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ADVANCED ALGEBRA 1: MODULAR FORMS

DR. EDGAR ASSING

ABSTRACT. In this lecture we will cover the basic theory of modular forms and
applications to quadratic forms. The exercises and their solutions as well as
some additional remarks were kindly added by Alberto Acosta Reche. I would
like to thank all the students that followed the course and helped me to fix many
typos. However, be aware there are probably more typos! For personal use only.
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o Complex Analysis: An Introduction to The Theory of Analytic Functions

of One Complex Variable by L. Ahlfors.

In the beginning we will have a brief look at the theory of elliptic functions a la
Eisenstein. More on this can be found in

Some

e Elliptic Functions according to Eisenstein and Kronecker by André Weil.

good books on modular forms are for example:
1
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Topics in classical automorphic forms by H. Iwaniec;

Introduction to the arithmetic theory of automorphic forms by G. Shimura;
Modular forms by T. Miyake.

Introduction to Elliptic Curves and Modular Forms by N. Koblitz.

1. OUVERTURE

Historically there has been much interest in computing elliptic integrals:

/ o dt
o VP(@)
where P(t) is a (complex) polynomial of degree 3 or 4. (Technically this is an ellip-

tic integral of the first kind.) Such integrals arise geometrically when computing
the arc length of ellipses and also come up in physics.

Example 1.0.1. In 1718 Fagano studied

E<x>=/j¢f—f_t4,

which satisfies the peculiar law

E(z)+ E(z)=E (M) .

1+ a2t

It is a remarkable fact, that the inverse function of an elliptic integral is an
elliptic function. This is a doubly periodic meromorphic function. It turns out
that many interesting properties of elliptic integrals can be obtained from a general
theory of elliptic functions. This motivates a systematic study of the latter and
ultimately leads to modular forms.

As the name suggests a doubly periodic function f: C — C has two R-linear
independent periods u,v € C:

fz4u) = f(z+v) = f(2).
This naturally leads to the lattice I' C C with generators u,v. Thus
F={y=pu+wvv: p,v ez} CC.

Observe that the quotient © can not be real so that we can write

— =67
u

where § = d(u,v) € {£1} and 7 € H = {z € C: Im(z) > 0}. Further lets set
g = e(r) = e*™". We use the branch /g = e(7/2) of the square root. Finally
observe that |¢| = e 2™™(") < 1 and wv — ww = —2midA for A > 0.
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Exercise 1, Sheet 0: Let I' = uZ + vZ be a lattice in C (i.e. u,v are R-linearly
independent). Suppose that IV = «'Z + v'Z is a sub-lattice of I". Show that there
is a 2 x 2 matrix A € May«o(Z) N GLy(Q) such that

(W v)y=(uwv) A (1)
Further show that ¢’ = sgn(det(A))d and [I': I'] = |det(A)|. (Recall that 2 =§-7
and ¥ = §'7' with 6,8’ € {£1} and 7,7 € H).

Solution. As u',v" € T’ := uZ + vZ we can find unique a,b,c,d € Z such that
u' = du + cv and v = bu + av. In matrix form this is written as

W )= o050

Because I is also a lattice, the vectors u/, v" are R-linearly independent. Therefore,
the matrix A = (¢ ?) has rank 2 over R and must be in GLy(R). By the formula for
the inverse we see that A € GLy(Q), as desired. For the assertion about imaginary
parts, we calculate

o 5,1}_’ _ g +bu 5,&57 +b 5 (a1 +b) (6T + d)
u cv + du ot +d |coT + d|?
B 5,ac]T|2 + bd + 0(ad + be)Re(r) + id(ad — be)Im(T)
lcoT + d|?

As both Im(7),Im(7") > 0, we deduce ¢’ = ¢ - sgn(det(A)), as desired. For the
last assertion, we can bring A to its Smith normal form by D = BAC with
B,C € GLy(Z) and

D= (Oél 52) where d; € Zoo, and di|ds

Replacing A by BAC' simply replaces the basis (u, v) of I' by (u, v)B and the
basis (v, v') of T” by (u/, v')C~!, but the lattices remain the same. Therefore, this
operation does not change the index [I' : IV], and we can assume A = D without

loss of generality. From this presentation it is clear that I"\I" ~ Z;, X Zg,, so that
[ :TV] = dydy = det(D) = | det(A)|, as desired. i

We define the series

B, () = B (:7) = 3 (w+7)"

ver

For n > 3 the series is absolutely convergent. On the other hand for n = 1,2 the
summation is to be understood as follows:

E,(z) = Z(E)(x +9) " = A}l_f)r;o Z (A}g)noo Z (2 + pu + m;)”) :

vyel v=—N p=—M
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In this case the resulting function depends on the choice of generators u, v and we
write E,(x) = E, (z;u,v) if it is necessary to highlight this dependence.

