 if v(∆) = 2δ0 < r′ + ρ′.

Reinserting this parametrisation in the x-sum gives

Kl2 = ζF (1)
2q−

a1
2
−r′−ρ′+δ

∑
±
γ±

∫
o
ψ

(
A1x

−
∑
j≥2

(−1)j

j
xj

(
b1
A
− b2v

j

(vA+$a1−a(χ1χ
−1
2 ))j

)
$j(r′+ρ′−δ)−a1

)
dx

for some A1 ∈ F , some γ± ∈ S1 and A = −
b
χ1χ
−1
2

2 − $a1−a(χ1χ
−1
2 )

2v ± Y
2$

δ. Observe that

A(vA+$a1−a(χ1χ
−1
2 )) ∈ o×, so that the j-th coefficient satisfies(

b1
Aj
− b2v

j

(vA+$a1−a(χ1χ
−1
2 ))j

)
∈ pa1−a(χ1χ

−1
2 ).

Furthermore, we check that

(vA+$a1−a(χ1χ
−1
2 ))jb1 −Ajb2

= Ajvj(b1 − b2) + jvj−1Aj−1$a1−a(χ1χ
−1
2 )b1 + p2a1−2a(χ1χ

−1
2 ).

This helps us to check that the second order term is in pa1−a(χ1χ
−1
2 )+δ and the third order

term is in 3−1$a1−a(χ1χ
−1
2 )o×. Note that we can truncate the Taylor series latest after the

3rd term. Thus, in the worst case scenario, we obtain the bound

|Kl2 | ≤ 2ζF (1)
2q−

a1
2
−

2a(χ1χ
−1
2 )

3 .

Case IV: t = −2l. In this case we will take a very familiar approach. First, we note

that l2 = t+ l2 = l = a1. Thus, the congruences reduce too

vx22 + (1− vbχ1χ
−1
2
$a1−a(χ1χ

−1
2 ))x2 + b2 ∈ pr and x1 = x2 − bχ1χ

−1
2
$a1−a(χ1χ

−1
2 ) ∈ pr.

We can solve the remaining quadratic congruence as in many of the previous cases. Its

discriminant is given by

∆ = (1− vbχ1χ
−1
2
$a1−a(χ1χ

−1
2 ))2 − 4vb2 = 1− 2v(b1 + b2) + v2b2

χ1χ
−1
2
$2a1−2a(χ1χ

−1
2 ).
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A short computation modulo p shows that detAp ∈ o× if and only if ∆ ∈ o.

If ∆ ∈ o×, then obviously ]Sa1 ≤ 2 and using Lemma 3.1.7 we can give a satisfying

expression for Ka1 in terms of x± ∈ Sa1 .

From now on we assume that ∆ ∈ p. In particular, Ap is singular, which implies a

slightly stronger congruence condition. We define

δ =


b r2c if v(∆) ≥ r,

δ0 if v(∆) = 2δ0 < r,

Y =


0 if v(∆) ≥ r,

Y0 if (∆)0 = Y 2
0 and v(∆) < r.

Assuming Sa1 is non empty, we parametrise it by

Sa1 =
{(
A± + α$r+ρ−δ,B± + α$r+ρ−δ

)
: α ∈ o/pδ−ρ

}
,

for A± = − 1
2v −

b1−b2
2 ± Y

2v$
δ and B± = − 1

2v +
b1−b2

2 ± Y
2v$

δ.

We proceed by inserting the parametrisation of Sa1 in the Sa1-sum. This yields

Ka1 =

γF (−2b1, a1)
∑
±
χ1(A±)χ2(B±)ψ(A±$

−a1 +B±$
−a1 + vA±B±$

−a1)ζF (1)
2q−2r−

ρ
2

·
∑

α∈o/pδ−ρ
χ1(1+

α

A±
$r+ρ−δ)χ2(1+

α

B±
$r+ρ−δ)ψ((1± Y $δ)α$−r−δ + vα2$ρ−2δ).

As usual we use Lemma 3.1.3 and the p-adic logarithm to deal with the two characters.

Observing δ ≤ r
2 enables us to truncate the Taylor expansion of the logarithm after the

3rd term. We get

Ka1 = γF (−2b1, a1)
∑
±
χ1(A±)χ2(B±)ψ(A±$

−a1 +B±$
−a1 + vA±B±$

−a1)

· ζF (1)2qδ−a1−
ρ
2

∫
o
ψ

(
t(1± Y $δ +

b1
A±

+
b2
B±

)$−r−δ

+ t2(v− 1

2
(
b1
A2
±
+

b2
B2
±
))$ρ−2δ +

t3

3
(
b1
A3
±
+

b2
B3
±
)$r+2ρ−3δ

)
dt.

For Sl2 to be non-empty it is necessary that A±,B± ∈ o×. This translates into

v 6∈ ±(b1 − b2)−1 + p.

Since

A±B± ∈
1

4v2
− (b1 − b2)2

4
+ p,

we conclude that A±B± ∈ o×.
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Note that if the linear or the quadratic term are units then we have at least square root

cancellation. Thus, we are left with showing that the coefficient in front of t3 is (close to)

a unit. The following computations are modulo p. Indeed, ∆ ∈ p implies

1+ v2(b1 − b2)2 ∈ 2v(b1 + b2) + p.

We also compute

A2
± ∈

b1
v
+ p and B2

± ∈
b2
v
+ p.

Using this, an easy computation shows

b1
A3
±
+

b2
B3
±
∈ (A±B±)

−1 + p ⊂ o×.

Thus we are left with an p-adic Airy function and get the bound7

|Ka1 | ≤ 2ζF (1)
2q−a1+

a1
6 .

Lemma 3.4.16 ([4], Lemma 5.12). Let π = χ1 |·|s�χ2 |·|−s where s ∈ iR, and a(χ1) = a(χ2)

but χ1 6= χ2. We put k = max(l, a(χ1)).

If 0 < l < n and l 6= n
2 , then

Wπ(gt,l,v) = γF (b1b2)
kδk=a(χ1)χ1(x0 − bχ1χ

−1
2
$k−a(χ1))χ2(x0)ψ(x0$−k− bχ1$−a(χ1)),

for t = −k and Wπ(gt,l,v) = 0 otherwise. Here x0 ∈ o× is the unique solution to

vx2$k−l + x(1− vbχ1χ
−1
2
$2k−a(χ1)−l) + b2$

k−a(χ1) = 0.

If l = n
2 ,

Wπ(gt,l,v) = ζF (1)
−2q−

t
2

[
G(v$−l,χ1)G($

−a(χ−1
1 χ2),χ−11 χ2)q

−st

+G(v$−l,χ2)G($
−a(χ−1

2 χ1),χ−12 χ1)q
st

]
,

for −2 ≥ t ≥ −n0(π);

Wπ(gt,l,v) = ζF (1)
−2q−

t
2

(
qs(t+2n0(π))K−t−n0(π) + q−s(t+2n0(π))Kn0(π)

)
,

for −n0(π) < t < −2n0(π); and

Wπ(gt,l,v) = ζF (1)
−2q−

t
2K− t

2
,

7 If F = Qp we may apply Lemma 3.1.5 to obtain cube root cancellation.
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for −2n0(π) ≤ t ≤ −n. Evaluations for Kl2 can be found in Lemma 3.4.15. In particular we

have

Wπ(g)�F q
n
12 .

If a(χ1χ2) <
n
2 and −1 6∈ o2×, then we have the stronger bound

|Wπ(g)| �F 1.

If κF = 1, then the implicit constants can taken to be 2.

The proof follows our usual strategy and is very similar in spirit to the proof of

previous lemmata. Thus we will be very brief.

Proof. If l = 0 or l ≥ n or t > −2, the formulas given in Lemma 3.3.9 can be easily

estimated. The cases 0 < l < n and l 6= n
2 follow directly from Lemma 3.1.7 in a standard

manner. Finally, if l = n
2 , the work has been done in Lemma 3.3.9 and Lemma 3.4.15.

3.4.4 Summary

A consequence of [69, Corollar 2.35] is that

|Wπ(g)| ≤
√
2q

1
2
bn
2
c

for all g ∈ G(F ). In this chapter we went through great pain to establish tight bounds

for Wπ using the gt,l,v coordinates. Here we give a brief summary of our findings.

First of all let us observe that for l 6= n
2 and any π we have

|Wπ(gt,l,v)| �F ,ε q
(ε− 1

2
)(t+max(n,2l)).

Furthermore, whenever π 6= χ1 |·|s�χ2 |·|−s with a(χ1) > a(χ2) > 0 or l 6= a(χ2) we can

take the implicit constant to be 1 and remove the ε. Also note that in conjunction with

the support properties of Wπ stronger bounds might be possible.

We turn to the transition region. Here we have8

Wπ(gt,n
2
,v)�F E(π, t). (3.4.31)

The values of E(π, t) are recorded in the following table.

8 The implicit constant is 2 for F = Qp.
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π t E(π, t)

supercuspidal t = −n,−n0(π) q−
n+t
4
− t

12

−n < t < −n0(π) q−
n+t
4

χSt or χ |·|s� χ |·|−s t = −n q
n
12

−n < t q−
n+t
4

χ |·|s� |·|−s t = −3
2n q

n
4

χ |·|s� χ |·|−s for a(χ1) > a(χ2) > 0 t = −n
2 −m q

m
3
− n

12

χ |·|s� χ |·|−s for a(χ1) = a(χ2) > 0 t = −n q
n
12

−n < t < −2n0(π) q−
n+t
4

t = −2n0(π) q−
n+t
4

+
n0(π)

6

−n0(π) < t q−
n+t
4
− 2n0(π)+t

4

Let t0(π) = min{t : Wπ(gt,n
2
,v) 6= 0}. The (essential) sharpness of (3.4.31) depends on

the existence of degenerate critical points. The following table summarises sufficient and

necessary conditions for the existence of such points.

π t0(π) Condition for degeneracy

π̃ = ωξ, E/F unramified −n NrE/F (bξ) ∈ o2× (e.g. non twist minimal)

π̃ = ωξ, E/F ramified −n n even (i.e. non twist minimal)

χSt or χ |·|s� χ |·|−s −n none (always exists)

χ |·|s� |·|−s −3
2n no critical point

χ1 |·|s� χ1 |·|−s, −n
2 −m bχ1bχ2 ∈ o2×

a(χ1) > a(χ2) > 0

χ1 |·|s� χ2 |·|−s, −n −1 ∈ o2×

a(χ1) = a(χ2) > 0 and m < n
2

χ1 |·|s� χ2 |·|−s, −n none (always exists)

a(χ1) = a(χ2) > 0 and m = n
2
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3.5 miscellaneous integrals

We will conclude this chapter by evaluating some local integrals that appear in the

residual part ot the spectral expansion. More precisely we will calculate the integral

I(χ) =

∫
Z(F )\G(F )

f(g)χ(det(g))dg (3.5.1)

for several choices of f . In particular, all fp that appear in Section 4.7.1 below. These

computations have previously appeared in [2, Appendix A].

First, we consider

f(g) = κk(g) =


ωπ(z)−1 for g = zm with z ∈ Z(F ),m ∈Mat2(o), det(m) = k,

0 else,

for some k.

Lemma 3.5.1 ([2], Lemma A1). For k ≥ 0 we have

∫
Z(F )\G(F )

κk(g)χ(det(g))dg =


χ($k)vol(Xk) if χ is unramified,

0 else.

Proof. The calculation for unramified χ is straight forward. Thus, we assume that χ is

ramified. In this case let us write Xk = tiαiK. We clearly have∫
Z(F )\G(F )

κk(g)χ(det(g))dg =
∑
i

χ(det(αi))

∫
Z(F )\G(F )

χ(det(g))1K(g)dg.

Using the choice of Haar measure and the fact 1K(n(x)a(y)k) = 1o(x)1o×(y) yields∫
Z(F )\G(F )

κk(g)χ(det(g))dg

=
∑
i

χ(det(αi))

∫
o

∫
K
κk(k)

∫
o×
χ(y)dµ×(y)dµK(k)dµ(x) = 0.

This concludes the proof.

Second, we look at

f(g) =


vol(Z(o) \ K̃0(1))−1ω−1π (z) if g = zk ∈ Z(F )K̃0(1),

0 else.
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Lemma 3.5.2 ([2], Lemma A2). For a quadratic character χ and unramified ωπ we have

I(χ) = 1.

Proof. We first observe that for each g ∈ K̃0(1) we have det(g) ∈ (o×)2 +$o. Thus, if

a(χ) ≤ 1 we have χ(g) = 1 for all g ∈ K̃0(1). Further, since χ is quadratic, the case

a(χ) > 1 can not appear in odd residual characteristic.

After this warm up we come to the most interesting case. We consider the truncated

matrix coefficient. More precisely we look at

f(g) = Φ′π(g) =


Φπ(a($−n1)ga($n1)) if g ∈ ZK0,

0 else,

with

K0 =


K if n is even,

K0(1) if n is odd.

We obtain the following result.

Lemma 3.5.3 ([2], Lemma A3). If χ2 = ωπ, one has

I(χ) = 0,

unless a(π) = 1. In this case the integral may be non-zero but we still have I(χ) ≥ 0.

Before we begin with the proof we recall some properties of Φπ, which date back to

[30]. For any unitary, generic representation π of G(F ) we define the matrix coefficient

associated to a Whittaker new vector Wπ by

Φπ(g) = 〈Wπ,π(g)Wπ〉 .

Lemma 3.5.4 ([2], Lemma A4). We have

Φπ(n(x)gt,l,1) =
∑
m∈Z

Wπ(a($
m))

∑
µ∈Xl

ct+m,l(µ)G(−$mx,ωπµ).

Proof. First we use the definition of Φπ. We arrive at

Φπ(n(x)gt,l,1) = 〈Wπ,π(n(x)gt,l,1)Wπ〉

=

∫
F×

Wπ(a(y))Wπ(a(y)n(x)gt,l,1)dµ
×(y)

=
∑
m∈Z

Wπ(a($
m))

∫
o×
ωπ(v)Wπ(a($mv)n(x)gt,l,1)dµ

×(v).
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It is straight forward to check that

a($mv)n(x)gt,l,1 = n($mvx)gt+m,l,v−1

1 0

0 v


︸ ︷︷ ︸
∈K1(n)

.

Expanding Wπ(gt,l,v) in its finite Fourier expansion and recalling the definition of the

Gauß sum completes the proof.

Proof of Lemma 3.5.3. Put b = max(a(χ),n). Then χ ◦ det and Φπ are bi-K1(b)-invariant.

Further, we recall

Φ′π(g) = 1ZK◦(g)Φπ(a($
−n1)ga($n1)).

Thus a simple change of variables yields

I(χ) =

∫
Z(F )\G(F )

χ(det(g))Φπ(g)1ZK◦(a($
n1)ga($−n1))dg.

It is easy to check that 1ZK◦(a($n1) · a($−n1)) is bi-K0(b)-invariant. It follows that the

hole integrand is bi-K0(b)-invariant, so that we can use [30, Lemma 3.2.4]. This yields

I(χ) =
b∑
l=0

cl
∑
t∈Z

qt+l
∫
F
χ($t)Φπ′(n(x)gt,l,1)1ZK◦(a($

n1)n(x)gt,l,1a($
−n1))dµ(x),

for some positive constants cl. We remark that, since ωπ′ is trivial on the uniformiser,

so is χ. Next we will investigate which restrictions on x, l, and t are imposed by the

characteristic function (up to the center). One checks

a($n1)n(x)gt,l,1a($
−n1) = z ·

 $kx $n1−l+kx−$t+n1+k

$−n1+k $k−l

 .

Here we use the center to force all coefficients to be in o. This holds for

k ≥ max(n1, l,−v(x),−v(x)− n1 + l)

and suitable t. But we also need to make sure that the determinant is in o×. This implies

t+ 2k = 0.

We now consider n to be even. In this case K◦ = K and we get the conditions

k = n1, t = −2n1, l ≤ n1, and − v(x) ≤ n1. (3.5.2)

After inserting the formula from Lemma 3.5.4 for the matrix coefficient we obtain

I(χ) =
n1∑
l=0

clq
l−2n1

∑
m∈Z

Wπ(a($
m))

∑
µ∈Xl

ct+m(µ)

∫
$−n1o

G(−$mx,ωπµ)dµ(x). (3.5.3)
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Inserting the evaluation of the Gauß sum together with character orthogonality shows

that most of the integrals vanish. We are left with

I(χ) =
n1∑

l=a(ωπ)

clq
l−2n1

∑
m∈Z

Wπ(a($
m))cm−2n1,l(ω

−1
π )

·
∑
t≥0

q−t+n1

∫
o×
G(−$m+t−n1x, 1)dµ(x).

We have to consider different cases. First, we deal with representations that satisfy

L(s,π) = 1. In this case using (1.3.1) and (1.3.7) yields

I(χ) =
n1∑

l=a(ωπ)

clq
l−2n1c−2n1,l(ω

−1
π )

∑
t≥0

qn1−t
∫
o×
G($t−n1v, 1)dµ(v)

=
n1∑

l=a(ωπ)

clq
l−2n1c−2n1,l(ω

−1
π )

∑
t≥n1

qn1−tζF (1)− 1

 = 0.

Second, we consider the case π = χ1 � χ2 with a(χ1) > a(χ2) = 0. In this case we have

a(ωπ) = a(χ1) = n > 0. Recall that at the moment we are considering n even. Thus,

a(ωπ) > n1 ≥ 1. We conclude that I(χ) = 0 since the l-sum is empty. Let us remark, that

π = χSt for unramified χ has conductor 1 and therefore does not need to be considered

yet.

We have checked that I(χ) = 0 for even n by considering all necessary types of π.

Now let us move on to n odd. In this case K◦ = K0(1) and additionally to (3.5.2) the

characteristic function forces v($2n1−lx− 1) ≥ 1. This implies

l = n1 and x ∈ $−n1(1+$o).

Analogously to (3.5.3) we get

I(χ) = cn1q
−n1

∑
m∈Z

Wπ(a($
m))

∑
µ∈Xn1

c−2n1+m,n1(µ)

∫
$−n1 (1+$o)

G(−$mx,ωπµ)dµ(x)

= cn1

∑
m∈Z

Wπ(a($
m))

∑
µ∈Xn1 ,
a(µωπ)≤1

c−2n1+m,n1(µ)

∫
(1+$o)

G(−$m−n1x,ωπµ)dµ(x).

In the last step we used again the Gauß sum evaluation (1.3.1) and orthogonality of

characters to remove all µ with a(µωπ) > 1.

We have to consider different cases again. First, let us look at π with L(s,π) = 1. In

this case me have n > 2, since we assume n odd. By (1.3.7) we get

I(χ) = cn1

∑
µ∈Xn1 ,
a(µωπ)≤1

c−2n1,n1(µ)

∫
(1+$o)

G(−$−n1x,ωπµ)︸ ︷︷ ︸
=0

dµ(x) = 0.
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Second, let π = χ1 � χ2 with a(χ1) > a(χ2) = 0. If n = a(χ1) > 1, we immediately

have a(ωπµ) > n1 for all µ ∈ Xn1 . Thus, in these cases, I(χ) = 0. So we can assume

1 = n = n1 = a(χ1). Using (1.3.1) and (1.3.7) we have the identity

I(χ) = c1Vol(1+$o,µ)

( ∑
µ∈X1,

µ6=ω−1
π

c−2,1(µ)ζFp(1)q
− 1

2 ε(
1

2
,ω−1π µ−1)ωπ(−1)µ(−1)

+
∑
m≥1

χ1($
m)q−

m
2 c−2+m,1(ω

−1
π )

−ζF (1)q−1c−2,1(ω−1π )

)
.

Inserting the expressions for ct,1(·) given in Lemma 3.2.3 yields

I(χ) = c1Vol(1+$o, dµ)ωπ(−1)

 ∑
µ6=ω−1

π

ζF (1)
2q−1 +

∑
m≥1

q−m + ζF (1)
2q−2


= c1Vol(1+$o, dµ)ωπ(−1)

(
ζF (1)

2q−1(q− 2) + ζF (1)q
−1 + ζF (1)

2q−2
)
.

Observe ωπ(−1) = χ(−1)2 = 1 and deduce that I(χ) ≥ 0.

This leaves us with the case π = χSt for unramified χ. In particular, we have ω = χ2 =

1. Thus we are dealing with π = St and we have a(π) = n = n1 = 1. We obtain

I(χ) = c1
∑
m≥0

q−m
∑
µ∈X1

cm−2,1(µ)

∫
1+$o

G(−$m−1x,µ)dµ(x).

Evaluating the Gauß sum reveals

I(χ) = c1Vol(1+$o)

( ∑
a(µ)=1

ζF (1)q
− 1

2 ε(
1

2
,µ−1)µ(−1)c−2,1(µ)

+
∑
m≥1

q−mcm−2,1(1)

−ζF (1)q−1c−2,1(1)
)
.

Using the evaluation of ct.l(·) given in Lemma 3.2.1 one obtains

I(χ) = c1Vol(1+$o)

 ∑
a(µ)=1

ζF (1)
2q−1 +

∑
m≥1

q−2m + ζF (1)
2q−2


= c1Vol(1+$o)

(
ζF (1)

2q−1(q− 2) + q−2ζF (2) + ζF (1)
2q−2

)
> 0

This was the last case to consider and the proof is complete.
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Part III

G L O B A L A P P L I C AT I O N

In this part we seek to apply the local methods developed so far to the sup-

norm problem for automorphic forms. This is a global question and it re-

quires non-trivial arguments to put the local pieces together.

We treat essentially two aspects of the problem. First, we exhibit large values

high in the cusp. Here the local to global argument is straight forward solely

relying on the uniqueness of Whittaker models. Second, we prove upper

bounds for the global sup-norm. The latter requires some beautiful global

techniques developed in [20]. Essentially we will be extending the results

from [2].

Throughout this section we will deal with an arbitrary number field F of

degree n. This base field will be considered as fixed and thus we allow all

constants to depend in it. In particular, we will freely discard contributions

like 2n or N (d). All corresponding local fields with their associated objects

will appear with subscripts.





4
T H E S U P - N O R M O F C U S P I D A L A U T O M O R P H I C F O R M S

Classically the sup-norm problem is motivated by quantum chaos. However, in the set-

ting of automorphic forms there are close connections to the theory of L-functions. We

will start this chapter by briefly reviewing the classical theory including some previous

results. Then we will set up the necessary notation and start to prove Theorem 1.2.1. This

proof will occupy the remainder of this thesis. We closely follow [2], making the modi-

fications necessary for the slightly general set-up allowed in Theorem 1.2.1 respectively

Theorem 4.8.1 and Theorem 4.8.2 below.

4.1 background

The goal of this section is to introduce the sup-norm problem by briefly painting the

classical picture and then giving an overview over previous results on the sup-norm of

automorphic forms. Since there is a huge amount of literature on this topic we organise

this section according to different aspects.

Classical aspects and local methods

Let (M , g) be a n dimensional, compact Riemannian manifold without boundary. Such

a manifold comes naturally with the (positive) Laplace-Beltrami operator 4g, whose

spectrum, Spec(M ), can be seen as an important geometric invariant of M . Since we

assume M to be compact, Spec(M) is discrete and has no finite accumulation point. We

are interested in understanding the map

M∞ : Spec(M) → R,

λ 7→ sup
4gφ=λφ

‖φ‖∞
‖φ‖2

.

This quantity is closely connected to the multiplicity of eigenspaces and the remainder

of the Weyl-law. Indeed, from the local Weyl-law one can deduce the bound

M∞(λ)�M λ
n−1
4 . (4.1.1)
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This local bound originates from the work of Levitan [58], Avacumovic̀ [6], and Hörman-

der [44]. It improves upon the trivial bound coming from standard Sobolev estimates.

While the estimate (4.1.1) is sharp in general, as can be seen considering the (eu-

clidean) sphere Sn, it is possibly far from the truth in general. In [77] the authors show

that there is a close connection between the true size of M∞ and the dynamics of the

geodesic flow on M . Roughly speaking, they show that if (4.1.1) is sharp for M , then

there must be a point x ∈ M at which a positive amount of initial directions lead to

geodesic loops. It turns out that this is almost sufficient [76].

For more background and references concerning the microlocal analysis of eigenfunc-

tions we refer to the very nice survey [91] and the neat book [75].

The estimate (4.1.1) mentioned above relies purely on the local structure of M . How-

ever, if M possesses global symmetries considering only the function M∞ might lead

to loss of information. The reason for this is that M∞ takes the supremum over the

whole eigenspace, but it might be enlightening to single out special elements in each

eigenspace. This can be illustrated by looking at the sphere S2. As mentioned earlier, the

local bound for M∞ is sharp in this case. However, VanderKam exploited the presence

of Hecke operators to construct an orthonormal basis φj of Laplace-Beltrami eigenfunc-

tions satisfying

‖φj‖∞ � λ
5
24
j . (4.1.2)

Thus it makes sense to consider specific sequences of eigenfunctions and investigate the

eigenfunction growth along these.

A similar phenomenon can be observed if M is a compact locally symmetric space. In

this situation the commutative ring of invariant differential operator D(M) is generated

by rank(M) elements. Therefore we can consider functions φ on M which are eigenfunc-

tions of all operators in D(M) simultaneously. Such φ are in particular Laplace-Beltrami

eigenfunctions and we refer to them as joint eigenfunctions. In his famous letter [72]

Sarnak observed that (generic) joint eigenfunctions satisfy the improved bound

‖φ‖∞
‖φ‖2

� λ
n−rank(M)

4
φ . (4.1.3)

This has been further investigated in [60] and [67].

The last two points raise the question about the growth of the L∞-norm of eigenfunc-

tions along sequences of eigenfunctions. Furthermore, one can try to identify families

with similar growth properties. Part of these questions is what we call the sup-norm prob-
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lem. It is the problem of improving upon the bound (4.1.1) or (4.1.3) depending on the

setting.

The purity conjecture

The most general conjecture in this area is the so called purity conjecture posed in [72]. It

states that, for any sequence (φj)j of L2-normalised Hecke-eigenfunctions with regular

spectral parameter on a compact, arithmetic, negatively curved Riemannian manifold

(without boundary), we have

Acc
log ‖φj‖∞
log λj

⊂ 1

4
Z∩ [0, n− rank(M)

4
).

To get a feeling for this conjecture we consider the example M = Γ\H(2), where Γ is

a co-compact arithmetic lattice. The local bound implies that the accumulation points

that can appear must lie between 0 and 1
4 . We first note that, as stated here, the purity

conjecture includes the existence of a sub-local (subconvex) bound. This is because the

accumulation point 1
4 is excluded. Thus, in this particular setting, the purity conjecture

is equivalent to the very strong sup-norm bound

‖φ‖∞ �ε λ
ε
φ for any ε > 0.

Note that the conjecture does not apply to the sphere S2. In this case the high di-

mensional eigenspaces are responsible for the existence of many different basis which

make it possible to accommodate for arbitrary accumulation points in the interval [0, 14 ].

A well known example is the sequence consisting of zonal spherical harmonics, which

is responsible for the accumulation point 1
4 . On the other hand, we can look at the or-

thonormal basis consisting of Hecke eigenfunctions considered by VanderKam. In view

of (4.1.2) this sequence only yields accumulation points in the interval [0, 5
24 ]. It seems

reasonable to believe that this sequence is pure in the sense that it really has accumula-

tion point 0.

Non-compact spaces.

Up to this point we assumed that M is a compact Riemannian manifold without bound-

ary. However, many interesting manifolds fail to be compact. Prominent examples are

quotients of the upper half plane H(2) by congruence subgroups, which are of great

interest to number theorists. Thus, one would like to consider the sup-norm problem
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in this setting as well. But the failure to be compact makes it impossible to define the

global sup-norm in general. There are several ways to go around this. First, we can fix a

compact set K and consider the restricted sup-norm

‖φ‖∞,K = sup
x∈K
|φ(x)|

for smooth functions φ. Second, we can exclude the continuous part of the spectrum

and restrict ourselves to eigenfunctions that appear in the discrete spectrum. Functions

in the discrete spectrum will have essentially compact support so that it is possible to

consider the global sup-norm. If M = SL2(Z) \H(2), then the second approach amounts

to studying the sup-norm of classical Maaß cusp forms.

At this stage a word of warning is in order. It is not possible to translate all the

results and conjectures from the compact in the non-compact setting. Indeed it has been

shown in [24] that the bound (4.1.3) fails for GLn cusp forms if n is large. Also the purity

conjecture does not generalise to the non-compact setting without compromises. Indeed,

it has been shown in [7] that certain Eisenstein series on SLk(Z) \GLk(R)/Ok(R)R×

violate the purity conjecture. In view of these two negative results the global behaviour

of eigenfunctions on non-compact manifolds is far from transparent. This warning aside,

it is still believed that most classical results, as well as the purity conjecture, carry over

to eigenfunctions in the discrete spectrum restricted to a fixed compact set.

Instead of looking at non-compact spaces, it is also possible to pass to suitable com-

pactifications. See [23] for a detailed account on the subject of compactification. Unfor-

tunately, the compactification will usually be a manifold with boundary or even with

edges. This leads to the study of elliptic PDE’s with boundary condition. For example,

on M = SL2(Z) \H(2) the property ’vanishing at the cusp’ would translate to Dirichlet

boundary condition on an appropriate compactification. To get intuition for the global

behaviour of Maaß cusp forms on non-compact spaces one might have a look at classical

results concerning mass concentration of Laplace eigenfunctions with Dirichlet bound-

ary condition. It has been shown in [74] that (4.1.1) still holds for eigenfunctions of the

Laplace-Beltrami operator with Dirichlet boundary condition on 2 dimensional Rieman-

nian manifolds with boundary. However, on the disc {x ∈ R2 : |x| ≤ 1}, some Laplace

eigenfunctions φwith Dirichlet boundary condition concentrate within a neighbourhood

of the boundary, which is roughly of size λ
− 1

3
φ , [37]. Such Phenomena might explain the

growth of Maaß cusp forms on GLn shown in [24].
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The level aspect

Instead of bounding the L∞-norm of eigenfunctions in terms of the spectral parameter

λ, one can bound it using other invariants of M . One instance of this is the volume.

To make this precise we consider a sequence of manifolds Mn with vol(Mn) → ∞ as

n→∞. Then questions about the size of

sup
4φ=λφ,
λ∼T

sup
x∈Mn

|φ(x)|
‖φ‖2

in terms of vol(Mn) arise. This is often referred to as the level aspect of the sup-norm

problem. The first supremum ensures that the size of the spectral parameter remains

comparable throughout the sequence of eigenfunctions under consideration. We can not

fix a specific eigenvalue since it might not be contained in the spectrum of all Mn. One

can naturally ask the bound to be explicit in both T and the volume. Such estimates are

usually called hybrid bounds. The name level aspect comes from the fact that one usually

considers families of the form Mn = Γn \X for a fixed Riemann symmetric space X and

a sequence of lattices Γn ⊂ Γ0. The volume of Mn can then be expressed as the ’level’ or

index of the lattice Γn in Γ0.

One instance of a hybrid bound appears in the works of Blomer and Michel on el-

lipsoids over number fields, [16, 17]. The sequence of manifolds under consideration

comes from Eichler orders in totally definite quaternion algebras over totally real fields.

These manifolds have an arithmetic structure, which allows to establish hybrid bounds

for Hecke-Laplace eigenfunctions.

Sup-norm bounds in the GL2-setting

In this section we try to give an overview on sup-norm bounds for eigenfunctions living

on quotients of the upper half plane H(2). We call this the GL2-setting, since most of the

objects appearing here are instances of automorphic forms on GL2 as defined in [22].

A milestone in the history of the sup-norm problem is the work of Iwaniec and Sarnak

[52]. They consider L2-normalised Hecke-Maaß forms on Γ \ H(2), where Γ is a lattice

arising from a maximal order in a quaternion algebra. They adapt the amplification

method, which is a known tool in the analysis of L-functions, to this setting, and are

the first to obtain a sup-norm bound superior to (4.1.1). Indeed they obtain the power

saving estimate

‖φ‖∞ �ε λ
5
24

+ε

φ for all ε > 0. (4.1.4)
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In the appendix they sketch how to modify their argument to make it work for the

non-compact quotient SL2(Z) \H(2).

Blomer and Holowinsky, in [12], prove a bound in the level aspect. More precisely

they show that

‖φ‖∞ � N
1
2
− 1

37λ
11
4
φ ,

where φ is a Hecke-Maaß newform on Γ0(N) \ H(2) for square-free N . Their theorem

holds also for modular forms of positive (non exceptional) weight. Furthermore, they

work through the details sketched in the appendix to [52] and derive

‖φ‖∞ � N
1
2
+ελ

5
24

+ε

φ

for square-free N . This leads to the hybrid bound

‖φ‖∞ � N
1
2
− 1

2300λ
1
4
− 1

2300
φ

for N square-free. It follows an explosion of work on the sup-norm problem for Hecke-

Maaß newforms on Γ0(N) \H(2). The papers [39–41, 81] refine the amplification process

and establish increasingly good bounds in the (square-free) level-aspect. This progress

then culminates in the hybrid bound

‖φ‖∞ � N
1
3
+ελ

5
24

+ε (4.1.5)

for square-free N , which was proven in [83]. This combines the best known bounds in

level and spectral aspect.

The first step towards removing the square-free condition was made in the paper [71]

using classical language. However, soon after A. Saha obtained the state of the art hybrid

bound

‖φ‖∞ � (MN0)
1
2
+εN

1
3
+ε

2 λ
5
24

+ε

φ

for a Hecke-Maaß newform φ of level N2
0N2, where N2 is square-free, and central char-

acter χ with conductor M . This was proven in [70] exploiting the powerful language of

automorphic representations.

Note that despite all the effort, the bound in the spectral aspect has been untouched

since the groundbreaking work of Iwaniec and Sarnak. Further, it has always been as-

sumed that φ is an eigenfunction of all the Hecke operators. Even if strongly believed,

it is not known in general, if one can improve the local bound without this assumption.

In this direction there is the very interesting work [54] which considers Maaß forms that
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are eigenfunctions of only finitely many Hecke operators. In this case it turns out that

each Hecke operator yields a log-saving upon the local bound.

The sup-norm bounds have also been generalised to the number field setting. One of

the cases considered were quotients of the space H(3) by congruence subgroups. In this

situation Blomer, Harcos, and Milic̀evic̀ obtained a hybrid bound which is as strong as

(4.1.5). As usual they had to restrict themselves to square-free level. Quite recently they

extended their work to arbitrary number fields. Together with Maga, [20], they proved

a hybrid bound for square-free level. Over totally real fields their bound is of the same

strength as (4.1.5). This is the point where our result fits in. We treat Maaß forms of

powerful level and with arbitrary central character over number fields using the tools

from [70].

There is an obvious version of the sup-norm problem for Eisenstein series. In this

scenario it is impossible to consider the global sup-norm. However, one can investigate

the size of Eisenstein series restricted to compact sets. The first to look at this situation

was Young in his note [89]. He establishes the bound

sup
z∈K

∣∣∣∣E(z, 12 + iT )

∣∣∣∣�K,ε T
3
8
+ε,

for the standard Eisenstein series E on SL2(Z) \H(2). Here K is some fixed compact sub-

set of H(2). The interesting feature is that the explicit construction of Eisenstein series

allows for an optimised amplifier. This leads to an improvement upon the seemingly un-

beatable exponent 5
24 in the spectral aspect. This work has been generalised to Eisenstein

series of square-free level in [50]. We extend it further to Eisenstein series over number

fields allowing powerful level and central character in [3]. A similar improvement in the

eigenvalue aspect can be achieved for dihedral Maaß forms using a related amplifier.

This has been worked out in [49].

One can also investigate the size of holomorphic cusp forms on H(2). In this case the

situation is slightly different. This is due to the appearance of non-trivial K-types at

infinity. One has to make a slight change in the definition of the sup-norm. We set

‖φ‖∞ = sup
z∈H(2)

=(z)
k
2 |φ(z)| ,

where k is the weight of φ. For compact quotients of H(2) it has been shown in [33] that,

‖φ‖∞ � k
1
2
− 1

33 .
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4.1 background

Note that the spectral parameter in this case is roughly k2 and the bound above indeed

improves upon the local bound k
1
2 . In the non-compact situation one can use the Fourier-

Whittaker expansion at infinity to show

k
1
4
−ε � ‖φ‖∞ � k

1
4
+ε.

This has been calculated in [87]. It remains an interesting open question if this bound

remains sharp if one restricts the modular form to some fixed compact subset. In the

level aspect the bounds derived in [40] carry over to the case of holomorphic modular

forms. This is due to the fact that bounds in the level aspect rely purely on information

at finite places. For details see [88]. Furthermore, non-integral weight modular forms

have been considered in the papers [55, 78, 79].

Most of the results mentioned so far work for forms that in one sense or another

correspond to a new vector in the corresponding representation. However, automorphic

representations contain many interesting vectors, whose mass distribution can be stud-

ied. The paper [48] goes in this direction. Here the authors study other minimal vectors

for which they can produce sharp sup-norm bounds using only the Whittaker expan-

sion. Classically these forms live on quotients of the upper half plane by a special class of

arithmetic lattices which are different from the classical principal congruence subgroups

mentioned above.

Higher rank results

In higher rank spaces the game is to find sequences of joint eigenfunctions along which

one can improve the local bound (4.1.3). This is usually achieved by looking at eigen-

functions of Hecke operators and applying an appropriate amplification argument. The

first instance of a proper higher rank sup-norm bound which features a power saving

in comparison to the local bound was established in [19]. After this breakthrough many

more higher rank situation have been studied. For example self dual Maaß forms on

GL(n) have been treated in the sequence of papers [14, 15, 43]. The most general results

at the moment are [59, 68], which can deal with Maaß forms on a wide variety of reduc-

tive groups. All the results mentioned so far only deal with the size of eigenfunctions

in the bulk of the space. Only very recently Blomer, Harcos, and Maga established the

first global sup-norm result in higher rank, see [9, 10]. These feature explicit exponents

which however are worse than expected. Due to the delicate analysis of high rank Whit-
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4.2 setting up the scene

taker expansions. An very strong saving in the exponent for Hecke-eigenfunctions on

S3 was established in [80].

In the depth aspect the only result to date is the work [47]. However, the author does

not consider newforms, but instead looks at certain minimal forms.

4.2 setting up the scene

In this section we are interested in bounding the sup-norm of cuspidal automorphic

forms of G = GL2 over F . More precisely we will study functions

φ ∈ L2
0(G(F ) \G(AF ),ω) ⊂ L2(G(F ) \G(AF ),ω)

which are rightK1(n)-invariant for minimal n and satisfying some reasonable archimedean

restrictions. Indeed, we allow for a mix between Maaß forms and Hilbert modular

forms. The associated automorphic representation will be denoted by πφ As explained

in [22, p. 4.6] each cuspidal automorphic representation with central character ω can be

(uniquely) realised as a closed invariant subspace of L2
0(G(F ) \G(AF ),ω). In this way

the problem of estimating the sup-norm of φ is closely linked to properties of πφ. How-

ever, the sup-norm itself is only defined for smooth elements in L2
0(G(F ) \G(AF ),ω)

and it does not make sense in different realisations of πφ. Therefore we will make the

following convention.

Convention 4.2.1 ([2], Convention 1). Let (π,Vπ) be a cuspidal automorphic representation

with central character ωπ with an intertwiner σ : Vπ ↪→ L2
0(G(F ) \ G(AF ),ωπ). Then the

sup-norm of a K-finite vector v ∈ Vπ is defined to be

‖v‖∞ =
‖σ(v)‖∞
‖σ(v)‖2

.

Let us make some remarks concerning this convention.

• Note that this is indeed well defined. First, we observe that by multiplicity one for

GL2 the intertwiner σ is unique up to scaling. However, the scaling does not matter

since we L2-normalise the image. Secondly, K-finiteness ensures that the L∞-norm

of σ(v) is defined.

• This convention may seem unnecessary at first. But it gives us the flexibility to

realise π in arbitrary models without changing the fixed cusp form whose sup-

norm we want to bound.
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4.2 setting up the scene

• The restriction to K-finite vectors shows that we should actually work with the

G(AF )-module underlying π.

Let us describe the structure of the cuspidal automorphic representation π, keeping

in mind that we are mainly interested in (almost) spherical Maaß newforms mixed

with Hilbert modular forms. We write Vπ for the representation space of π. First, note

that since (π,Vπ) is an cuspidal automorphic representation it is in particular unitary

and admissible. For convenience we assume that the central character ωπ of π satisfies

ωπ|R+ = 1. This can be achieved by an unramified twist.

In order to describe the automorphic forms we will consider, we specify the underly-

ing representation. To do so we write

π =
⊗
ν

πν ⊗
⊗
p

πp,

where (πp,Vπ,p) (respectively (πν ,Vπ,ν) ) are irreducible representation of G(Fp) (reps

G(Fν)) with central character ωπ,p (respectively ωπ,ν). Note that this decomposition pre-

serves the subspaces of K-finite vectors.

To describe the structure at infinity we decompose the set of archimedean places in

S∞ = Shol t Ssph with the only restriction that Shol ⊂ SR. For ν ∈ Ssph we assume that

πν = χ1 � χ2 with

χj(y) = |y|itν,jν sgn(y)mν,j if ν is real,

χj(re
iθ) = ri2tν,jeimν,jθ else.