Remark 1.0.2. This is a generalization of the one dimensional series
M

@)= @t = dim S @) (2)

where the limiting process is of course only necessary for n = 1. The attentive
reader will immediately realize that

e1(x) = meot(mx).
Indeed this can be proved in the following way:

(1) Observe that both sides define meromorphic functions of period 1 with
poles at the integers.

) Observe that the residues are all 1.

) Deduce that the difference g(z) defines a entire function of period 1.

) Observe that both sides remain bounded when |Im(z)| — oc.

) Deduce, by Liouville’s theorem, that g(z) is constant. Since g is odd, it
must be identically 0.

One can also check directly that both sides tend to 7i when Im(z) — —oo. Write
z = x + 1y. For the right hand side

(2
(3
(4
(5

m,—e(z) 1 = i+ ___m — i
e(z) —1 e2rize=2my — |
when y — —oo. For the series, write
r T+ , Y
ctp @Aty @)ty
The series i m converges absolutely for every y # 0. Therefore, we can

write
€1(z) = lim — = — 1 — %
1( ) NHOOMX_:N (5”4‘#)2—1-?/2 %:(x+u)2+y2

When y — —oco the first term tends to 0, while the second tends to m¢ by the

definition of Riemann integration, since the derivative of arctan(t) is 1%2

Exercise 2, Sheet 0: Use this definition (2) to show that

1 2m — 1
. — —1)" m?m—n
€n(2) z”+( ) Z(n—1)722

for small z, where
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Proof. Recall the binomial power series

(e =3 () vt (§) oo tlozie)

k=0

valid for v € R and |z| < 1, absolutely convergent for these z. The case relevant
to us is @ = —n, where we have

. n+k—1
1 -n _ -1 k k
e =S (")
k=0
Inserting this expansion in the definition of €, we see that

1 —_— e L(n+k—1\zF
()= o Jm DL w2 () ( ne );

|ul=1 k=0
(we sum g from —N to N omitting 0). If n + &k > 2, then the double series above
converges absolutely because of Zzozl pkn < 220:1 12 < oo and the absolute
convergence of (3). Therefore, if n > 2 we can swap the summation, observe that
the summation over p vanishes if the exponent is odd, and write k + n = 2m for

m > [n/2] to arrive at

en(2) = — 4 (=1)" i (Qm— 1)72m22m_n

" n—1
m=[%]
as desired. For n = 1 we do the same after noting that the only problematic

summation over pu, for k = 0, vanishes since the exponent is odd. it

Remark 1.0.3. Note that one can define the (even) Bernoulli numbers By, via the
power series:

1 oef+1 1 < t2m-1
. - _ —1)™ By, ———
2 et—1 ¢ 7;1( )" Be (2m)!
Thus once the identity
e(z)+1
=1 cot =i =
€1(z) = - cot(mz) er(z) —
is established one can compare coefficients in the two expansions and obtain
By
= (2m)%m . =
tem = (21 B0
Lemma 1.0.4. We have E,,(—x) = (=1)"-E,(z) for n > 1. Furthermore we have
d
%En(x) = —nE,1(x) forn > 1.

Proof. While the first statement is clear, for the second statement we have to
justify term-wise differentiation. it
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Lemma 1.0.5. We have

N T o (RO (el R

v=1

and the right hand side is absolutely convergent.

Proof. The formula is easily verified by expressing the inner sum in terms of ¢,.
The crux of the matter is to show absolute convergence. We write

(zgandz:e(g).

Also recall ¥ = +7 and ¢ = e(7). We will use the formula'

= mcot(mx :m'~—€(x)+1
e1(2) = 7 cot(rz) -1

It is now easily verified that

T+ vv T — Vv ) 1 1
e ( )+ e( " ):—2772( )

u 1—qvz 1—gqz!

Absolute convergence follows now from the estimate

1 1
2 — <C-|q¥ 4
™ 1_ql/Z 1_ql/Z,1 —_ |Q| ) ()
with C'= C(z) € R, and v sufficiently large.
For n > 2 we write the series as
o (B)
E,.(x)=u en(C+vT).
VEZL

Observe that

We obtain

for large ¥ > 0. This can be bounded by C|q|” for some constant C' = C(z)
as before. The case v < 0 is treated similarly and one easily obtains absolute
convergence. it

'We take it for granted, but it can be derived from the series definition given in (3) directly.
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Lemma 1.0.6. Let I' C C be a lattice generated by u,v € C. Then we have
v
Ei(z + 70;u,v) = By (z5u,v) — 2706 - —,
u

for v = pou + vov € I'. Furthermore, for n > 2 we have E,(x + vo;u,v) =
E,(z;u,v).

Proof. We write 79 = 1pv + pou. Note that € (x) has period 1, so that by (3) we
can assume Lo = 0. For vy > 0 we compute

1 Nt T+ v N T+ vv
(o v00) — Bafe) = Jim (30w (FEE) - Y e (5]

v=N+1 v=—N

Observing that €;(Zt) approaches +7i as vd — Foo we get

u

2’/T7;(Sl/0

Ei(z +vv) — Eq(z) = "

as desired. It is easy to verify the case 1y < 0. i

Lemma 1.0.7. Let I be a sub-lattice of I' with generators v’ and v' and let R
be a set of representatives for I'/T". (The case I" = T' with R = {0} is included!)
Then we have

2widcr  mwid'v

Y Ei(z 4w, v') = Ei(z;u,0) + -

uu' u!
YER

where §' = §(u',v") and

Qnyzﬁu'—l—?v/.

YER

Proof. We write
(u’ v’) = (u v) . (CCL Z) for a,b,c,d € Z with N = ad — bc # 0.

Note that R = [[': I'] = |N|. Furthermore, &' = ¢ - sgn(N). Without loss of
generality we can assume that 0 € R.

We set Ej,(v) = >_ cg En(z + 7;0/,0"). Note that for n > 3 we have E; (z) =
E,(x), because the defining series is absolute convergent and E/ amounts to a
re-ordering of the sum. Thus, by differentiating we get

E|(z) — Ei(z;u,v) = Az + B.
We will compute A and B using the formulae
Au=E|(z +u) — E|(z) and 2B = E|(—z) + E}(z).

We write

r+u=r;+wi(r) and —r =ry+ we(r)
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with 71,79 € R and w;(r),ws(r) € I". Note that r — r; as well as r — ry are
permutations of R. We can write

wi(r) = pi(r)u’ + v (r)v’ for i = 1, 2.
Opening the definition of E] we find that
Au = ZEl(as +u+ru,v) — Z Ei(x +r;u',0)

reER reR

— Z[El(q; +wi(r);u,v") — Eq(z;u/,0")]

reR

2’
_ 7: S n(r).

reR

2B = 2mio Zyg(r).

u
reR

Similarly one finds

On the other hand we have

0= Z('rl—f—wl(r)—r—u) = Z(wl(r)—u) = (Z M1(7’)> u'+ (Z ul('r’)) v'—|N|u.

reR reR reER reER

Writing u = %(u' d — cv') and comparing coefficients yields

co
Zyl(r) =5

reR
This completes the computation of A. To get B we observe

0= Z(r + 79 + wo(r)) = 227" + (Z ,u2(7~)> w4+ (Z 1/2(7")> "

reR reR reR reR

i
Corollary 1.0.8. Let M € SLy(Z) and write (u/ v') = (u v)-M. Then we have

2110
Ey(z;u/,v") = By(x;u,v) — m/c where M = (CCL Z) .
uu
Proof.

2110 2mid
) ca:] — Bolau, v)— mide:

d d
Ey(z;u/,v") = —%El(:t;u',v’) = —%[El(az;u’,v/)—i-

uu!