Recall the invariants

tν = tν,1 − tν,2, mν = mν,1 −mν,2 and sν = tν,1 + tν,2.

Furthermore, v ∈ Vπ,ν is an eigenvector of the Casimir operator with eigenvalue

λν =


1+t2ν
4 if ν is real,

1+ t2ν else.

This justifies calling tν the spectral parameter of π. At places ν ∈ Shol we assume that

πν = σ(χ1,χ2). In this case we have the invariants

kν = tν,1 − tν,2 + 1 ∈N and sν = tν,1 + tν,2.
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4.2 setting up the scene

Here kν is the weight of πν and we will usually assume that kν ≥ 2. For ν ∈ SR ∩ Ssph
we set kν = mν mod 2. In this case kν ∈ {0, 1} will be the weight of the archimedean

new vector.

Note that all together we must have ωπ,∞|R+ = |·|
∑
ν [Fν : R]sν . Thus, the assumption

ωπ|R+ = 1 implies
∑

ν [Fν : R]sν = 0.

Next we will single out a special element in Vπ. Again we do so place by place. If

ν ∈ SC, we assume πν to be spherical, in particular mν = 0. In other words, (πν ,Vπ,ν)

contains a Kν-invariant vector v◦ν which is unique up to scaling. If ν ∈ SR, then v◦ν ∈ Vπ,ν

will be the unique lowest weight vector. More precisely, this vector is distinguished by

assuming that πν(k(θ))v◦ν = eikνθv◦ν for all θ ∈ [0, 2π). Note that ν ∈ Ssph ∩ SR then

kν is either 0 or 1 and we are still dealing with principal series representations. At the

non-archimedean places we define np = a(πp) and let v◦p ∈ Vπ,p be the up to scaling

unique K1,p(np)-invariant vector. Globally we define the arithmetic conductor of π to be

the ideal n =
∏

p p
np . Thus Vπ contains a unique (up to scaling) vector which is K1(n)fin-

invariant and has the prescribed transformation behaviour at infinity. The vector

v◦ =
⊗
ν

v◦ν ⊗
⊗
p

v◦p

does the job and we will call it the (global) new vector. Under the action of the center

Z(AF ) the new vector v◦ transforms with resect to the central character ωπ, which has

conductor m =
∏

p p
mp .

With this restrictions on π in place we observe that

φ◦ = σ(v◦) (4.2.1)

is a newform over F with central character ωπ. At the places ν ∈ Ssph it has Casimir

eigenvalue (λν)ν∈Ssph and it has weight (kν)ν∈Shol . Furthermore, by our convention

‖v◦‖∞ =
‖φ◦‖∞
‖φ◦‖2

.

This is exactly the setting in which we will study sup-norm problem. It is the natural

generalisation of classical Maaß wave forms and holomorphic modular forms on the

upper half plane H(2).

By imposing that φ◦ is spherical at all complex places we exclude the interesting case

of vector valued modular forms. We make this assumption for technical convenience.

Indeed, it allows us to ignore issues arising in the amplification process caused by the
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4.3 lower bounds for newforms near the cusp

non-spherical spectral transform. On a smaller note this assumption makes the spherical

test vector more natural and the archimedean Whittaker functions easier to handle. With

some additional work it should be possible to allow fixed non-trivial Kν-types or mv > 0

at complex places. However, it seems very difficult to prove bounds which are good in

the mv-aspect. These issues, which are certainly very interesting, lie outside the scope of

this thesis.

4.3 lower bounds for newforms near the cusp

We start by investigating some obstructions to small sup-norms. In our setting there are

essentially two such obstructions. One produces large values attained in the bulk of the

space. These have been studied already in [52] and in many articles after. Instead we

focus on the other one which can be thought of as a resonance phenomenon happening

high in the cusp. In particular we follow the approach from [69, 82] to give qualitative

lower bounds, which we expect to be sharp. This section can be seen as a supplement to

[69] relying on the new local results produced in Part ii.

We start by reproducing [69, Theorem 3.3] in our setting. To this end let us recall that

h(πp) =
supg∈G(Fp)

∣∣Wπp(g)
∣∣

‖Wπp‖2
,

where Wπp is the new vector in the Whittaker model of πp. We collect the ramified pieces

together and set

h(πn) =
∏
p|n

h(πp).

Proposition 4.3.1. Let φ◦ be a newform of level n and arbitrary central character. Then

‖φ◦‖∞
‖φ◦‖2

�F ,ε |k|
1
4
−ε

hol |T |
1
6
−ε

sph N (n)−εh(πn).

Proof. Without loss of generality we assume that φ◦ is L2-normalised. Observe that

sup
g∈G(AF )

|Wφ◦(g)| = sup
g∈G(AF )

∣∣∣∣∣
∫
F\AF

φ◦(n(x)g)ψ(−x)dx

∣∣∣∣∣
≤ Vol(F \AF ,µAF

) sup
g∈G(AF )

|φ◦(g)| .

Thus, we reduced the statement to the study of the Whittaker function. Recall the defi-

nition

‖Wφ◦‖reg = L∗(π,Ad, 1)
∏
ν

ζFν (2)‖Wφ◦,ν‖22
ζFν (1)

·
∏
p

ζFp(2)‖Wφ◦,p‖22
ζFp(1)L(πp,Ad, 1)

,
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4.3 lower bounds for newforms near the cusp

from [61, (2.2) and (2.3)], where L∗(π,Ad, 1) is the regularised value of the (finite part of

the) adjoint square L-function. According to [61, (2.4) and Lemma 2.2.3] we have

‖φ◦‖22 = CF ‖Wφ◦‖2reg and L∗(π,Ad, 1)�F ,ε (N (n) |T |sph |k|hol)
ε,

for some positive constant CF depending only on F . Furthermore note that for p - n we

have
ζFp(2)‖Wφ◦,p‖22

ζFp(1)L(πp,Ad, 1)
= |Wφ◦,p(1)|

2 .

Thus, by restricting the range of the supremum, we find

sup
g∈G(AF )

|Wφ◦(g)| �F ,ε (N (n) |T |sph |k|hol)
−ε
∏
ν

supg∈G(Fν ) |Wφ◦,ν |
‖Wφ◦,ν‖2

·
∏
p|n

h(πp)
ζFp(1)

1
2L(πp,Ad, 1)

1
2

ζFp(2)
1
2

.

Recalling lower bounds for
supg∈G(Fν )|Wφ◦,ν|

‖Wφ◦,ν‖2
via the transition region of archimedean

Whittaker functions. Note that |Wφ◦,ν | is independent of sν , so that the lower bound

does not dependent on these parameters. Finally, observing that

ζFp(1)
1
2L(πp,Ad, 1)

1
2

ζFp(2)
1
2

� 1

yields the desired statement.

Even though the case of high ramification was already treated in the works [69, 82] let

us give the following corollary.

Corollary 4.3.2. Suppose that n | m2, then we have

‖φ◦‖∞ �F ,ε |k|
1
4
−ε

hol |T |
1
6
−ε

sph N
(
m2

n

) 1
4

N (n)−ε‖φ◦‖2.

If n is a perfect square, then there exist forms φ◦ such that

‖φ◦‖∞ �F ,ε |k|
1
4
−ε

hol |T |
1
6
−ε

sph N
(
m4

n

) 1
12

N (n)−ε‖φ◦‖2.

Proof. The result will follow from Proposition 4.3.1 after evaluating h(πn) locally. We

start with the first lower bound, which holds in general and does not depend on the

existence of degenerate critical points. Note that

h(πp))� 1
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4.3 lower bounds for newforms near the cusp

for all possibilities of πp. This trivial lower bound is sufficient for all places where

mp = np

2 . At the remaining places we find that πp = χ1,p � χ2,p for two characters

satisfying a(χ1,p) > a(χ2,p). For these representations it follows from Lemma 3.3.5 and

Lemma 3.4.12 that

h(πp))� q
2mp−np
p .

The bound stated above follows by combining these local lower bounds.

The second bound relies on the existence of degenerate critical points and does not

hold for every newform. In particular n being a square is a necessary condition for this

bound to hold. We have to construct local components πp, which feature degenerate

critical points and where h(πp) is large enough. To do so we let πp = χ1,p � χ2,p, where

the characters are chosen as follows. If p | n and 2mp = np, any characters satisfying

a(χ1,p) = a(χ2,p) will do the job. At the remaining places p | n we assume that a(χ1,p) =

mp and a(χ1,p) = np −mp. Furthermore, these characters must satisfy

bχ1,p · bχ1,p ∈ ((OF/p)×)2,

where bχ1,p and bχ2,p are associated to the characters using Lemma 3.1.3. In all these

cases our construction ensures the existence of degenerate critical points, see the second

table on p.138. Thus the bound (3.4.31) is sharp and we obtain

h(πp)� E(πp, t0(πp)) = q
4mp−np

12
p .

The size of E(πp, t0(πp)) can be read off from the first table on page 138.

These observations are insensitive to unitary, unramified twists of the characters χ1,p

and χ2,p. Thus we find a global cuspidal automorphic representation π with suitable lo-

cal components by using [65, Theorem 3.2.1]. By construction the newform φ◦ associated

to π will have the desired properties.

In the opposite situation, when the central character is not highly ramified, we obtain

the following interesting result.

Corollary 4.3.3. Let n be a perfect square such that −1 ∈ (OF/n)2×. Further, let ωπ be a

character of conductor m such that m | n
1
2 then there are newforms φ◦ of level n and central

character ωπ such that

‖φ◦‖∞ �F ,ε |k|
1
4
−ε

hol |T |
1
6
−ε

sph N (n)
1
12
−ε‖φ◦‖2.
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4.3 lower bounds for newforms near the cusp

This is maybe surprising since it provides counter examples to [69, Conjecture 3].

Proof. We start by constructing local representations having the desired behaviour. To

do so fix p | n and choose characters χ1,p,χ2,p : F×p → S1 such that

a(χ1,p) = a(χ1,p) and χ1,pχ1,p = ωπ,p.

This is possible because a(ωπ,p) = mp ≤ np

2 . Furthermore, if mp =
np

2 , we make sure that

a(χ1,pχ
−1
2,p) <

np

2 . We set πp = χ1,p � χ2,p and σp = χ1,pχ
−1
2,p � 1.

By Lemma 3.3.9 we find that∣∣∣Wπp(g−n,n2 ,v)
∣∣∣ = ζFp(1)

−2q
n
2
p

∣∣∣K(χ1,p ⊗ χ2,p, ($
−n

2
p ,$

−n
2

p ), v$
−n

2
p )

∣∣∣ .
By construction of πp and because −1 is a square in o×p the Fourier type integral for

K(χ1,p ⊗ χ2,p, ($
−n

2 ,$−
n
2 ), ·) exhibits a degenerate critical point v0 ∈ o×p . Therefore we

have

h(πp) ≥
∣∣∣Wπp(g−n,n2 ,v0)

∣∣∣�Fp q
np
12
p .

This is the context of Lemma 3.4.15. Note that these observations are not affected by

twisting χ1,p and χ2,p with unitary unramified characters.

Thus we can find a global Hecke-character χ2 satisfying χ2|R+ = 1, which has con-

ductor m and with local components equal χ2,p up to unramified twist. Furthermore we

use [65, Theorem 3.2.1] to construct a cuspidal automorphic form π of level n, central

character ωπχ−22 and local components equal to σp up to unitary unramified twists of

the characters. The result follows by applying Proposition 4.3.1 to χ2π.

Remark 4.3.4. Note that we only used large values caused by principal series representations

in the corollary above. However, also supercuspidal representations can lead to big peaks of the

Whittaker functions. However their behaviour is slightly more subtle to describe and we refer to

Section 3.4.4 for precise conditions which force the existence of critical points.

Finally, let us look at the following neat example which lies exactly at the border to

highly ramified behaviour. The interesting point of this example is that it contains an

easily constructible family which always exhibits degenerate behaviour.

Corollary 4.3.5. Let π be a cuspidal automorphic representation of level 1 and let χ be Hecke

character of conductor m. Then we have

‖χ⊗ φ◦‖∞ �F ,ε |k|
1
4
−ε

hol |T |
1
6
−ε

sph N (m)
1
6
−ε‖χ⊗ φ◦‖2.
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Proof. Note that the local components at primes dividing m of χπ are of the shape

|·|s1 χp � |·|s2 χp. Thus we conclude by using Lemma 3.4.10.

Remark 4.3.6. Note that the tools developed in Part ii are strong enough to produce precise lower

bounds for any cuspidal automorphic representation π as long as one knows its local constitutes.

However, in general the statements are combinatorial hard to formulate and therefore we do not

give a general statement here. We hope that the examples given above are shedding some light on

the general picture.

4.4 the generating domain

In this section we follow [70, Section 3.2] and [2, Section 2] to derive a generating domain

for

Z(AF )G(F ) \G(AF )/K1(n).

From this we deduce that the global sup-norm problem reduces to the study of (twists of)

φ◦ on very special elements of G(AF ). The central result of this section is Corollary 4.4.7

below. Note that the newform φ◦ as defined above might not transform trivially under

the action of K1(n) and Z(AF ). However, |φ◦| does.

4.4.1 Local preliminaries

Several steps necessary to deal with powerful level rely on local methods. In this section

we briefly recall the ingredients needed from [70] and Part ii. We start by collecting some

simple results capturing the behaviour of the invariants defined in (1.3.5).

Lemma 4.4.1 ([2], Lemma 2.1). Let g ∈ Kpa($
n1,p
p ). If np is odd, then

n1,p(g) = n0,p ⇐⇒ g ∈ ωK0
p (1)a($

n1,p
p ).

If np is even, then

n1,p(g) = n0,p.

Proof. The first part is a consequence of [70, Lemma 2.2,(2)]. The second part is trivial.
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Lemma 4.4.2 ([70], Lemma 2.3). Let np be odd. Further take k ∈ K0,p(1) and

εp ∈

1,

 0 1

$p 0


 .

Then

kεpωa($
n1,p
p ) = ωk′a($

n1,p
p )ε′pz

for k′ ∈ K0
p (1), z ∈ Z(Fp) and

ε′p =



1 if εp = 1, 0 1

$
np
p 0

 else.

Proof. The case εp = 1 is very simple. One writes

kεpωa($
n1,p
p ) = ω (ω−1kω)︸ ︷︷ ︸

=k′

a($
n1,p
p ).

It is a straight forward calculation to check k′ ∈ K0
p (1). In the remaining case we write

kεpωa($
n1,p
p ) = ω (ω−1kω)︸ ︷︷ ︸

=k′

a($
n1,p
p )ε′p

−$n0,p
p 0

0 −$n0,p
p

 .

As before we have k′ ∈ K0
p (1). To verify the equality one only needs the observation that

since np is odd we have n0,p = n1,p − 1.

4.4.2 Finding the generating set

Our goal is to recreate the argument from [70, Section 3.2] coupled with the results from

[20, Section 5]. As one expects this general setting brings the class group and the unit

group into the picture. We start with several definitions. For any ideal L in OF we define

ηL =
∏
p|L

 0 1

$
np
p 0

∏
p-L

1,

hL =
∏
p|L

a($
n1,p
p )

∏
p-L

1,

KL =
∏
p|L

Kp

∏
p-L

{1} ⊂ GL2(Afin),

JL = KLhL and

JL = {g ∈ JL : n1,p(gp) = n0,p∀p | L}.
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Let us make the following little observation.

Lemma 4.4.3 ([2], Lemma 2.3). For g ∈ JL one has

g ∈ JL ⇐⇒ gp ∈ ωK0
p (1)a($

n1,p
p ) for all p|L with np odd.

Proof. The proof proceeds by applying Lemma 4.4.1 for each p|L.

Corollary 4.4.4 ([2], Corollary 2.1). For gp ∈ Jp and v ∈ o×p we have a(v)g ∈ Jp.

Proof. Obviously a(v)gp ∈ Jp. One concludes by using Lemma 4.4.3 and

a(v)ω = ω

1 0

0 v

 .

In terms of the local invariants we write

n0 =
∏
p

pn0,p , n1 =
∏
p

pn1,p , n2 =
∏
p

pn1,p−n0,p .

Note that n2 is square-free and that we have n = n20n2.

Now we want to use the generating domain from [20] for the square-free ideal n2.

Recall the group

K∗ = Z(F∞)K∞
∏
p-n2

Z(Fp)Kp

∏
p|n2

〈K0,p(1),

 0 1

$p 0

〉
defined in [20, Section 2]. Let F(n2) be the generating domain for G(F ) \G(AF )/K∗

defined in [20, p. 14]. An element in F(n2) is of the formy x

0 1


︸ ︷︷ ︸
∈B(F∞)

θi 0

0 1


︸ ︷︷ ︸

=a(θi)

,

where |y|∞ is maximal and θi ∈ ÔF , 1 ≤ i ≤ hF , is some representative in the class

group. Furthermore, we can assume that y is balanced and that xν � 1 for all ν. This

follows as in [20, (5.9)]. We will call such matrices special. Define

Fn2 =


y x

0 1

 : ∃i ∈ {1, · · · ,h} such that

y x

0 1

 a(θi) ∈ F(n2)

 .

We can write down a generating domain in the spirit of [70, Proposition 3.6].
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Proposition 4.4.5 ([2], Proposition 2.1). For g ∈ G(AF ) we find L|n2 and 1 ≤ i ≤ hF such

that

g ∈ Z(A)G(F ) (a(θi)Jn ×Fn2) ηLK1(n).

The proof follows the steps in [70] exploiting that the fundamental domain F(n2)

from [20] is already given adélically.

Proof. Let ωn be the diagonal embedding of ω in Kn. Then the determinant map

ωnhnK1(n)finh
−1
n ω−1n →

∏
p

o×p

is surjective. Thus we can apply strong approximation to the element gh−1n ω−1n and find

g∞ti ∈ G(AF ) such that

g ∈ G(F )g∞tiωnhnK1(n).

Using the properties of F(n2) we write g∞ti = γfzk∗ with γ ∈ G(F ), zk∗ ∈ K∗ and

f ∈ F(n2). By construction of K∗ we can assume

k∗p =


k∗p ∈ Kp if p - n2,

k′pεp ∈ K0,pεp if p | n2,

k∗v ∈ Kv.

for εp ∈

1,

 0 1

$p 0


. Define

L =
∏

p s.t. εp 6=1

p

and write

g ∈ Z(A)G(F )f
∏
p-n

k∗p︸ ︷︷ ︸
∈K1(n)

∏
p|n,p-n2

k∗pωa($
n1,p
p )

∏
p|n2,p-L

k′pωa($
n1,p
p )

∏
p|L

k′pεpωa($
n1,p
p )K1(n).

Let us treat each product appearing above separately. First, we include the product over

p - n into K1(n). Next, we notice that if p | n but p - n2 then np must be even. Since

k∗pω ∈ Kp we apply Lemma 4.4.1 to absorb the second product into Jn. In the two

remaining cases, namely p | n2, np must be odd. First, for p - L we apply Lemma 4.4.2 to

obtain

k′pωa($
n1,p
p ) = ω k̂p︸︷︷︸

∈Ko
p (1)

a($
n1,p
p ).
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It follows from Lemma 4.4.3 that also the third product is contained in Jn. Finally, we

use Lemma 4.4.2 and Lemma 4.4.3 again to get

k′pεpωa($
n1,p
p ) = ω

K0
p (1)︷︸︸︷
k̂p a($

n1,p
p )︸ ︷︷ ︸

∈Jn

ε′p(̂z).

Thus

g ∈ Z(A)G(F )fJn
∏
p|L

ε′p︸ ︷︷ ︸
=ηL

K1(n).

One concludes the proof by writing f = pa(θi) for a special matrix p ∈ Fn2 and some

i ∈ {1 · · ·hF }.

4.4.3 The action of ηL

The next step is to understand how ηL acts on φ◦ Let us define the character ωL
π =

ωL
π,∞

∏
p ω

L
π,p by

ωL
π,p|o×p =


1 if p | L,

ωπ,p|o×p if p - L.

We also impose that ωL
π,∞|F∞,+ = 1. Strong approximation for A×F shows that there is

such a character which is F× invariant and unitary.

Let us make some observations. Locally one has

ω−1π,pω
L
π,p|o×p =


ω−1π,p|o×p if p | L,

1 if p - L.
(4.4.1)

Let (π,Vπ) be a cuspidal automorphic representation. We define the twisted represen-

tation (πL,Vπ) by

πL(g) = ω−1π ωL
π (det(g))π(g).

This representation is sometimes denoted by πL = (ω−1π ωL
π )π. The central character of

πL is ω−1π (ωL
π )

2 and looks locally like

ω−1π,p(ω
L
π,p)

2|o×p =


ω−1π,p|o×p if p | L,

ωπ,p|o×p if p - L.
(4.4.2)
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In particular, the log-conductor of the new central character coincides with the log-

conductor of ωπ, namely

m =
∏
p

pmp .

Further, we note that this twist does not change the spectral data at ∞. Concerning the

conductor of πL we have the following statement.

Lemma 4.4.6 ([70], Lemma 3.4). The log-conductor of πL is n and

v◦L = π(ηL)v
◦ (4.4.3)

is a new vector in πL.

Proof. Note that for p - L one simply has πLp = πp. However, at the places p | L the

representation πLp is equivalent to π̃p up to some unramified twist. Here π̃p denotes the

contragredient representation of πp. Since a(πp) = a(π̃p) it suffices to show that the

vector given in (4.4.3) has the correct transformation behaviour under K1(n).

We proceed place by place. For p - L and ν there is nothing to do. For p | L we

calculate a b

c d


︸ ︷︷ ︸

=kp∈K1,p(np)

 0 1

$
np
p 0

 =

 0 1

$
np
p 0


 d c$

−np
p

$
np
p b a


︸ ︷︷ ︸

=k′p∈K0,p(np)

.

It is easy to verify that k′pz(det(kp))−1 ∈ K1,p(np). Therefore, using (4.4.1) and (4.4.2), we

have

πLp (kp)v
◦
L,p = ω−1π,p(det(kp))πp(kp[ηL]p)v

◦
p

= ω−1π,p
(
det(kp)

)
πp
(
z(det(kp))

)︸ ︷︷ ︸
=ωp

(
det(kp)

) πp
(
[ηL]p

)[
πp
(
z(det(kp)

−1)k′p︸ ︷︷ ︸
∈K1,p(np)

)
v◦p

︸ ︷︷ ︸
=v◦p

]

= πp
(
[ηL]p

)
v◦p = v◦L,p.

Observe that (πL,Vπ) is also a cuspidal automorphic representation. Furthermore, an

intertwiner σL to L2
0(G(F ) \G(AF ),ω−1π (ωL

π )
2) is given by

[σL(v)](g) = ω−1π ωL
π (det(g))[σ(v)](g).
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This leads us to the definition of the twisted newform φL◦ = σL(v◦L). One immediately

observes that

φ◦(gηL) = ωπ(ω
L
π )
−1(det(g))φL◦ (g).

Giving us exactly the ingredient we needed to understand the action of ηL on φ◦. We

derive the following corollary.

Corollary 4.4.7 ([2], Corollary 2.2). If φ◦ is the newform associated to a cuspidal automorphic

representation (π,Vν) then

sup
g∈GL2(A)

|φ◦(g)| ≤ sup
L|n2

sup
1≤i≤hF

sup
g∈Jn×Fn2

∣∣∣φL◦ (a(θi)g)∣∣∣ . (4.4.4)

We have reduced the sup-norm problem for the newform φ◦ to bounding the new-

forms φL◦ on very special matrices. In the following we will fix an arbitrary L | n2, write

φ = φL◦ and bound φ on a(θi)(Jn ×Fn2).

4.5 counting results

In this section we provide the necessary counting results that will be crucial for later

estimates. The first part of this section is taken from [2, Section 3.2] and based on [20].

Here we recall counting results for lattice points in adelic boxes with subtle arithmetic

constraints. This will be essential for our treatment of the Whittaker expansion. The

second part is dedicated to counting integer matrices. The arguments are extracted [20].

However, we relax the constraints at real places. This is important for our amplification

argument as our test function will not necessarily have compact support.

4.5.1 Counting field elements in boxes

This subsection is concerned with estimating the number of field elements in different

adelic boxes. These can be archimedean boxes or p-adic boxes. The choice of parameters

in this sections may seem arbitrary. However, it is well motivated by applications later

on.
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We start by considering some archimedean boxes. The following argument is almost

completely taken from [20]. Take parameters Rν ≥ Tν
2π|yν | and an ideal ı. Further, fix a ∈ ı

such that

N (ı) ≤ N ((a)) ≤
(
2

π

)r1√
|dF |N (ı). (4.5.1)

This is possible by [63, Lemma 6.2]. In particular one has aı−1 ⊂ OF .

Define

Iν(lν) =



{ξν ∈ F×ν : lν |a|Rν < |ξν | ≤ (lν + 1) |a|Rν} if lν ≥ 1,

{ξν ∈ F×ν : |ξν | ≤ |a|Rν ,−lν ≤
∣∣∣|ξν | − |a|Tν

2π|yν |

∣∣∣ < −lν + 1} if lν ≤ 0

and ν ∈ Ssph,

{ξν ∈ F×ν : |ξν | ≤ |a|Rν ,−lν < |ξν | ≤ −lν + 1} if lν ≤ 0

and ν ∈ Shol.
(4.5.2)

For ` ∈ Zr1+r2 , let I(`) =
∏
ν Iν(lν).

Let us start by establishing a simple but crucial property of these sets.

Lemma 4.5.1 ([2], Lemma 3.6). If lν < −b|a|Rνc, then Iν(lν) = ∅.

Proof. We start with ν ∈ Ssph. Suppose lν < −b|a|Rνc. We consider two cases. First, let

|ξν | > |a|Tν
2π|yν | . The two inequalities in the definition of Iν(·) yield

|a|Tν
2π |yν |

+ b|a|Rνc < |ξν | ≤ |a|Rν .

But the set of such ξν is empty. Second, we assume |ξν | ≤ |a|Rν2π . This gives

|ξν | <
|a|Tν
2π |yν |

− b|a|Rνc < 0

which is also impossible. The case ν ∈ Shol is trivial.

Our next goal is to establish good estimates for ](I(`) ∩ aı−1). This will be achieved

by a standard volume argument. Choose a fundamental set P for the lattice aı−1 ⊂ F∞.

Without loss of generality we can assume 0 ∈ P . Let D be the diameter of P . It is an

elementary fact, see [63], that

Vol(P) ∼F N ((a))N (ı−1) �F 1.
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Further, we define

Jν(lν) =



{ξν ∈ Fν : lν |a|Rν −D < |ξν | ≤ (lν + 1) |a|Rν +D} if lν ≥ 1,

{ξν ∈ Fν : − lν −D ≤
∣∣∣|ξν | − |a|Tν

2π|yν |

∣∣∣ < −lν + 1+D} if lν 6= 0 and ν ∈ Ssph,

{ξν ∈ Fν : − lν −D < |ξν | ≤ −lν + 1+D} if lν 6= 0 and ν ∈ Shol.

and J(`) =
∏
ν Jν(lν).

Lemma 4.5.2 ([2], Lemma 3.7). The volume of Jν(lν) is given by

Vol(Jν(lν)) =



2 |a|Rν + 4D if ν is real and lν ≥ 1,

4(1+ 2D) if ν ∈ Ssph is real and lν ≤ 0,

2(1+ 2D) if ν ∈ Shol is real and lν ≤ 0,

π(2lν + 1) |a|Rν(|a|Rν + 2D) if ν is complex and lν ≥ 1,

2 |a|Tνyν
(1+ 2D) if ν is complex and lν ≤ 0.

Proof. The proof is an elementary volume calculation.

As consequence of Minkowski-theory we can choose P such that

D � N (aı−1)
1
n �F 1.

Therefore

Vol(J(`))�F

∏
ν

fν(lν), (4.5.3)

for

fν(lν) =



|aRν |+ 1 if ν is real and lν ≥ 1,

1 if ν is real and lν ≤ 0,

lν(
|a|Tν
yν

+ 1)2 if ν is complex and lν ≥ 1,

|a|Tν
yν

+ 1 if ν is complex and lν ≤ 0.

(4.5.4)

With this at hand we can establish the following counting result.

Lemma 4.5.3 ([2], Lemma 3.8). One has

](aı−1 ∩ I(`))�F

∏
ν

fν(lν).
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Proof. By construction of P we have

](aı−1 ∩ I(`)) =
Vol(

⋃
q∈aı−1∩I(l)(q+P))

Vol(P)
≤ Vol(J(`))

Vol(P)
.

One concludes using (4.5.3).

Furthermore, we will need to count field elements with strong non-archimedean re-

strictions. We will be able to reduce this problem to the following lemma.

Lemma 4.5.4 ([20], Lemma 7 and Corollary 1). Let a ∈A×F be any idele, y ∈ F×∞ and m ⊂ F

be a non-zero fractional ideal. Then

1. ]{x ∈ F× : |x|ν ≤ |aν |ν and |x|p ≤ |ap|p} � |a|A,

2. ]{x ∈ F× : |x|ν ≤ |aν |ν and |x|p = |ap|p} �ε |a|εA,

3. ]{x ∈ F× : |x|ν ≤ |yν |ν and xOF ⊂ m} � |y|∞
N (m)

,

4. ]{x ∈ F× : |x|ν ≤ |yν |ν and xOF = m} �ε

(
|y|∞
N (m)

)ε
.

Define the sets

B(R) = {x ∈ F∞ : |xν | ≤ Rν},

Zn =
∏
p|n

{kp ∈ Z : kp ≥ −vp(ı)},

Aı
fin = {a ∈Afin : vp(ap) ≥ −vp(ı)},

Cı(k) = {a ∈Aı
fin : vp(ap) = kp ∀p|n} and

Cı(k, [u]) = {a ∈ Cı(k) : ap = $
kp
p a
′
p with [a′p] = [up] ∈ o×p /(1+$

n0,p(gp)
p op) ∀p|n}.

It will be useful to know the volumes of these sets.

Lemma 4.5.5 ([2], Lemma 3.9). We have

Vol(Aı
fin, dµfin) = N (ı),

Vol(Cı(k), dµfin) =
N (ı)

N ([ı]n)
ζn(1)

∏
p|n

q
−kp
p

Vol(Cı(k, [u])dµfin) = Vol(Cı(k, [u′])dµ),

Vol(Cı(k, [u]), dµfin) =
N (ı)

N ([ı]n)

∏
p|n

q
−kp−n0,p(gp)
p . (4.5.5)

Proof. This is a standard adelic volume computation done place by place.

Finally, we are ready to prove the following counting result.
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Lemma 4.5.6 ([2], Lemma 3.10). We have

]
(
(aı−1 \ {0}) ∩B(R)Cı(k, [u])

)
� FR(k) = 1+

|R|∞N (ı)

N (n0(g))N ([ı]n)

∏
p|n

q
−kp
p

uniform in [u]. Furthermore, (
F× ∩B(R)Cı(k)

)
\ {0} = ∅

for
∏

p|n q
kp
p > |R|∞N (ı−1[ı]n).

Proof. Let S be the set we want to count. If S is empty, we have nothing to show. Thus

take q0 ∈ S. Define the shifted set S′ = 1
q0
S − 1. Any x ∈ S′ satisfies

|x|ν ≤ 2

∣∣∣∣Rq0
∣∣∣∣
ν

for all ν,

|x|p ≤

∣∣∣∣∣$
−vp(ı)
p

q0

∣∣∣∣∣
p

for all p - n and

|x|p ≤
∣∣∣$n0,p(gp)

p

∣∣∣
p

for all p | n.

Define the idéle s by sν = 21/[Fν :R] R
q0

and

sp =


$
−vp(ı)
p

q0
if p 6 |n,

$
n0,p(gp)
p else.

After noting that 0 ∈ S′ we conclude that

]S ≤ 1+ ]{x ∈ F× : |x|ν ≤ |s|ν and |x|p ≤ |s|p}.

To estimate the last set we use Lemma 4.5.4. We obtain

]S ≤ 1+ |s|AF
.

The adelic norm of s is computed using∏
ν

|q0|−1ν
∏
p-n

|q0|−1p =
∏
p|n

|q0|p =
∏
p|n

q
−kp
p .

To prove the second claim we suppose
∏

p|n q
kp
p > |R|∞N (ı−1[ı]n) and define the ideal

m =
∏

p|n p
kp . In order to have q ∈ Cı(k) one needs N ((q)) ≥ N (m)ı[ı]−1n . But for

q ∈ B(R) we require |q|∞ ≤ |R|∞. We conclude by

1 = |q|A = |q|∞ |q|fin =
|q|∞
N ((q))

≤
|R|∞N ([ı]n)

N (mı)
< 1.
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Roughly the same reasoning applies to elements of ı−1 ∩B(R).

Corollary 4.5.7 ([2], Corollary 3.2). If |R|∞ < N (ı)−1, then

ı−1 ∩B(R) = {0}.

4.5.2 Counting integer matrices

Throughout this section we fix two ideals n and q. Let

P(L) ⊂ {α ∈ OF : N (α) ∈ [L, 2L]}

for a large parameter L. Later this set will be the basic support of the amplifier and we

will impose further restrictions on its elements. Define

Γj(i, l) =

{a b

c d

 ∈ GL2(F ) : a, d, θ−1i b ∈ θj , a− d ∈ θjq, c ∈ θ−1i θjnq,

and ad− bc = l

}
.

for l ∈ OF . Recall the definition of the generalised upper half space H, (1.3.10), as well

as the local point pair invariants uν , (1.3.11). Throughout this section we fix a special

matrix n(x)a(y) ∈ Fn2 and define the point P = (Pν)ν ∈ H by setting Pν = yνiν + xν .

Let δ = (δν)ν ∈ Rr1+r2
+ such that δν � 1 for ν ∈ Ssph. We consider the subsets of

matrices

Γj(i, l, δ) = Γj(i, l, δ)0 t Γparj (i, l, δ) t Γgenj (i, l, δ).

Here, we define

Γj(i, l, δ)0 =

γ =

a b

0 d

 ∈ Γj(i, l) : uν(γ.Pν .Pν) ≤ δν for all ν

 ,

Γj(i, l, δ)par =
{
γ ∈ Γj(i, l) : tr(γ)2 = 4 det(γ) and uν(γ.Pν .Pν) ≤ δν for all ν

}
and

Γj(i, l, δ)gen =
{
γ ∈ Γj(i, l) \ (Γj(i, l, δ)0 t Γj(i, l, δ)par) : uν(γ.Pν .Pν) ≤ δν for all ν

}
.

The goal of this section is to bound the number of elements in these sets. For notational

simplicity we write δ̂ = (max(1, δν))ν . Note that δ̂ν � 1 for all ν ∈ Ssph. In the upcoming

estimates we have made no effort to optimise the dependence on δ̂.

We will closely follow [20, Section 10], starting by deriving preliminary estimates

coming from the archimedean restriction.
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Lemma 4.5.8. Suppose γν =

aν bν

cν dν

 ∈ GL2(Fν) such that u(γνPν ,Pν) ≤ δν and aνdν −

bνcν = lν .

Then we have

‖cνPν + dν‖ = |lν |
1
2 (1+O(

√
δν)), (4.5.6)

‖cνPν − aν‖ = |lν |
1
2 (1+O(

√
δν)), (4.5.7)

|cνyν | ≤ |2lν |
1
2 (1+

√
δν), (4.5.8)

|2cνxν − aν + dν | ≤ 2 |2lν |
1
2 (1+

√
δν), (4.5.9)

|aν + dν | ≤ 2 |2lν |
1
2 (1+

√
δν), (4.5.10)∣∣∣∣cν lν|lν |y2ν − cνx2ν + (aν − dν)xν + bν

∣∣∣∣ ≤ yν |2lν | 12 √δν , (4.5.11)∣∣−cνx2ν + (aν − dν)xν + bν
∣∣ ≤ yν |2lν | 12 (2+ 3

√
δν), (4.5.12)∣∣∣∣<(2cνxν − aν + dν√

lν

)∣∣∣∣ ≤√2δν and (4.5.13)∣∣∣∣=(aν + dν√
lν

)∣∣∣∣ ≤√2δν . (4.5.14)

This lemma is a summary of the inequalities [20, (10.2)-(10.10)]. The proof is taken

from [20] and [11]. Note that we slightly modified the argument to allow for general δν

and lν . Similar inequalities already appeared in [52].

Proof. The starting point is the inequality

δν ≥ u(γνPν ,Pν) ≥
|=(γνPν)−=(Pν)|2

2=(γνPν)=(Pν)
=

1

2

∣∣∣∣∣ |lν |
1
2

‖cνPν + dν‖
− ‖cνPν + dν‖

|lν |
1
2

∣∣∣∣∣
2

for real as well as complex places ν. This implies (4.5.6). To show the second inequality

we observe that u(γνPν ,Pν) = u(γ−1ν Pν ,Pν) and apply the inequality above with γ−1ν .

This yields (4.5.7). Inequalities (4.5.8)-(4.5.10) follow directly from (4.5.6) and (4.5.7) by

observing

|cνyν | = |=(cνPν + dν)| ≤ ‖cνPν + dν‖,

|aν + dν | = |<(cνPν + dν) +<(cνPν − aν)| ≤ ‖cνPν + dν‖+ ‖cνPν − aν‖, and

|2cνxν − aν + dν | = |<(cνPν + dν)−<(cνPν − aν)| ≤ ‖cνPν + dν‖+ ‖cνPν − aν‖.

To prove the remaining inequalities we consider real and complex places separately.

If ν is real, we observe that

δν ≥ u(γνPν ,Pν) =
‖aνPν + bν − cνP 2

ν − dνPν‖2

2 |lν | =(Pν)2
.
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Equations (4.5.11) and (4.5.13) follow by taking real part and imaginary part in the

inequality above. Finally, (4.5.12) follows from (4.5.8) together with (4.5.11). Furthermore,

in the real case (4.5.14) is trivial.

If ν is complex, we observe that

δν ≥
‖aνPν + bν − PνcνPν − Pνdν‖2

2lν=(Pν)2
.

The numerator on the right hand side is a quaternion and considering its complex part

yields (4.5.11). Similarly looking at its j- and k-part yields (4.5.13) and (4.5.14). As before

(4.5.12) follows from (4.5.8) and (4.5.11).

Lemma 4.5.9 ([20], Lemma 12). We have

]Γ0
j (i, l, δ)�ε (

∣∣δ̂∣∣∞ |l|∞)ε(1+ |l| 12∞ |y|∞ |δ| 12∞).
Proof. Since ad = l, the ideal version of the divisor bound gives up to N (l)ε possibilities

for the ideals (a) and (d). However, fixing a choice of ideals we observe that (4.5.6),

(4.5.7) and Lemma 4.5.4 give

]{(a, d)} � (
∣∣δ̂∣∣∞ |l|∞)ε

choices for a, d. We conclude the proof by counting the number possible b, once a, d are

fixed, using (4.5.11) and Lemma 4.5.4.

Lemma 4.5.10 ([20], Lemma 13). If P is in the fundamental domain F(n2) and |δ|∞ �

N (l)−1 |y|−2∞ , then Γparj (i, l, δ) = ∅.

Since the proof carries over without modifications, we will not reproduce it here.

Lemma 4.5.11 ([20], Lemma 14). We have

]Γparj (i, l, δ)�ε

N (l)1+ε |δ|
3
4
R |δ|

1
4
C

∣∣δ̂∣∣ 18+ε
R

N (n2)1+ε
.

Proof. Observe that (a+ d)2 = 4(ad− bc) implies that l = ad− bc = λ2 is a square. At

real places (4.5.13) implies that

cνxν + dν = (cνxν −
aν
2

+
dν
2
) + (

aν
2

+
dν
2
) = λν(1+O(

√
δν)).

In combination with (4.5.6) this gives

(cνyν)
2 = |cνPν + dν |2 − (cνxν + dν)

2 � λ2ν
√
δν .
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At complex places (4.5.8) yields

cνyν � |lν |
1
2 .

Because (a − d)2 + 4bc = 0, there is a | (a − d) such that N (a) ≥ N ((c))
1
2 . Thus,

according to (4.5.9), (4.5.13) and Lemma 4.5.4 we have

]{a− d} � 1+
N (l)

1
2 |δ|

1
2
R

N ((c))
1
2

,

for fixed c. Summing over all admissible choices for c yields

]{(c, a− d)} �
N (l)

1
2 |δ|

1
4
R

|y|∞N (n2)
+N (l)

1
2 |δ|

1
2
R

∑
06=c∈θ−1

i n2,

cν�l
1
2
ν δ

1
4
ν y
−1
ν real ,

cν�l
1
2
ν y
−1
ν complex

N ((c))−
1
2

�ε
N (l)

1
2 |δ|

1
4
R

|y|∞N (n2)
+
N (l)

3
4
+ε |δ|

5
8
+ε

R

|y|
1
2
+ε
∞ N (n2)1+ε

�
N (l)1+ε |δ|

3
4
+ε

R |δ|
1
4
C

∣∣δ̂∣∣ 18+ε
R

N (n2)1+ε
.

In the last step we used Lemma 4.5.10.

We conclude by observing that γ is determined by its trace 2λ = a+ d, the numbers c,

a− d, and the condition (a− d)2 + 4bc = 0.

Remark 4.5.12. In the notation of [20] we have

M0(L, j, δ) =
∑

α,β∈P(L)

]Γ0
1(i,α

jβj , δ)�
∣∣δ̂∣∣ε∞ L2+ε(1+ Lj |y|∞ |δ|

1
2∞) (4.5.15)

as well as

M2(L, j, δ) =
∑

α,β∈P(L)

]Γpar1 (i,αjβj , δ)�
L3j+ε |δ|

3
4
R |δ|

1
4
C

∣∣δ̂∣∣ 18+ε
R

N (n2)
. (4.5.16)

This shows that by summing up the individual bounds given here we recover the exact statements

from [20, Lemma 12, Lemma 14]. However, in order to bound the number of generic matrices

one uses a ingenious lattice point counting trick which is more effective when bundling matrices

with comparable determinant together.

We define

Mgen
j,i (L, δ) =

∑
L<N (α)≤2L

]Γgenj (i,α, δ) and

Mgen,�
j,i (L, δ) =

∑
L<N (α)≤2L,
α square

]Γgenj (i,α, δ).
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In the notation of [20] this corresponds to

M3(L, 1, δ) ≤Mgen
1,i (L2, δ) +Mgen

1,i (2L2, δ) and

M3(L, 2, δ) ≤Mgen,�
1,i (L4, δ) +Mgen,�

1,i (2L4, δ) +Mgen,�
1,i (4L4, δ) +Mgen,�

1,i (8L4, δ).

We have the following adaption of [20, Lemma 15] to our setting.

Lemma 4.5.13. We have

Mgen
j,i (L, δ)�

∣∣δ̂∣∣∞
L+

L
5
4 |δ|

1
4
R

N (n2)
1
4

+
L2 |δ|R |δ|

3
4
C

N (n2)

 and

Mgen,�
j,i (L, δ)�

∣∣δ̂∣∣ 12+ε∞ Lε

L 1
2 +

L |δ|
1
2
R

N (n2)
1
2

+
L

3
2 |δ|R |δ|

1
2
C

N (n2)

 .

In particular, we obtain the bounds

M3(L, 1, δ) �
∣∣δ̂∣∣∞

L2 +
L

5
2 |δ|

1
4
R

N (n2)
1
4

+
L4 |δ|R |δ|

3
4
C

N (n2)

 and

M3(L, 2, δ) �
∣∣δ̂∣∣ 12+ε∞ Lε

L2 +
L4 |δ|

1
2
R

N (n2)
1
2

+
L6 |δ|R |δ|

1
2
C

N (n2)

 .

Proof. The number of possible values for c that can contribute to Mgen
j,i (L, δ) is bounded

by

]{c} �
L

1
2

∣∣δ̂∣∣ 12∞
|y|∞N (n2)

.

Let Mgen
j,i (L, δ, c) denote the sub-count of Mgen

j,i (L, δ) which counts only matrices with

given c as lower left entry. We further split

Mgen
j,i (L, δ, c) =

∑
n

M∗(n).

Here ∗ is an abbreviation for the fixed quintuple (j, i,L, δ, c) and n = (nν)ν∈SC
such

that 0 ≤ nν ≤ 2π√
δν

and M∗(n) is counting only those matrices γ satisfying

nν
√
δν ≤ arg(det(γν)) < (nν + 1)

√
δν ,

for all complex places ν. Without loss of generality we can assume that M∗(n) 6= 0

and fix an element γn =

an bn

c dn

 contributing to this count. Every other matrix γ =

a b

c d

, which is counted this way, is uniquely determined by the differences

a′ = a− an, b′ = b− bn and d′ = d− dn.
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By construction the determinants l = det(γ) and ln = det(γn) satisfy

lν
|lν |
− ln,ν
|ln,ν |

�


√
δν if ν ∈ SC,

0 if ν ∈ SR

and
√
lν√
ln,ν

=

∣∣∣∣ lνln,ν
∣∣∣∣ 12 +O(

√
δν)

at all places ν | ∞ for a suitably chosen branch of the square root. Vanishing at the real

places follows from the fact that the determinant is totally positive. Furthermore, since

l, ln and y are assumed to be balanced, we can apply (4.5.8) and (4.5.11) to find

(a′ν − d′ν)xν + b′ν � L
1
2n |y|

1
n∞
√
δν .

According to (4.5.13) and (4.5.14) we have

<

(
a′ν − d′ν√

ln,ν

)
,=

(
a′ν + d′ν√

ln,ν

)
�
√
δν .

On a smaller note (4.5.9) and (4.5.10) imply

=

(
a′ν − d′ν√

ln,ν

)
,<

(
a′ν + d′ν√

ln,ν

)
�
√
δ̂ν .

Next, we decompose

M∗(n) =
∑
p,q

M∗(n,p,q).

Here M∗(n,p,q) is the sub-count of M∗(n) counting only elements satisfying

pν
√
δν ≤ =

(
a′ν − d′ν√

ln,ν

)
< (pν + 1)

√
δν ,

qν
√
δν ≤ <

(
a′ν + d′ν√

ln,ν

)
< (qν + 1)

√
δν ,

for all complex places ν. In particular, the bounds above imply that

M∗ =
∑

n,p,q∈Zr2 ,
nν ,pν ,qν�

√
δν

M∗(n,p,q) (4.5.17)

Without loss of generality we fix any element γn,p,q contributing to M∗(n,p,q). Any

other matrix γ counted by M∗(n,p,q) is determined by the numbers

ã = s(a− an,p,q), b̃ = s(b− bn,p,q), and d̃ = s(d− dn,p,q), (4.5.18)
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where s is a unit satisfying sνδν � |δ|
1
2n∞ . By constructions and the same arguments used

for estimating expressions involving a′, b′, d′ we obtain

(ãν − d̃ν)xν + b̃ν � L
1
2n |y|

1
n∞ |δ|

1
2n∞ ,

ãν − d̃ν � L
1
2n |δ|

1
2n∞ and ãν + d̃ν � L

1
2n sν ·


δ̂

1
2
ν if ν ∈ SR,

δ
1
2
ν if ν ∈ SC.

These two bounds combined yield the following key inequality:

‖(ã− d̃)P + b̃‖ � L
1
2n |y|

1
n∞ |δ|

1
2n∞ .

From the lattice counting result given in [20, Lemma 6, Part (d)] we deduce that

]{(ã− d̃, b̃)} � 1+ L
1
2 |y|∞ |δ|

1
2∞N (n2)

1
2 + L |y|∞ |δ|∞ .

Furthermore, we observe that

]{(ã+ d̃)} � 1+ L
1
2 |δ|

1
2
C

∣∣δ̂∣∣ 12
R
.

We conclude that

M∗(n,p,q)�
(
1+ L

1
2 |δ|

1
2
C

∣∣δ̂∣∣ 12
R

)(
1+ L

1
2 |y|∞ |δ|

1
2∞N (n2)

1
2 + L |y|∞ |δ|∞

)
.

In order to finish part one of the proof we consider two cases. First, if |δ|C > L−1 |δ|−1R N (n2),

then

L
1
2 |δ|

1
2
C

∣∣δ̂∣∣ 12
R
� 1.

We obtain

Mgen
j,i (L, δ)�

∣∣δ̂∣∣∞ L
1
2

|y|∞N (n2)
·
L

1
2 |δ|

1
2
C

|δ|
3
4
C

·
(
1+ L

1
2 |y|∞ |δ|

1
2∞N (n2)

1
2 + L |y|∞ |δ|∞

)

�
∣∣δ̂∣∣∞

 L

|y| N (n2) |δ|
1
4
C

+
L

3
2 |δ|

1
2
R |δ|

1
4
C

N (n2)
1
2

+
L2 |δ|R |δ|

3
4
C

N (n2)


�
∣∣δ̂∣∣∞

L
5
4 |δ|

1
4
R

N (n2)
1
4

+
L2 |δ|R |δ|

3
4
C

N (n2)

 .

Second, if |δ|C ≤ L−1 |δ|−1R N (n2), we define δ̃ = (δ̃ν)ν by assuming
∣∣δ̃∣∣

R
= |δ|R and∣∣δ̃∣∣

C
= min(16r2 ,L−1 |δ|−1R N (n2)) as well as δν ≤ δ̃ν . Arguing as before with δ̃ in place

of δ we find

Mgen
i,j (L, δ) ≤Mgen

i,j (L, δ̃)�
∣∣δ̂∣∣∞

 L∣∣δ̃∣∣ 14
C

+
L2 |δ|R

∣∣δ̃∣∣ 34
C

N (n2)

� ∣∣δ̂∣∣∞
L+

L
5
4 |δ|

1
4
R

N (n2)
1
4

 .
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This completes the first part of the proof.

We now turn to estimating Mgen,�
j,i (L, δ). To this end we recall that every γ, which

contributes to the counting satisfies det(γ) = λ2 for some λ ∈ OF . This reveals

0 6= (a− d)2 + 4bc = (a+ d)2 − 4λ2 = (a+ d− 2λ)(a+ d+ 2λ).

Thus each tuple (a − d, b) gives rise to � (
∣∣δ̂∣∣∞ L)ε possibilities for a + d. Therefore

we can drop the extra sub-count coming from q in the argument above. Making the

necessary modifications yields

Mgen,�
j,i (L, δ) =

∑
n,p

M∗(n,p)

�
∣∣δ̂∣∣ 12+ε∞ Lε

L
1
2

|y|∞N (n2)
· |δ|−

1
2

C
· (1+ L

1
2 |y|∞ |δ|

1
2∞N (n2)

1
2 + L |y|∞ |δ|∞)

�
∣∣δ̂∣∣ 12+ε∞ Lε

 L
1
2

|δ|
1
2
C

+
L

3
2 |δ|R |δ|

1
2
C

N (n2)

 .

To conclude the proof from here one argues as before.

Remark 4.5.14. Adding all the corresponding contributions given above together establishes the

useful bound

]Γj(i, 1, δ) ≤ ]Γ0
j (i,α, δ) + ]Γparj (i,α, δ) +Mgen,�

j,i (1, δ)�
∣∣δ̂∣∣∞ (1+ |y|∞ |δ|

1
2∞).

This is a good reality check. In particular, we recover

M(L, 0, δ)�
∣∣δ̂∣∣∞ (1+ |y|∞ |δ|

1
2∞),

which is the content of [20, Lemma 11]. Following the proof of [20, Lemma 11] directly yields the

useful preliminary estimate

]Γj(i, l, δ)� N (l)
∣∣δ̂∣∣∞ (1+ |y|∞N (l)

1
2 |δ|

1
2∞).

Finally, we recall two more counting results without repeating a proof.

Lemma 4.5.15 ([20], Lemma 16 and Lemma 17). Let F0 be the maximal totally real subfield

of F . Suppose δν � 1 for all ν, and that m = [F : F0] ≥ 2. Then we have

M3(L, 1, δ)� L2 + L2m |δ|
1
2
R |δ|

1
4
C
+
L2m+1 |δ|R |δ|

3
4
C

N (n2)
.

Furthermore, M3(L, 2, δ) = 0 unless

1� L8(m−1) |δ|C .
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4.6 estimates via the whittaker expansion

In this section we consider the Whittaker expansion of cusp forms as in [2, Section 3].

This will provide us with the first upper bounds for the newform φ◦. The main result is

Proposition 4.6.12 below.

Throughout this section let (π,Vπ) be a cuspidal automorphic representation with

new vector v◦ ∈ Vπ and associated newform φ◦ = σ(v◦). Without loss of generality we

assume that φ◦ is L2-normalised. Further, we fix g ∈ Jn and n(x)a(y) ∈ Fn2 .

4.6.1 The Whittaker expansion of cusp forms

Let ψ be the standard additive character of AF as defined in (1.3.2). Recall the factorisa-

tion (1.3.3). In particular, the conductor of ψ is d−1.

Having fixed the additive character we define the corresponding global Whittaker

function

Wφ◦(g) =
2r2√
dF

∫
F\AF

φ◦(n(x)g)ψ(−x)dµAF
(x).

We want to factor this global function into a product of local functions each of which

matches the ones studied in Part ii. To achieve this we have to deal with several techni-

calities. First, if ωπ,p($p) = |$p|iapp , we define π′p = |·|
i
ap
2

p πp. The purpose of this twist is

that the central character ω′πp of π′p is trivial on the uniformiser. Second, we have to keep

in mind that the local constitutes of ψ do not always coincide with the fixed unramified

additive characters ψp and ψν .

Let Wp be the Whittaker new vector associated to the representation π′p with respect

to the character ψp normalised by Wp(1) = 1. At infinity we take the local Whittaker

function Wν to be the Whittaker vector associated to v◦ν normalised by 〈Wν ,Wν〉 = 1.

This matches the situation in [20] as well as the set-up in Part ii. Having defined these

local functions we achieve the factorisation

Wφ◦(g) = cφ◦
∏
ν

Wν(gν)︸ ︷︷ ︸
=W∞(g∞)

∏
p

|det(gp)|
−iap

2
p Wp(a($

vp(d)
p )gp).

The translation in the finite part comes from the shift in the local additive characters, see

(1.3.3). The constant cφ◦ arises through the re-normalisation of the local functions.
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For 1 ≤ i ≤ hF and g ∈ Jn we have the well known Whittaker expansion

φ◦(a(θi)gn(x)a(y))

= cφ◦
∑
q∈F×

∏
p

|qθi det(gp)|
−iap

2
p Wp(a($

vp(d)
p θiq)gp)W∞(a(q)n(x)a(y)).

For convenience we split the local terms in the archimedean part W∞, the unramified

part

λur(q) =
∏
p-n

Wp(a($
vp(d)
p θiq)),

and the ramified part

λn(q) =
∏
p|n

Wp(a($
vp(d)
p θiq)gp).

We also collect all the unramified twists together and write η(q) =
∏

p |qθi det(gp)|
−iap

2
p .

Since |η| = 1 this factor does not influence any of the upcoming estimates.

Let us continue by gathering some properties of λn and λur. First, we recall the follow-

ing standard result.

Lemma 4.6.1 ([2], Lemma 3.1). If p - n, then there are unramified characters χ1,p and χ2,p

such that π′p = χ1,p � χ2,p. In this case we have

Wp(a($
vp(d)
p θiq)) =



0 if vp(θiq) + vp(d) < 0,

q
−(vp(θiq)+vp(d))/2
p

χ1,p($p)vp(θiq)+vp(d)+1−χ2,p($p)vp(θiq)+vp(d)+1

χ1,p($p)−χ2,p($p)

if vp(θiq) + vp(d) ≥ 0.

Proof. This follows from [25, Theorem 4.6.4] and [25, Theorem 4.6.5].

In particular we find the following support properties of the unramified coefficients.

Corollary 4.6.2 ([2], Corollary 3.1). If λur(q) 6= 0, then vp(q) ≥ −vp(d)− vp(θi) for all p - n.

We can go even further and describe the unramified coefficients in terms the Hecke

eigenvalues. To this end we define

Xp,k = {m ∈Mat2(op) : vp(det(m)) = k},

for p - n and k ∈ N. The local new vector v◦p is an eigenvector of the operator πp(1Xp,k
)

and we denote its eigenvalue by λ(pk). For any ideal a co-prime to n we define the global

Hecke operator by T (a) =
∏

p|a πp(1Xp,vp(a)
). It is clear that the global new vector v◦ and
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therefore also the newform φ◦, is an eigenvector of this operator with eigenvalue λ(a) =∏
p|a λ(p

vp(a)). We can now make a connection between λur and the Hecke eigenvalues

λ(·). It is important to notice that we follow the normalisation of [25, Section 4.6] which

differs from the one used in [70] and [20].

Lemma 4.6.3 ([2], Lemma 3.2). We have

λur(q) =
λ
(

(q)θid
[(q)θid]n

)
N
(

(q)θid
[(q)θid]n

) .
Proof. The proof proceeds locally by showing

λ(pk) = qkpWp(a($
k)) for p - n.

This can be done by induction using [25, Proposition 4.6.4, Proposition 4.6.6] and Lemma 4.6.1.

Next we turn towards the ramified components λn.

Lemma 4.6.4 ([2], Lemma 3.3). If λn(q) 6= 0, then vp(q) ≥ −vp(θi)− vp(d)−n0,p−m1,p(gp)

for all p | n.

Although notation differs this is essentially [70, Lemma 3.11].

Proof. Since g ∈ Jn we have gp ∈ Kpa($
n1,p
p ) and n1,p(gp) = n0,p. ButWp(a($

vp(d)
p θiq)gp) 6=

0 so that [70, Proposition 2.11,(1)] implies1

vp(θiq) + vp(d) ≥ −n1,p(gp)−m1,p(gp).

Note that we used Corollary 4.4.4 to include a(v′) into gp for v′ ∈ o×p where θiq =

v′$
vp(θiq)
p .

Later on it will make sense to view λn as a locally constant function on the adéles

in an obvious way. It will then be crucial to determine sets on which this function is

constant.

Lemma 4.6.5 ([2], Lemma 3.4). Let p|n and u1,u2 ∈ o×p such that u1−u2 ∈ $
n0,p(gp)
p op. Then∣∣∣Wπp(a($

k
pu1)gp)

∣∣∣ = ∣∣∣Wπp(a($
k
pu2)gp)

∣∣∣ .
This is essentially [70, Lemma 3.12].

1 Note that in the notation of [70] we have q(gp) = n0,p +m1,p(gp).
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4.6 estimates via the whittaker expansion

Proof. The proof of this little lemma goes back to the decomposition (1.3.4) and the fact

that
∣∣Wπp

∣∣ is well defined by its values on gt,l,v.

First, let us write

gp = zngt,l,vk.

One observes that

a($k
pu1)gp = zn′gt+k,l,vu−1

1
k′.

By doing the same for u2 we observe, that the claimed equality follows when

[vu−1] = [vu−12 ] ∈ o×p /(1+$
n0(gp)
p op).

The last condition leads to u1 − u2 ∈ $
n0(gp)
p op.

Combining the support properties from Lemma 4.6.4 and Corollary 4.6.2 we derive

|φ◦(a(θi)gn(x)a(y))| ≤ |cφ◦ |
∑
q∈ı−1

|λur(q)λn(q)W∞(a(qy))| . (4.6.1)

Here

ı = n0m1(g)d
∏
p

pvp(θi) and m1(g) =
∏
p

pm1,p(gp). (4.6.2)

It is easy to deal with the constant cφ◦ .

Lemma 4.6.6 ([2], Lemma 3.5). We have

cφ◦ �F ,ε

(
N (n) |T |∞

)ε
.

Proof. As in [69] we observe

c2φ◦ �F L
−1(1,π,Ad)−1

∏
ν

〈Wν ,Wν〉−1 = L(1,π,Ad)−1.

It is a well known fact that L(1,π,Ad)� (N (n) |T |∞)ε. Thus

cφ◦ � (N (n) |T |∞)
ε.

Before continuing we fix a parameter R = (Rν)ν and define the box

B(R) =
∏
ν

{ξν ∈ Fν : |ξν | ≤ Rν}.
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4.6 estimates via the whittaker expansion

This box will be used to truncate the Whittaker expansion. Mostly we will work with

fixed parameters R depending on y and the spectral parameters of φ◦. However, if not

otherwise stated we allow for more flexibility.

Applying the Hölder inequality together with 1 = |q|AF
= |q|fin |q|∞ yields

|φ◦(a(θi)gn(x)a(y))| ≤ |cφ◦ |

 ∑
q∈ı−1∩B(R)

|q|−2∞ |W∞(a(qy))|
4

 1
4

︸ ︷︷ ︸
=S1(R)

(4.6.3)

·

 ∑
q∈ı−1∩B(R)

N (q)
2
3 |λur(q)λn(q)|

4
3

 3
4

︸ ︷︷ ︸
=S2(R)

+ |cφ◦ | E .

with

S1(R) =

 ∑
q∈ı−1∩B(R)

|q|−2∞ |W∞(a(qy))|
4

 1
4

,

S2(R) =

 ∑
q∈ı−1∩B(R)

N (q)
2
3 |λur(q)λn(q)|

4
3

 3
4

, and

E =
∑

q∈ı−1,q 6∈B(R)

|λur(q)λn(q)W∞(qy)| .

We will estimate each one of these three quantities in the upcoming subsections.

4.6.2 The sum S1(R)

In this section we will treat the sum S1(R). Before we start let us record some explicit

expressions for the functions Wν . The following is taken from Section 2.2, in particular

Lemma 2.2.2 and Lemma 2.3.4.

If ν ∈ Ssph ∩ SR and kν = 0, then we have

|Wν(a(ξν))| =

√
2 |ξν |ν

∣∣∣K itν
2
(2π |ξν |)

∣∣∣
√
π
∣∣Γ( 1+itν2 )

∣∣ .

If ν ∈ Ssph and kν = 1, then we obtain

|Wν(a(ξν))| = 2 |ξν |ν

∣∣∣K itν+1
2

(2π |ξν |) + sgn(ξν)K itν−1
2

(2π |ξν |)
∣∣∣∣∣Γ(1+ itν

2 )
∣∣ .
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4.6 estimates via the whittaker expansion

If ν ∈ Shol, then

|Wν(a(ξν))| =


(4π)

k−1
2

√
2|Γ(k)|

1
2
ξ
k
2
ν e−2πξν if ξν > 0,

0 else.

(4.6.4)

Finally, if ν ∈ SC, then

|Wν(a(ξν))| =
√

8 |ξν |ν |Kitν (4π |ξν |)|
|Γ(1+ itν)|

(4.6.5)

Note that up to an absolute constant, which arises through different measure normal-

isations, our expressions agree with those given in [20, p. 19]. For the cases when kν 6= 0

one compares our results to the un-normalised expressions given in [69].

Due to the transition region of the archimedean Whittaker function this argument

requires

Rν =


Tν+T

1
3+ε
ν

2π|yν | �
Tν
yν

if ν ∈ Ssph,

kν−1
4πyν

� kν
yν

if ν ∈ Shol.
(4.6.6)

Note that in view of Corollary 4.5.7 the sum S1 is empty if |R|∞ < N (ı)−1. Therefore

we assume

|R|∞ �
|T |sph |k|hol
|y|∞

�F N (n0m1(g))
−1

throughout this section. Let us fix a ∈ ı as in (4.5.1). Further recall that

Iν(lν) =


{
ξν ∈ F×ν : ξν ≤ |a|Rν ,−lν ≤

∣∣∣|ξν | − |a|Tν
2π|yν |

∣∣∣ < −lν + 1
}

if ν ∈ Ssph,

{ξν ∈ F×ν : } if ν ∈ Shol.

for lν ≤ 0.

In course of the following estimate we need good estimates on the Whittaker func-

tions.

Lemma 4.6.7. For ν ∈ Ssph and |ξν | ≤ Rν we have

Wν(a(ξν))�
∣∣∣∣ ξνTν

∣∣∣∣ 12
ν

min

(
T

1
6
ν ,T

1
4
ν |2π |ξν | − Tν |−

1
4

)
.

In particular, if ξν ∈ Iν(lν) we have

Wν(a(a
−1ξνyν))�

∣∣∣∣ ξνaRν
∣∣∣∣ 12 gν(lν),
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4.6 estimates via the whittaker expansion

where

gν(lν) =


min

(
T

1
6
ν ,
∣∣∣ aTνlνyν

∣∣∣ 14) , if ν ∈ Ssph,

2
k
2−1

|Γ(k−1)|
1
2
(2π

∣∣lνyνa−1∣∣) k−1
2 e−2π|lνyνa−1| if ν ∈ Shol.

Whenever kν = 0 this agrees with the bounds given in [20].

Proof. The proof for the cases ν ∈ Shol is straight forward. In the remaining cases we

combine explicit formulae for Wν given above with the estimates for the K-Bessel func-

tions given in Corollary 2.1.7.

We are now ready to prove the following estimate.

Lemma 4.6.8 ([2], Lemma 3.11). We have

S1 �F |R|
− 1

2∞
∏

ν∈Ssph

(
|Tν |

1
6
ν + |a|

1
4
ν

∣∣∣∣Tνyν
∣∣∣∣ 14
ν

)1+ε ∏
ν∈Shol

(
|kν |

1
4
ν +

∣∣∣∣ ayν
∣∣∣∣ 14
ν

|kν |
3
8
ν

)
.

where R is fixed as specified above.

Proof. First, we shift the sum by a. This gives

S4
1 = |a|2∞

∑
q∈aı−1∩B(|a|R)

|q|−2∞
∣∣W∞(a(qa−1y))∣∣4 .

Then we partition B(|a|R) using the boxes defined in (4.5.2). In each box we exploit

Lemma 4.6.7 to get

S4
1 � |a|

2
∞

∑
l∈Z]{ν},

−baRνc≤lν≤0

](I(k) ∩ aı−1)
∏
ν

∣∣a−1∣∣2
ν
|Rν |−2ν gν(lν)

4.

Inserting the result from Lemma 4.5.3 yields

S4
1 � |R|

−2
∞
∏
ν

b|a|Rνc∑
lν=0

gν(−lν)4fν(−lν).

To estimate the remaining sums we use ideas of [20]. We treat each place separately,

starting with ν ∈ Ssph real. One obtains

b|a|Rνc∑
kν=0

gν(−kν)4fν(−kν) = T
2
3
ν +

b|a|Rνc∑
kν=1

|a|Tν
|yν | kν

�
(
|Tν |

2
3
ν +
|a|Tν
|yν |

)1+ε

.
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4.6 estimates via the whittaker expansion

Similarly one treats the complex places:

b|a|Rνc∑
kν=0

gν(−kν)4fν(−kν) ≤ T
2
3
ν

(
|a| Tν
|yν |

+ 1

)
+

b|a|Rνc∑
kν=1

(
|a| Tν
|yν |

+ 1

)
|a|Tν
|yν | kν

�
(
|a| Tν
|yν |

+ 1

)(
T

2
3
ν + |a| Tν

|yν |

)1+ε

�
(
T

2
3
ν + |a| Tν

|yν |

)2+ε

�
(
T

4
3
ν + |a|2 T

2
ν

y2ν

)1+ε

.

Finally, we deal with ν ∈ Shol following [87]. We note that gν(lν) is monotone increasing.

Furthermore, it reaches its maximum at lν = aRν . Thus we can estimate
b|a|Rνc∑
kν=0

gν(−kν)4fν(−kν)

� 22k−4

Γ(k− 1)2

(∣∣∣∣ a

2πyν

∣∣∣∣
ν

∫ ∞
0

x2(k−1)e−4xdx+

(
k− 1

2

)2(k−1)
e−2(k−1)

)

�
∣∣∣∣ ayν
∣∣∣∣
ν

|kν |
3
2
ν + |kν |ν .

In the final step we eliminated the Γ-factors using Stirling’s formula.

Putting everything together gives

S1 �F |R|
− 1

2∞
∏

ν∈Ssph

(
|Tν |

1
6
ν + |a|

1
4
ν

∣∣∣∣Tνyν
∣∣∣∣ 14
ν

)1+ε ∏
ν∈Shol

(∣∣∣∣ ayν
∣∣∣∣ 14
ν

|kν |
3
8
ν + |kν |

1
4
ν

)
.

Corollary 4.6.9 ([2], Corollary 3.3). If we assume

|yν |ν �


∣∣a3Tν∣∣ log(|y|∞)

log(|a3|∞|T |sph|k3/2|
hol

)

ν
if ν ∈ Ssph∣∣a3k3/2

ν

∣∣ log(|y|∞)

log(|a3|∞|T |sph|k3/2|
hol

)

ν
if ν ∈ Shol

(4.6.7)

for all ν, then we obtain

S1 �
|y|

1
2∞

|T |
1
2
sph |k|

1
2
hol

|T | 16sph |k| 14hol +N (n0m1(g))
1
4

|T |
1
4
sph |k|

3
8
hol

|y|
1
4∞

1+ε

.

Furthermore, this can be always achieved after multiplying with a suitable unit.

Proof. We consider two cases. First, assume |y|∞ ≤ (
∣∣a3∣∣∞ |T |sph |k| 32hol) 1

3 . Then the bal-

ancing assumption implies |yν |ν � |a|ν |Tν |
1
3
ν for all ν ∈ Ssph and |yν |ν � |a|ν |kν |

1
2
ν for

all ν ∈ Shol. Therefore we have∣∣∣∣aTνyν
∣∣∣∣ 14
ν

� |Tν |
1
6
ν and

∣∣∣∣∣∣ak
3
2
ν

yν

∣∣∣∣∣∣
1
4

ν

� |kν |
1
4
ν
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4.6 estimates via the whittaker expansion

respectively.

Secondly, if |y|∞ ≥ (
∣∣a3∣∣∞ |T |sph |k| 32hol) 1

3 , one argues analogously to obtain

∣∣∣∣aTνyν
∣∣∣∣ 14
ν

� |Tν |
1
6
ν

for ν ∈ Ssph and ∣∣∣∣∣∣ak
3
2
ν

yν

∣∣∣∣∣∣
1
4

ν

� |kν |
1
4
ν

otherwise.

Recalling that |a|∞ �F N (n0m1(g)) completes the proof.

4.6.3 The sum S2(R)

In this section we will estimate the sum S2(R) by reducing it to well known averages of

Hecke eigenvalues and local Whittaker functions.

Lemma 4.6.10 ([2], Lemma 3.12). We have

S2(R)� (|T |∞N (n))ε |R|
1
4
+ε
∞

(
N (n0)

1
4

N (m1(g))
1
4

+ |R|
1
2∞N (n0m1(g))

1
4

)
.

Proof. We start by defining

I(m) = {q ∈ ı−1| |q|ν ≤ |Rν |ν , (q) = m}.

Using Lemma 4.5.4 we observe that

]I(m)�ε |R|ε∞N (m)−ε. (4.6.8)

In particular, if N (m)� |R|∞, then I(m) must be empty.

By Lemma 4.6.3 we have

S2(R)
4
3 =

∑
m⊂ı−1,

N (m)�|R|∞

N (m)
2
3N ([mı]n)

4
3

∣∣∣λ( mı
[mı]n

)∣∣∣ 43
N (mı)

4
3

∑
q∈I(m)

|λn(q)|
4
3

= N (ı)−
2
3

∑
m1|n∞,

N (m1)�N (ı)|R|∞

N (m1)
2
3

∑
(m2,n)=1,

N (m2)�
N (ı)|R|∞
N (m1)

|λ(m2)|
4
3

N (m2)
2
3

∑
q∈I(ı−1m1m2)

|λn(q)|
4
3 .

189



4.6 estimates via the whittaker expansion

At this stage we apply the Hölder inequality to the m2-sum. This yields

S2(R)
4
3 = N (ı)−

2
3

∑
m1|n∞,

N (m1)�N (ı)|R|∞

N (m1)
2
3Sur

(
N (ı) |R|∞
N (m1)

) 1
3

·


∑

(m2,n)=1,

N (m2)�
N (ı)|R|∞
N (m1)

 ∑
q∈I(ı−1m1m2)

|λn(q)|
4
3

 3
2



2
3

.

Here

Sur(X) =
∑

(m,n)=1,
N (m)≤X

|λ(m)|4

N (m)2
.

It is well known that

Sur(X)�F ,ε (|T |∞N (n))εX1+ε.

This was proved in [42] over Q but to proof generalises without complications.

Using Jensen’s inequality and exploiting (4.6.8) shows that

S2(R)
4
3 � (|T |∞ |R|∞N (n))εN (ı)−

1
3 |R|

1
3∞

·
∑

m1|n∞,
N (m1)�N (ı)|R|∞

N (m1)
1
3
+ε


∑

(m2,n)=1,

N (m2)�
N (ı)|R|∞
N (m1)

∑
q∈I(ı−1m1m2)

|λn(q)|2



2
3

. (4.6.9)

We will continue to analyse the m2-sum. For notational sake we define

Sram =
∑

(m2,n)=1,

N (m2)�
N (ı)|R|∞
N (m1)

∑
q∈I(ı−1m1m2)

|λn(q)|2 .

In order to use the notation from Section 4.5.1 we set

k(m) = (vp(m))p|n.
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4.6 estimates via the whittaker expansion

By the local definition of λn we can view it as a function on Aı
fin. Lemma 4.6.5 implies

that this function is constant on the sets Cı(k, [u]). Therefore we have

Sram =
∑

q∈ı−1∩B(R)Cı(k(m1ı−1))

|λn(q)|2

=
∑

[u]∈
∏

p|n o
×
p /(1+$

n0,p
p op)

∑
q∈ı−1∩B(R)Cı(k(m1ı−1),[u])

|λn(q)|2

=
∑

[u]∈
∏

p|n o
×
p /(1+$

n0,p
p op)

](ı−1 ∩B(R)Cı(k(m1ı
−1), [u]))

Vol(Cı(k(m1ı−1), [u]), dµ)

∫
Cı(k(m1ı−1),[u])

|λn(q)|2 dµfin(q).

Lemma 4.5.6 and (4.5.5) reveal

Sram �
N (m1)N (n0(g))

N (ı)
FR(k(m1ı

−1))

∫
Cı(k(m1ı−1))

|λn(q)|2 dµfin(q). (4.6.10)

The integral appearing here can be estimated using the local result [70, Proposi-

tion 2.11]. This is done as follows:∫
Cı(k)

|λn(q)|2 dµfin(q) =
∏
p-n

∫
$
−vp(ı)
p op

1dµp
∏
p|n

∫
$
kp
p o×p

∣∣∣Wp(a($
vp(d)
p θiq)gp)

∣∣∣2 dµp(q)
=
N (ı)

N ([ı]n)
ζn(1)

−1
∏
p|n

q
−kp
p

∫
o×p

∣∣∣Wp(a($
vp(d)+vp(θi)+kp
p q)gp)

∣∣∣2 dµ×p (q)
� N (n)ε

N (ı)

N ([ı]n)
ζn(1)

−1
∏
p|n

q
− 1

2
(vp(d)+vp(θi)+n0+m1(gp)+3kp)

p

= N (n)ε
N (ı)

N ([ı]n)
3
2

ζn(1)
−1
∏
p|n

q
− 3kp

2
p .

Note that here we crucially rely on gp ∈ Jn in order to apply the upper bounds for the

local integrals. Inserting this estimate in our expression for Sram we get

Sram � ζn(1)
−1N (n0(g))N (m1)

− 1
2FR(k(m1ı

−1)).

The result from Lemma 4.5.6 yields

Sram � ζn(1)
−1

(
N (n0(g))

N (m1)
1
2

+
|R|∞N (ı)

N (m1)
3
2

)
.

From (4.6.9) we deduce

S2(R)� (|T |∞ |R|∞N (n))ε
|R|

1
4∞

N (ı)
1
4

(√
N (n0(g)) +

√
|R|∞N (ı)

)

·

 ∑
m1|n∞,

N (m1)�N (ı)|R|∞

N (m1)
ε


4
3

.
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Using the Rankin-trick we have

∑
m1|n∞,

N (m1)�N (ı)|R|∞

N (m1)
ε � N (n)ε |R|ε∞ .

4.6.4 The error E

For R as in (4.6.6) we will roughly prove that the error can be absorbed in the main-

contribution. More precisely we have the following lemma.

Lemma 4.6.11 ([2], Lemma 3.13). Under the balancing assumption (4.6.7) we have

E � (|R|∞N (n))ε
(
|T |

1
6
sph |k|

1
4
holN (n0)

1
2 + |T |

1
6∞ |k|

1
4
hol |R|

1
4∞N (n0m1(g))

1
4

+ |k|
1
8
hol |R|

1
2∞N (n0m1(g))

1
2

)
Proof. For S ⊂ {ν} we define

R′(l) =


(lν + 1)Rν if ν ∈ S,

Rν else,

IS(l) =
∏
ν∈S

Iν(lν),

BS(R) =
∏
ν 6∈S
{ξν ∈ F×| |ξν | ≤ Rν}.

For lν ≥ 1 and ν ∈ Ssph we use the exponential decay of the K-Bessel function, made

precise in Corollary 2.1.7, to bound

∣∣a−1q∣∣−2
ν

∣∣Wν(a(a
−1qyν))

∣∣4 �A l
−A
ν |Rν |−2ν . (4.6.11)

for q ∈ Iν(lν) and any A ≥ 2. It can be checked by explicit computations that the same

bound holds for ν ∈ Shol.

We now decompose E as follows

E ≤
∑

∅6=S⊂{ν}

∑
l∈N]S

 ∑
q∈aı−1∩IS(l)×BS(|a|R)

∣∣a−1q∣∣−2∞ ∣∣W∞(a−1qy)∣∣4
 1

4

S2(R
′(l)).
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4.6 estimates via the whittaker expansion

Again we included the shift by a only in the archimedean part. Note that by Corol-

lary 4.5.7 below the sum S2(R′(l)) vanishes if
∏
ν∈S |lν + 1|ν |R|∞ < N (ı)−1. We can add

the condition
∏
ν∈S |lν + 1|ν ≥ |R|

−1
∞ N (ı)−1 to the sum over l.

First, note that Lemma 4.6.10 is general enough to deal with the non-archimedean

part of the sum. To deal with the archimedean part we use the same approach as in

Section 4.6.2. In particular taking (4.6.11) into account we have∑
q∈aı−1∩IS(l)×BS(|a|R)

∣∣qa−1∣∣−2∞ ∣∣W∞(a(qa−1y))∣∣4
=

∑
lc,

−b|a|Rνc≤lν≤0 ∀ν 6∈S

∑
q∈aı−1∩I(l×lc)

∣∣qa−1∣∣−2∞ ∣∣W∞(a(qa−1y))∣∣4
� |R|−2∞

∏
ν∈S
|lν |−Aν fν(kν)

∏
ν 6∈S

∑
kc,

−b|a|Rνc≤lν≤0 ∀ν 6∈S

gν(lν)
4fν(lν)

� |R|−2∞
∏
ν∈S
|lν |−Aν fν(lν)

∏
ν 6∈S,
ν∈Ssph

(
|Tν |

2
3
ν + |aRν |ν

)1+ε ∏
ν 6∈S,
ν∈Shol

(
|kν |ν + |aRν |ν |kν |

1
2
ν

)
.

We obtain

E �
(
|R|∞N (n)

)ε ∑
∅6=S⊂{ν}

∑
l∈N]S ,∏
ν∈S |lν+1|ν

≥|R|−1
∞ N (ı)−1

 |R|− 1
4∞ N (n0)

1
4

N (m1(g))
1
4

+ |R|
1
4∞N (n0m1(g))

1
4



·
∏
ν 6∈S,
ν∈Ssph

(
|Tν |

1
6
ν + |aRν |

1
4
ν

) ∏
ν 6∈S,
ν∈Shol

(
|kν |

1
4
ν + |aRν |

1
4
ν |kν |

1
8
ν

)∏
ν∈S
|lν |
−A−2

4
ν fν(lν)

1
4 .

Inserting the definition of fν from (4.5.4) and using the balancing assumption as in the

proof of Corollary 4.6.9 yields

E �
∑

∅6=S⊂{ν}

∑
l∈N]S ,∏

ν∈S |lν+1|ν≥|R|
−1
∞ N (ı)−1

[ |R|− 1
4∞ N (n0)

1
4

N (m1(g))
1
4

+ |R|
1
4∞N (n0m1(g))

1
4

1+ε

·
(
|T |

1
6
sph |k|

1
4
hol + |R|

1
4∞ |k|

1
8
holN (n0m1(g))

1
4

)∏
ν∈S

l
[Fν :R]−A−6

4
ν |Rν |

1
4
ν

]

� (|R|∞N (n))ε
∑

∅6=S⊂{ν}

∑
l∈N]S ,∏
ν∈S |lν+1|ν

≥|R|−1
∞ N (ı)−1

[(
|R|−

1
4∞
|T |

1
6
sph |k|

1
4
holN (n0)

1
4

N (m1(g))
1
4

+ |k|
1
8
holN (n0)

1
2

+ |T |
1
6
sph |k|

1
4
hol |R|

1
4∞N (n0m1(g))

1
4 + |k|

1
8
hol |R|

1
2∞N (n0m1(g))

1
2

)∏
ν∈S

l
[Fν :R]−A−6

4
ν

]
.
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4.6 estimates via the whittaker expansion

Finally, we use the condition in the l-sum to remove the factor |R|−
1
4 . We drop any

unnecessary condition on l and end up with

E � (|R|∞N (n))ε
(
|T |

1
6
sph |k|

1
4
holN (n0)

1
2 + |T |

1
6
sph |k|

1
4
hol |R|

1
4∞N (n0m1(g))

1
4

+ |k|
1
8
hol |R|

1
2∞N (n0m1(g))

1
2

)
·
∑

∅6=S⊂{ν}

∑
l∈N]S

|lν |
[Fν :R]

2
−A−6

4 .

By taking A ≥ 2 big enough it is no problem to estimate the remaining lν-sums.

4.6.5 The final Whittaker bound

It remains to put all the pieces together to prove an upper bound for φ◦.

Proposition 4.6.12 ([2], Proposition 3.1). Let φ◦ = σ(v◦) for some cuspidal automorphic

representation (π,Vπ) with new vector v◦. For g ∈ Jn we have

|φ◦(a(θi)gn(x)a(y))|

�F ,ε

(
|T |sph |k|holN (n)

|y|∞

)ε(
|T |

1
6
sph |k|

1
4
holN (n0)

1
2 +
|T |

5
12
sph |k|

1
2
ho

|y|
1
4∞

N (n0m1(g))
1
4

+
|T |

1
2
sph |k|

5
8
hol

|y|
1
2∞

N (n0m1(g))
1
2

)
.

Proof. As in [20, (8.7)] we can assume that y is balanced in the sense of (4.6.7). Further,

note that if |R|∞ =
|T |sph|k|hol
|y|∞

< N (ı)−1, it follows from Corollary 4.5.7 and (4.6.3) that

|ψ(a(θi)gn(x)a(y))| ≤ |cφ◦ | E .

In this case we get the desired bound from Lemma 4.6.11 and 4.6.6.

If |R|∞ ≥ N (ı)−1, the main contribution will obviously come from S1S2(R). From

Corollary 4.6.9 and Lemma 4.6.10 we get

S1S2(R)�F ,ε (|R|∞N (n))ε |R|−
1
4∞

(
|T |

1
6
sph |k|

1
4
hol +N (n0m1(g))

1
4 |R|

1
4∞ |k|

1
8
hol

)1+ε

·

(
N (n0)

1
4

N (m1(g))
1
4

+ |R|
1
2∞N (n0m1(g))

1
4

)

�F (|R|∞N (n))ε
(
|R|−

1
4∞
|T |

1
6
sph |k|

1
4
holN (n0)

1
4

N (m1(g))
1
4

+ |k|
1
8
holN (n0)

1
2

+ |T |
1
6
sph |k|

1
4
hol |R|

1
4∞N (n0m1(g))

1
4 + |k|

1
8
hol |R|

1
2∞N (n0m1(g))

1
2

)
.
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4.7 amplification

We can use |R|∞ ≥ N (ı)−1 � N (n0m1(g))−1 get rid of the factor |R|−
1
4∞ . According to

Lemma 4.6.11 the error is under control. This concludes the proof.

4.7 amplification

The central result of this section is the so called amplified pre-trace inequality. From this

we will derive suitable bounds for φ◦ in the bulk.

More precisely we will define an integral operator which approximates a spectral

projector on the subspace of L2(G(F ) \G(AF )) generated by φ◦. A geometric estimation

of the kernel will yield the desired estimate.

Let (π,Vπ) be a cuspidal automorphic representation with new vector v◦ and associ-

ated newform φ◦ = σ(v◦). Throughout this section we fix a square-free ideal q such that

all the units that are quadratic residues modulo q are indeed contained in (O×F )2. We

will further assume that (q, 2nθ1 · · · θhF ) = 1. Let us construct this ideal once and for all.

Lemma 4.7.1 ([2], Lemma 5.1). There is an absolute constant A > 0 depending only on F

such that for any n there is an ideal q satisfying the following two properties.

• We have C ≤ N (q)� log(N (n))A, where C is the absolute constant to be chosen later.

• If x is a quadratic residue modulo q, then x ∈ (O×F )2.

• If a2 = (α), then we can choose the generator α such that it is a square mod q.

Proof. We will construct q by putting

q =
∏

u∈O×F /(O×F )2,
[u] 6=[1]

qu.

For suitably small prime ideals qu which are inert in F (
√
u) : F and split completely in

F (
√
v) : F for all [u] 6= [v]. It is clear that if this construction is possible q will have the

desired properties.

For u ∈ O×F /(O×F )2 non-trivial, we look at the quadratic extension F (
√
u) : F . The

Galois group is abelian and consists of two elements, say Gal(F (
√
u)|F ) = {1,σu}.

Since we are dealing with a quadratic extension we know that a prime p of F is inert in

F (
√
u) if and only if the Artin-symbol satisfies(

F (
√
u) : F
p

)
= σu.
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4.7 amplification

On the other hand, p splits completely if(
F (
√
v) : F
p

)
= 1.

We thus consider the tower K =
∏
v F (
√
v) − F (

√
u) − F . There is an integer l such

that Gal(K|F ) = (Z/2Z)l and without loss of generality we can assume that for all

σ ∈ Gal(K|F ) we have

σ|Gal(F (
√
u)|F ) = pr1(σ).

We define σ̃u = (σu, 1, · · · , 1).

The Chebotarev set

PK|F (σ̃u) =

{
p unramified in K :

(
K : F

p

)
= σ̃u

}
contains exactly all the primes of F that are inert in F (

√
u) and split completely in

F (
√
v) for the remaining v. The rest of the proof is concerned with the problem of

choosing qu as small as possible.

To do so we make several definitions. First, we define

[n]u =
∏
p|n,

p∈PK|F (σ̃u)

p.

Further, we number PK|F (σ̃u) = {pu,1, pu,2, · · · } such that N (pu,1) ≤ N (pu,2) ≤ · · · .

Consider two cases. First, if pu,1 - [n]u then we take qu = pu,1. By a version of Linnik’s

theorem for Chebotarev sets [90] we have

N (qu)�F 1.

Second, we consider the worst case

[n]u = pu,1 · ... · pu,k−1.

Here we define qu = pu,k. It is clear that we only need to show N (qu) � log(N ([n]u))A.

But this follows from elementary calculations using Chebotarev’s density theorem [63,

Theorem (13.4), Chapter VII].

It is obvious that we can assume C ≤ N (q).
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4.7 amplification

4.7.1 Amplification and the spectral expansion

Let φ = φL◦ = σL(v◦L). By Corollary 4.4.7 it is enough to consider φ(g) for

g = a(θi)g
′n(x)a(y), for n(x)a(y) ∈ Fn2 , g

′ = khn ∈ Jn.

We further define φ′ = φ(·hn). This function is K ′1(n) = hnK1(n)finh
−1
n invariant and can

be considered as an element of the Hilbert space

L2(X) = L2(G(F ) \G(AF )/KCK
′
1(n),ωπ) ⊂ L2(G(F ) \G(AF ),ωπ).

Furthermore, we put w◦ = πL(hn)v◦L. Then φ′ = σL(w◦). We will bound φ′ on elements

g = a(θi)g′n(x)a(y) with g′ ∈ Knh
−1
n and n(x)a(y) ∈ Fn2 . For notational simplicity we

interchange the roles of π and πL. In other words, without loss of generality, we can

work with π in all what follows now.

Next we define the kernel function which will be used to construct the approximate

spectral projector mentioned earlier. We do this place by place and immediately give

some basic properties.

Let ν ∈ SC or ν ∈ SR ∩ Ssph such that kν = 0. Define

fν(zνgν) = ωπ,ν(zν)
−1kν

(
uν(gν .iν , iν)

)
,

for kν as in [20, Lemma 10]. Let us recall the bound

kν(u)� min(|Tν |ν , |Tν |
1
2
ν |uν |

− 1
4

ν ), for u ≥ 0.

Furthermore, supp(kν) ⊂ [0, 1]. By uniqueness of the spherical vector we have

R(fν)w
◦
ν = cν(πν)w

◦
ν .

The number cν(πν) depends only on the equivalence class of πν and is given by the

spherical transform of fν at πν . By a suitable parametrisation of spherical representa-

tions of G(Fν) one relates this to the classical Selberg/Harish-Chandra transform of kν .

Therefore we have2

cν(πν) = hν

(
tν
2

)
� 1 (4.7.1)

by [20, Lemma 10].

2 The factor 1
2 appears due to our different normalisation of the spectral parameter compared to [20].
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4.7 amplification

For ν ∈ Shol we define

fν(g) = dπν
〈πν(g)w◦ν ,w◦ν〉
〈w◦ν ,w◦ν〉

.

Since we are assuming kν ≥ 3 this function is integrable. We observe that

πν(fν)w
◦
ν = cν(πν)w

◦
ν = w◦ν . (4.7.2)

Even more, acting on Vπν , it is exactly the orthogonal projection on Cw◦ν . On the other

hand, πν(fν)|Vπ′ ≡ 0 whenever π′ 6∼= πν . In particular, πν(fν) defines an positive operator.

Ultimately, by [56, Theorem 14.5] we have

fν(g) =


k−1
4π

det(g)
k
2 (2i)k

(−b+c+(a+d)i)k
if g =

a b

c d

 ∈ G+
ν ,

0 else.

In particular, for det(g) > 0 we have

|fν(g)| =
k− 1

4π
ũν(g)

− k
2 , for ũν(g) =

‖i− g.i‖2

4=(i)=(g.i)
.

The remaining archimedean places are those ν ∈ SR ∩ Ssph where kν = 1.3 Here we

define the function fν by

fν

z(λ)k(θ1)
x 0

0 x−1

 k(θ2)

 = ωπ,ν(λ)e
i(θ1+θ2)kν

(
1

2
(x2 − 2+ x−2)

)
,

for t > 0, z(λ) ∈ Z(R)and kθ1 , k(θ2) ∈ O(2). First of all note that by construction and

[65, Proposition 7.5.1] we have

πν(fν)w
◦
ν = hν

(
tν
2

)
︸ ︷︷ ︸
=c(πν )�1

w◦ν .

Furthermore, π(fν) always projects projects on the weight 1 subspace of Vπ and is a

positive operator by construction of hν . Finally note that |fν(g)| = |kν(uν(g.iν , iν))|. This

is because

uν


x 0

0 x−1

 .iν , iν

 =
x2

2
− 1+

x−2

2
.

3 Note that a similar test function would work to project on a weight kν vector in principal series represen-

tations. Thus we could also deal with more general Maaß forms. However, we will not do so and stick to

newforms, which in our context includes the condition of being lowest weight at infinity.
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4.7 amplification

For p|n we define

fp(gp) = |det(gp)|iap Φ′π′p(gp).

Where Φ′π′p is the truncated matrix coefficient defined in [70, Section 2.4]. By construction

(see [70, Proposition 2.13]) there is δπ′p � q
−n1,p−m1,p
p such that

Rp(fp)w
◦
p =

∫
Z(Fp)\G(Fp)

fp(g)πp(g)w
◦
pdµp(g) = δπ′pw

◦
p .

Let us remark that

|fp(g)| ≤ 1 for all g ∈ G(Fp),

supp(fp) =


Z(Fp)Kp if np is even,

Z(Fp)K0
p (1) else.

For p|q define

K̃0,p(1) =


a b

c d

 ∈ K0,p(1) : a− d ∈ $pop


and put

fp(gp) =


vol(Z(op) \ K̃0,p(1))−1ω−1πp (z) if gp = zk ∈ Z(Fp)K̃0,p(1),

0 else.

Since w◦p is Kp-fixed, we see:

Rp(fp)w
◦
p =

∫
Z(Fp)\G(Fp)

fp(g)πp(g)w
◦
pdµp(g)

= vol(Z(op) \ K̃0,p(1))
−1
∫
Z(op)\K̃0,p(1)

ωπp(z)
−1πp(zk)w

◦
pdµp(zk) = w◦p .

We also have the estimate

|fp| ≤ [Kp : K̃0,p(1)]� q2+εp .

The remaining places will be treated at once. Set Sur = {p : (p, qn) = 1} and define the

unramified Hecke algebra

Hur = 〈{κur = ⊗p∈Surκp : κp ∈ C∞c (G(Fp),ωπp) such that κp(KpgKp) = κp(g)}〉C.

Due to [25, Theorem 4.6.1] this is a commutative algebra. To an integral ideal c we

associate the special element

κc = ⊗p∈Surκp,vp(c) ∈ Hur
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4.7 amplification

where

κp,k(g) =


ωπp(z)

−1 for g = z ∈ Z(Fp)Xp,k,

0 else.

This is well defined since the central character is unramified at the places under con-

sideration. The function κp,k is constructed such that π(1Xp,k
) = R(κp,k). Therefore we

have for w◦ur = ⊗p∈Surw
◦
p that

R(κc)w
◦
ur = λπ(c)w

◦
ur.

Fix a large parameter L such that N (q) � (logL)A for some constant A. We define

the sets

Pq = {a : a = (α) for α ∈ F×+ ∩ (1+ q)} and

P(L) = {α ∈ OF : (α) ∈ Pq such that N (α) ∈ [L, 2L] and ((α), n) = 1}/ ∼ .

In the last definition we wrote α ∼ β for the equivalence relation (α) = (β). We identify

P(L) with a suitable fundamental domain for ∼. We can arrange that αv � L[F :Q] for all

ν and all α ∈ P(L). This is the set on which our amplifier will be supported.

We are choosing two sequences of amplifiers

x1 = (xα)α∈P(L) and x2 = (xα2)α∈P(L).

Define the quantities

‖x‖1,π =

∣∣∣∣∣∑
α

xαλπ((α))√
N (α)

∣∣∣∣∣ and ‖x‖2 =
∑
α

∣∣x2α∣∣ .
Here x can be any sequence defined for all α ∈ OF but xα = 0 for all but finitely many

α. In particular, if x = xj , for j = 1, 2, we are only summing over αj with α ∈ P(L).

The unramified test function will be

fur =

 ∑
α∈P(L)

xακα√
N (α)

 ∑
α∈P(L)

xακα√
N (α)

∗

+

 ∑
α∈P(L)

xα2κα2√
N (α2)

 ∑
α∈P(L)

xα2κα2√
N (α2)

∗ .
This defines an operator R(fur) such that

R(fur)w
◦
ur =

[
‖x1‖21,π + ‖x2‖21,π

]︸ ︷︷ ︸
=cur

w◦ur = curw
◦
ur.
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4.7 amplification

Note that since x1 and x2 have disjoint support we find that

cur ≥
1

2
‖x1 + x2‖21,π. (4.7.3)

On the other hand, we can linearise fur to obtain

fur =
∑

(b,nq)=1,
N (b)≤16L4

(y1(b) + y2(b))
κb√
N (b)

. (4.7.4)

To do so we use the Hecke-relation and obtain

y1(b) =
∑

α,β∈P(L),
(αβ)=a2b,
a|(α,β)

ω−1π(β)a−1
((β)a−1)xαxβ and y2(b)

=
∑

α,β∈P(L),
(αβ)2=a2b,
a|(α,β)2

ω−1π(β)2a−1
((β)2a−1)xα2xβ2 .

In particular, we have

y1(1) + y2(1) = ‖x1 + x2‖2.

Suppose xα and xα2 are supported on (α) prime. These coefficients are very similar

in spirit to the coefficients wm in [20, (9.16)]. Indeed, in this case we have

y1(a) + y2(a)

=



∑
α′∈P(L) |xα′ |

2 + |xα′2 |2 if a = 1

xα1xα2 + δα1=α2ω
−1
π(α1)

($(α1))xα2
1
xα2

2
if a = (α1)(α2) for α1,α2 ∈ P(L),

xα2
1
xα2

2
if a = (α1)2(α2)2 for α1,α2 ∈ P(L)

0 else.

(4.7.5)

One compares this to [69, p. 28] and [20, (9.16)] and notes the similarity.

Combining everything we define

f = ⊗νfν ⊗p|qn fp ⊗ fur.

Associated to this function there is the integral operator

R(f) : L2(G(F ) \G(AF ),ωπ) → L2(G(F ) \G(AF ),ωπ)

φ 7→

[
x 7→

∫
Z(AF )\G(AF )

f(g)φ(gx)dg

]
.

201



4.7 amplification

We have

R(f)φ′ = σL

(∫
Z(AF )\G(AF )

f(g)πL(g)w◦dg

)
= cur

∏
ν

cν(πν)
∏
p|n

δπ′pφ
′.

The corresponding automorphic kernel is given by

Kf (g1, g2) =
∑

γ∈Z(F )\G(F )

f(g−11 γg2).

The spectral expansion of Kf will enable us to bound the sup-norm of φ′ in terms of

the geometric definition of Kf . Let us work out the spectral expansion in detail. The con-

struction of f ensures that the spectral expansion of Kf will only feature automorphic

forms which are sufficiently similar to φ′. In order to make this more precise we say that

Ψ ∈ L2
0(X) is compatible with π if it satisfies the following:

• Ψ is contained in an irreducible subspace VπΨ ⊂ L2
0(X) and corresponds to a pure

tensor in the decomposition πΨ = (⊗pπΨ,ν)⊗ (⊗pπΨ,p).

• Ψ is spherical at all places p - qn and the conductor of πψ contains n.

• For all ν ∈ SC the representation πΨ,ν is spherical. If ν ∈ Shol, then πΨ,ν
∼= πν and

Ψν is the lowest weight vector. Furthermore, if ν ∈ Ssph ∩ SR, then Ψν is of weight

kν .

• For each p | n we have πΨ,p(fp)Ψp = δπ′pΨp.

We choose an orthonormal basis A0(π) spanning the space of all functions compat-

ible with π. Obviously we can arrange that φ′ ∈ A0(π). Similarly we can choose the

orthonormal basis BH̃ such that it contains a subset BH̃(π) which spans the subspace of

functions satisfying the points above.

Finally, we define, for any tuple t = (tν)ν∈Ssph , the function

h(t) =
∏
ν∈SC

hν(tν)
∏

ν∈SR∩Ssph

hν(
tν
2
).

The tuple tΨ is the tuple of spectral parameters of Ψ at places ν ∈ Ssph.

With this at hand we prove the following spectral expansion.

Proposition 4.7.2. For any g ∈ G(AF ) we have

0 ≤
∑

Ψ∈A0(π)

‖x1 + x2‖21,πψ
N (n1)N (m1)

h(tΨ) |Ψ(g)|2

+
1

4π

∑
Ψ∈BH̃

∫ ∞
−∞

‖x1 + x2‖21,πψ(iy)
N (n1)N (m1)

h(iy+ tΨ) |EΨ(iy, g)|2 dy+D � Kf (g, g).
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4.7 amplification

Here D ≥ 0 is the contribution of the residual spectrum, which vanishes if n is not square-free.

Note that Shol 6= ∅ implies BH̃(π) = ∅ and D = 0.4

Proof. We decompose

Kf = Kcusp +Ksp +Kcont

and deal with each piece separately.

We begin with the cuspidal part. By fixing a basis Bcusp containing A0(π) for L2
0(X)

consisting of R(F ) eigenfunctions. This is possible by a standard multiplicity one argu-

ment. For Ψ ∈ Bcusp let c(Ψ) be the associated R(f)-eigenvalue. Then we obtain

Kcusp(h, g) =
∑

Ψ∈Bcusp

〈
Kcusp(·, g),Ψ

〉
L2(X)

Ψ(h) =
∑

Ψ∈Bcusp

c(Ψ)Ψ(g)Ψ(h).

By construction of f and [70, Corollary 2.16] it is clear that c(Ψ) = 0 for Ψ ∈ Bcusp \

A0(π). On the other hand, if Ψ ∈ A0(π), then

c(Ψ) = δπ′cΨ,ur
∏
ν

cν(πΨ,ν).

In particular, c(Ψ) ≥ 0 and cΨ,ur � ‖x1 + x2‖21,πΨ
. Furthermore, according to [70, Propo-

sition 2.13] we have δπ′ � N (n1)−1N (m1)−1. This concludes the analysis of the cuspidal

part.

The argument for the continuous part is quite similar. Using the theory of Eisenstein

series we have the expansion

Kcont(h, g) =
1

4π

∑
Ψ1,Ψ2∈BH̃

∫ ∞
−∞
〈R(f)Ψ2(iy),Ψ1(iy)〉H̃(iy)EΨ1(iy,h)EΨ2(iy, g)dy,

(4.7.6)

see [35, (5.21)]. We can argue as before by choosing BH̃ carefully. To complete the analysis

of the continuous part one again investigates the R(f)-eigenvalues of Ψ ∈ BH̃.

Finally, we treat the residual part of the spectrum. We start from the spectral expansion

of Ksp. This reads

Ksp(h, g) =
1

Vol(Z(AF )G(F ) \G(AF ))

∑
χ2=ωπ

χ(det(h))χ(det(g))

·
∫
Z(AF )\G(AF )

f(x)χ(det(x)))dx.

4 Similarly one can see that there is no contribution of the residual or continuous part if πp is supercuspidal

for some p. However, we will not use this fact.
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4.7 amplification

Since the character χ factors and also f is almost a pure tensor the last integral factors

in the local integrals

Ip(χp) =

∫
Z(Fp)\G(Fp)

fp(g)χp(det(g))dg if p|nq

and the unramified part Iur(χur). By Lemma 3.5.1 it is clear that Iur(χur) ≥ 0. The lemma

follows from the evaluation of the integrals Ip(χp) given in Lemma 3.5.2 and 3.5.3.

By dropping all the unnecessary terms in the previous result and combining it with

the definition of Kf one concludes

∣∣φ′(g)∣∣2 � N (n1m1)

‖x1 + x2‖21,π

∑
γ∈Z(F )\G(F )

∣∣f(g−1γg)∣∣ . (4.7.7)

This gives an upper bound for φ′ in terms of the geometry of G(F ) and the test function

f as long as the amplifier is chosen properly. We will estimate this further in the next

section.

4.7.2 Estimating the geometric expansion

In this subsection we estimate the right hand side of (4.7.7). This will ultimately lead to

good control on φ◦ in the bulk. Define

k(γ) =
∏
ν

kν(γ) =
∏
v∈Shol

(
uv(γvPv,Pv)

2

)− k
2 ∏
v∈Ssph

kv(uv(γvPv,Pv))

with Pv = n(xv)a(yv).iv. We prove the following preliminary result which is an adaption

of [29, Lemma 1].

Lemma 4.7.3. For v ∈ Shol ⊂ SR and k ≥ 2r+ 2 we have

|kv(γ)| ≤


k−1
4π always,

Crε
−1−r if u(γPv,Pv) > ε.

Proof. From the definition of ‖ · ‖ we compute

‖γP v − Pv‖2 = ‖γPv − Pv‖2 + 4=(γPv)=(Pv).

We conclude that

|kv(γ)| =
k− 1

4π
(
u(γPv,Pv)

2
+ 1)−

k
2 .
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4.7 amplification

The general bound follows by dropping the u-term due to positivity. The second bound

follows from:

|kv(γ)| ≤
k− 1

4π

( ε
2

)−r
(
ε

2
+ 1)r−

k
2 ≤ 2r

2π

k− 1

k− 2r
ε−r−1.

In the last step we applied Bernoulli’s inequality.

With this at hand we can return to the estimation of the geometric expansion of Kf .

Proposition 4.7.4. Take (q, n) = 1 and

g = a(θi)g
′n(x)a(y) with g′ ∈ Knh

−1
n and n(x)a(y) ∈ Fn2 .

Further, assume that the sequence x2 is supported on α2 for α ∈ P(L) which are principal prime

ideals. We have

Kf (g, g)� LεN (q)2+ε
[
‖x1‖2∞

(
L |T |1+εsph |k|

1+ε
hol + L2 |T |

1
2
+ε

sph |k|
1
2
+ε

hol |y|∞

+ L
3
2

|T |
1
2
+ε

sph |T |
1
2
C
|k|

3
4
+ε

hol

N (n2)
1
4

+ L3
|T |

1
2
+ε

sph |k|
1
4
+ε

hol

N (n2)

)
+ ‖x2‖2∞

(
L |T |1+εsph |k|

1+ε
hol + L2 |T |

1
2
+ε

sph |k|
1
2
+ε

hol |y|∞

+ L2
|T |

1
2
+ε

sph |T |
1
2
C
|k|

1
2
+ε

hol

N (n2)
1
2

+ L4
|T |

1
2
+ε

sph |k|
1
4
+ε

hol

N (n2)

)]
.

In particular, after dividing by L2, putting ‖x1‖∞ = ‖x1‖∞ = 1 and ignoring the k-contribution,

we recover the formula on the bottom of [20, page 37].

Proof. We begin by inserting the linearisation of fur given in (4.7.4) into (4.7.7). This

yields

Kf (g, g) ≤
∑

06=b⊂OF

|y1(b) + y2(b)|√
b

∑
γ∈Z(F )\G(F )

∣∣∣∣∣∣κb
∏
p|qn

fp

∣∣∣∣∣∣ (g′−1a(θ−1i )γa(θi)g
′) |k(γ)|

Let us analyse the support of fp and κb place by place. At this point we will exploit the

special structure of g.

First, if p - n, we have g′p = 1. This case consists of two sub cases. Namely,

a(θ−1i )γa(θi) ∈


Z(Fp)K̃0,p(1) if p | q,

Z(Fp)Kpa($
vp(b)
p )Kp else.
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4.7 amplification

If p | n, then we use Lemma 4.4.3 to see that g′p ∈ ωK0
p (1) if p | n2 and g′pKp otherwise.

Using the support property of fp we conclude that

a(θ−1i )γa(θi) ∈


Z(Fp)Kp if p - n2,

Z(Fp)ωK
0
p (1)ω

−1︸ ︷︷ ︸
=K0,p(1)

if p | n2.

We can choose a representative

a b

c d

 for γ =∈ Z(F ) \G(F ) such that a, b, c, d ∈ OF

and (a, b, c, d) = θj for some 1 ≤ j ≤ hF . We arrive at the following conditions:

a, d, θ−1i b ∈ θjOF , c ∈ θ−1i θjnq, a− d ∈ θjq and (ad− bc) = θ2jb.

In particular, we note that θ2jb must be a principal ideal, say (α) = θ2jb. Whenever

y1(b) + y2(b) contributes to the sum we must have (α) = (γβ)θ2ja
−2 for some ideal

a | (γ,β) and γ,β ∈ P(L). Thus, by construction of q, we can choose α such that it is a

quadratic residue mod q. Further let us note that ad− bc ∈ a2 + q. Thus, again referring

to the construction of q, we get the identity ad− bc = w2α. However, multiplying a, b, c, d

by a unit w ∈ O×F does not change the first conditions, so that we can assume w = 1.

Arranging the sums accordingly we obtain

Kf (g, g)� N (q)2+ε
hF∑
j=1

N (θj)
∑

0 6=α∈θ2j/∼

∣∣∣y1((α)θ−2j ) + y2((α)θ
−2
j )
∣∣∣√

N (α)

∑
γ∈Γj(i,α)

|k(γ)|

with

Γj(i,α) =


a b

c d

 ∈ GL2(F ) : a, d, θ−1i ∈ θj , a− d ∈ θjq, c ∈ θ
−1
i θjnq, ad− bc = α

 .

Following the strategy in [20] we associate to each γ a dyadic vector δ = (δν)ν = (2pν )ν

by choosing pν in Z minimal such that

δµ = 2pν ≥


max(T−2ν ,uν(γPν ,Pν)) if ν ∈ Ssph,

max(k−1ν ,uν(γPν ,Pν)) if ν ∈ Shol.

At the places ν ∈ Ssph we argue as in [20] and at the remaining places we use Lemma 4.7.3.

This leads us to the estimate

k(γ)� |T |
1
2

sph |δ|
− 1

4

sph |δ|
−1
hol

∣∣δ̂∣∣−1−rhol (4.7.8)
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4.7 amplification

for T−2ν ≤ δν ≤ 4 for ν ∈ Ssph and k−1ν ≤ δν for ν ∈ Shol, which are exactly those δ which

will contribute to the γ-sum. This will be our replacement for [20, (9.22)]. Sorting the

matrices γ ∈ Γj(i, ∗) according to δ we get the bound

Kf (g, g)� N (q)2+ε
hF∑
j=1

N (θj)
∑
δ

|T |
1
2

sph |δ|
− 1

4

sph |δ|
−1
hol

∣∣δ̂∣∣−1−rhol

·
∑

06=α∈θ2j/∼

∣∣∣y1((α)θ−2j ) + y2((α)θ
−2
j )
∣∣∣√

N (α)
]{γ ∈ Γj(i,α) : uν(γ.Pν ,Pν) ≤ δν for all ν}. (4.7.9)

We continue the estimation term by term. Starting from the sum

Sdeg1 (δ) =
hF∑
j=1

N (θj)
∑

0 6=α∈θ2j/∼

∣∣∣y1((α)θ−2j )
∣∣∣√

N (α)

(
]Γj(i,α, δ)0 + ]Γj(i,α, δ)par

)
we use Lemma 4.5.9 and 4.5.11 to estimate the matrix count. This yields

Sdeg1 (δ)

�
∣∣δ̂∣∣ε∞ Lε ∑

n,m∈P(L)

|xnxm|
∑

a|(n,m)

 N (a)√
N (nm)

+ |y|∞ |δ|
1
2∞ +

√
N (nm)

N (a)

|δ|
3
4
R |δ|

1
4
C

∣∣δ̂∣∣ 18
R

N (n2)


�
∣∣δ̂∣∣ε∞ Lε ∑

n,m∈P(L)

∑
a|(n,m)

|xnxm|
N (a)√
N (nm)

+ ‖x1‖21

∣∣δ̂∣∣ε∞ |δ| 12∞ |y|∞ Lε +
∣∣δ̂∣∣ 18+ε

R
|δ|

3
4
R |δ|

1
4
C

N (n2)
L1+ε

 . (4.7.10)

To estimate the remaining sum we view x as a function on ideals by setting xa = 0 for

non-principal ideals a. The following estimate is standard.

∑
n,m∈P(L)

|xnxm|
∑

a|(n,m)

N (a)√
N (nm)

=
∑
l

∑
N (a),N (b)≤L/N (l),

(a,b)=1

∑
c|l

|xlaxlb|
N (c)

N (l)
√
N (ab)

� Lε
∑
l

∑
N (a),N (b)≤L/N (l)

|xla|2

N (b)
� Lε‖x1‖2.

This yields

Sdeg1 (δ)�
∣∣δ̂∣∣ε∞ Lε‖x1‖2 + ‖x1‖21

∣∣δ̂∣∣ε∞ |δ| 12∞ |y|∞ Lε +
∣∣δ̂∣∣ 18+ε

R
|δ|

3
4
R |δ|

1
4
C

N (n2)
L1+ε

 .
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The contribution of the generic matrices can be handled as follows.5 We estimate

Sgen1 (δ)�
∑

α,β∈P(L)

|xαxβ|
∑

a|(α,β)

N (a)√
N (αβ)

]Γgen∗ (i,
αβ

a2
, δ)

=
∑
a

∑
(b,c)=1,

ab,ac∈P(L)

|xabxac|√
N (bc)

]Γgen∗ (i, bc, δ)

�
∑
a

N (a)

L
sup

(b,c)=1,
ab,ac∈P(L)

|xabxac|
(
Mgen
∗,i (

L2

N (a2)
, δ) +Mgen

∗,i (
2L2

N (a2)
, δ)

)

�
∣∣δ̂∣∣∞ ‖x1‖2∞ ∑

N (a)≤2L

 L

N (a)
+

L
3
2 |δ|

1
4
R

N (a)
3
2N (n2)

1
4

+
L3 |δ|R |δ|

3
4
C

N (a)3N (n2)


�
∣∣δ̂∣∣∞ Lε‖x1‖2∞

L+
L

3
2 |δ|

1
4
R

N (n2)
1
4

+
L3 |δ|R |δ|

3
4
C

N (n2)

 .

Finally, we deal with the contribution of the y2(α)’s. To this end we observe that, due

to our assumption

|y2(a)| ≤



‖x2‖2 if a = (1),

‖x2‖2∞ if a = (α)2(β)2 or a = (α)2 for α,β ∈ P(L),

0 else.

In particular, the only contribution comes from principal ideals. We arrive at

S2(δ)� ‖x2‖2∞
M0(L, 1, δ) +M2(L, 1, δ) +Mgen,�

∗,i (L2, δ) +Mgen,�
∗,i (2L2, δ)

L

+ ‖x2‖2∞
M(L, 2, δ)

L2
+ ‖x2‖2]Γ∗(i, 1, δ)

� ‖x2‖2∞
∣∣δ̂∣∣ 12+ε∞ Lε

L+ L2 |y|∞ |δ|
1
2∞ +

L2 |δ|
1
2
R

N (n2)
1
2

+
L4 |δ|

3
4
R

N (n2)


+ ‖x2‖2

∣∣δ̂∣∣∞ (1+ |y|∞ |δ|
1
2∞).

All together we obtain

Kf (g, g)�N (q)2+ε
∑
δ

|T |
1
2

sph |δ|
− 1

4

sph |δ|
−1
hol

∣∣δ̂∣∣−1−rhol

(
Sdeg1 (δ) + Sgen1 (δ) + S2(δ)

)
.

5 Here we exploit the ’averaged counting’. This leads to the appearance of an L∞ norm of x1 instead of L1

and L2 averages. However, the counting in this setup proves to be much more efficient and de-compensates

for this caveat.
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4.7 amplification

Performing the δ-sum yields

Kf (g, g)� LεN (q)2+ε
[
‖x1‖2∞

(
L |T |1+εsph |k|

1+ε
hol + L

3
2

|T |
1
2
+ε

sph |T |
1
2
C
|k|

3
4
+ε

hol

N (n2)
1
4

+ L3
|T |

1
2
+ε

sph |k|
ε
hol

N (n2)

)

+ ‖x1‖2 |T |1+εsph |k|
1+ε
hol + ‖x1‖

2
1

(
|T |

1
2
+ε

sph |k|
1
2
+ε

hol |y|∞ + L
|T |

1
2
+ε

sph |k|
1
4
+ε

hol

N (n2)

)
+ ‖x2‖2∞

(
L |T |1+εsph |k|

1+ε
hol + L2 |T |

1
2
+ε

sph |k|
1
2
+ε

hol |y|∞

+ L2
|T |

1
2
+ε

sph |T |
1
2
C
|k|

1
2
+ε

hol

N (n2)
1
2

+ L4
|T |

1
2
+ε

sph |k|
1
4
+ε

hol

N (n2)

)]
.

The claimed result follows after transforming all the x1,2-dependence in L∞-norms and

dropping some redundant terms.

We will end this section by proving another estimate for the geometric side in a more

specific situation.

Proposition 4.7.5. Let FR be the maximal totally real subfield of F and suppose that [F : FR] =

m ≥ 2. Take (q, n) = 1 and

g = a(θi)g
′n(x)a(y) with g′ ∈ Knh

−1
n and n(x)a(y) ∈ Fn2 .

Further assume that the sequence x1 and x2 is supported on α2 for α ∈ P(L) which are principal

prime ideals. If Shol = ∅, we have

Kf (g, g)� ‖x1 + x2‖2∞LεN (q)2+ε

L |T |∞ + L2 |T |
1
2∞ |y|∞ + |T |

1
2∞ L

2m−1 +
|T |

1
2∞ L2m

N (n)
1
2

 .

Proof. Since Shol = ∅ we have
∣∣δ̂∣∣∞ � 1. Further we can exploit the special shape of y

given in (4.7.5). With this at hand we follow the proof of Proposition 4.7.4 until (4.7.9).

Here we estimate everything trivially arriving at

Kf (g, g) ≤ ‖x1 + x2‖2∞N (q)2+ε
∑
δ

|T |
1
2∞

|δ|
1
4

(
LM(L, 0, δ) +

M(L, 1, δ)

L
+
M(L, 2, δ)

L2

)
.

We use Remark 4.5.14 to estimate

M(K, 0, δ)� 1+ |y|∞ |δ|
1
2∞ .

By Remark 4.5.12 and Lemma 4.5.15 we obtain

M(L, 1, δ)� L2+ε + L3+ε |y|∞ |δ|
1
2∞ +

L3+ε |δ|
3
4
R |δ|

1
4
C

N (n2)
+ L2m+ε |δ|

1
2
R |δ|

1
4
C

+
L2m+1+ε |δ|R |δ|

3
4
C

N (n2)
.
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Finally, we use Remark 4.5.12 and Lemma 4.5.13 to obtain

M(L, 2, δ) � L2+ε + L4+ε |y|∞ |δ|
1
2∞ +

L4+ε |δ|
1
2
R

N (n2)
1
2

+
L6+ε |δ|

3
4
R |δ|

1
4
C

N (n2)

� L2+ε + L4+ε |y|∞ |δ|
1
2∞ +

L2m+2+ε |δ|
1
2
R |δ|

1
4
C

N (n2)
1
2

+
L6+ε |δ|

3
4
R |δ|

1
4
C

N (n2)
.

In the last step we artificially inserted the factor |δ|C by using Lemma 4.5.15. These

counting results allow us to execute the δ-sum and obtain the desired result.

4.8 the two main sup-norm theorems

We are finally ready to prove our main theorems. We start by a general upper bound

with no assumptions on the base field F .

Theorem 4.8.1 ([2], Theorem 1.1). Let (π,Vπ) be a cuspidal automorphic representation with

conductor n and spectral parameter (tν)ν∈Ssph and weight (kν)ν∈Shol . And let v◦ be a new vector

of π. Then

‖v◦‖∞ �F ,ε (|T |sph |k|holN (n))εN (n0)
1
2N (m)

1
2

(
|T |

5
12
sph |k|

7
16
holN (n2)

1
3

+ |T |
1
4
sph |T |

1
4
C
|k|

1
4
holN (n2)

1
4

)
.

Proof. By Corollary 4.4.7 it is enough to consider φ(g) = φL◦ (g) for some L | n. Further,

we fix 1 ≤ i ≤ hF and restrict ourselves to g = a(θi)g′hnn(x)a(y) with n(x)a(y) ∈ Fn2

and g′hn ∈ Jn.

We start by deriving a bound via amplification which will be strong in the bulk. We

choose the following amplifier:

xα =


|λπ((α))|
λπ((α))

if α ∈ (P(L)) is a principal prime ideal,

0 else.

Similarly, we chose

xα2 =


|λπ((α)2)|
λπ((α)2)

if α ∈ (P(L)) is a principal prime ideal,

0 else.

Note that we have ‖x1‖∞ = ‖x2‖∞ = 1 and

‖x1 + x2‖1,π � ]{α ∈ P(L) : (α) is a prime ideal} � L1−ε.
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Where we used the fact that6

|λπ(p)|√
N (p)

+

∣∣λπ(p2)∣∣
N (p)

� 1.

With this at hand we use (4.7.7) together with Proposition 4.7.4 to obtain

∣∣φ′(g)∣∣� |L|ε∞N (n)εN (n1m1)
1
2

( |T | 12sph |k| 12hol
L

1
2

+
L |T |

1
4
sph |k|

1
8
hol

N (n2)
1
2

+
|T |

1
4
sph |T |

1
4
C
|k|

1
4
hol

N (n2)
1
4

+ |T |
1
4
sph |k|

1
4
hol |y|

1
2∞

)
.

Taking L = |T |
1
6
sph |k|

1
4
holN (n2)

1
3 and inquiring |y|∞ ≤ |T |

1
3
sph |k|

3
8
holN (n2)

− 1
3 produces the

stated bound.

If |y|∞ > |T |
1
3
sph |k|

3
8
holN (n2)

− 1
3 , then Proposition 4.6.12 yields

|φ(g)| �F ,ε (|T |sph |k|holN (n))ε
(
|T |

1
6
sph |k|

1
4
holN (n0)

1
2 + |T |

1
3
sph |k|

7
16
holN (n2)

1
6N (n0m1)

1
2

)
.

This concludes the proof.

The previous theorem features a contribution containing |T |
1
2
C

which is the local bound.

Thus, we do not achieve subconvexity in full generality. To deal with this caveat the

author’s of [20] came up with a very sophisticated counting argument specifically for

non-totally real fields. The second theorem, generalising [20, Theorem 2], relies on this

counting and achieves subconvexity in every setting. However, the exponents are not as

good in general. Unfortunately we also have to assume that Shol = ∅. This is due to our

inability to adjust the modified counting results accordingly.

Theorem 4.8.2 ([2], Theorem 1.2). Let F be number field with maximal totally real subfield FR

such that [F : FR] = m ≥ 2. Assume that Shol = ∅. For a cuspidal automorphic representation

(π,σ) with conductor n and spectral parameter (tν)ν∈Ssph we have

‖v◦‖∞ �F ,ε (|T |∞N (n))ε |T |
1
2
− 1

8m−4
∞ N (n2)

1
2
− 1

8m−4N (n0)
1
2N (m)

1
2

where v◦ is a new vector.

Proof. We start by using Corollary 4.4.7 to reduce the problem as far as possible. Ob-

serve that for |y|∞ > |T |
1
4∞ the estimate in Proposition 4.6.12 gives the upper bound

6 The same trick is used in [20, (9.17)]. But recall that our Hecke-eigenvalues are normalised differently.
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N (n)εN (n0m1)
1
2 |T |

3
8
+ε
∞ . Therefore we assume that |y|∞ < |T |

1
4∞. Using Proposition 4.7.5

with amplifier as in the proof above and with

L = min

(
(|T |∞N (n2))

1
4m−1 ,C |T |

1
4m−4
∞

)
yields uniform bound

∣∣φ′◦(g)∣∣�F ,ε (N (n2)N (n0m1) |T |∞)
1
2
+ε

(
|T |
− 1

8m−8
∞ + (|T |∞N (n2))

− 1
8m−4

)
‖φ′◦‖2.

If |T |
− 1

8m−8
∞ ≥ N (n2)

− 1
4 , we can use Theorem 4.8.1 to get a better bound. This leads to

σ(v◦)(g)

‖σ(v◦)‖2
�F ,ε (N (n2)N (n0m1) |T |∞)

1
2
+ε

·
(
min(|T |

− 1
8m−8
∞ ,N (n2)

− 1
4 ) + (|T |∞N (n2))

− 1
8m−4

)
.

One concludes by interpolation as in [20].

————————————————————————————-
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