Lemma 1.0.9. Let x be close to 0. Then we have

E,(z) = Ly (—1)" 21 (2m i 1)ezm:c2’”” (6)

x?’l
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with

Com = (27m)2m ((_1>m32m +2 i O'Qm_l(k')qk> 7

u?m - (2m — 1)! 2m
k=1

where o5(k) =y d°
Proof. We start by writing

El<x>=1[E1<x>—El<—x>1=1+§ 2 (E)( SR )

. v ver\{o} rhY Ty

ver\{o}  m=1

In the second line we have used the geometric series which is justified if || < ||
for all v € T'\ {0}. Noting that everything but the part coming from m = 1 is
absolutely convergent allows us to write

1 - m—1
r) = ~ mgz:l em®
with e,,, = 0 for odd m and
) _ o
o= Y e, Y 4
yer\{0} yeI\{0}

for m > 2. The expression (6) (with the convention that (*”
obtained by repeated differentiation.

It remains to give an alternative description of the coefficients es,,. To do so we
recall (5). For |q| < |z] < |q|™! we can write

E,(z) :u*”en<<)+ n—l |ZZd" L2 4 (1),

v=1 d=1

2m—1

") =0form < n)is

—2m

We observe that es,,, = lim,_,o Egm(x) —x . Before we continue we recall that’

€n(T) = L + (=1)" i (2m - 1),-),2mx2m—n

Al n—1
m=[%]

- —2m m BQm
Yom = 2 Z 2 = (27T)2 (2m)' :
p=1 ’

In particular we have lim¢_,o(€2,(¢) — (72™) = 7ay,. Since with 2 — 0 we have
¢ — 0 and z — 1 we directly get the desired formula. it

with

2This can be obtained by differentiating the well known expansion of the cotangent. Otherwise
arguments similar to those conducted here apply to (2).
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Remark 1.0.10. Note that the coefficients e, obviously depend on the generators

u,v of T' (or at least on the lattice). Thus we better write es,, = ean(u,v).
Furthermore it follows directly from Lemma 1.0.7 that
270
ea(u',v") = ez(u,v) — 0 and eam (U, v") = egp(u,v) for m > 2, (7)
uu
where
PN a b
)=o) (20)
——
€SLa(Z)

Remark 1.0.11. Note that
Ey(z) —ey =272 + Z [(x+7)2 =772
yer\{0}
However, the latter function is precisely the Weierstrass p-function. (In particular,

the series is actually absolutely convergent.)

Our next goal is to prove some relations (for example functional equations)
between the functions E,,.

Lemma 1.0.12. We have

Ey(2)Eqy(2') — Eg(2)Eg(z + 2') — Eo(2')Eg(z + 1)

2mid O
™ —Es(z + 25 u,0).

= 2E;3(z + 2)[Ei(2) + Eq ()] + v

Proof. We first recall that

To shorten notation we put ( = % and 7 = © assuming ¢ = 1.
Now for (i, ¢, we have the functional equation®

e2(C1)e2(C2) — €2(Cr)ea(Cr + C2) — €a(Ca)ea (G +Ca) = 2€3(Cr+C)[er(Cr) +e1(C2)]- (8)

Putting (; = ( + v7 and (o = (' + (p — v)7. Then we sum both sides of (8) first

over v (using the summation order $°)) and then over p. Note that on the left
hand side we only encounter n = 2 where we have absolute convergence. This
allows us to rearrange the sums to obtain

u*[Ey(2)Eq(2)) — Eo(2)Ea(z + o) — Eo(2/)Eo(z + 2')],
where we have written z = (u and 2’ = ("u.

3This identity can be checked by recalling that e () = mcot(nz) and ey(x) = (n/ sin(mz))2.

(Otherwise one can deduce it directly from the series definition of €,,.)
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Let us consider the right hand side of (8). After summing over v we have
2ues(¢ + ¢+ p7)[Er(2) + By (2 + dpv)]

= ues(¢ + ¢+ pr)[Ba(z) + Ba(a!) — 27

].

U
The first two terms are easily summed over p, giving

2utEs(z + ) [Ei(z) + Ey(2)).

The result follows after observing
d
—2pe3(C+ (' +p7) = el ¢+ p7)
and then executing the p-sum. it

Corollary 1.0.13. The following identities hold:
a)

o
mio., agEg(x; u,v) = 3By(z;u,v) — 2B (2;u, v)Es(z;u,v) — Eo(7;u,v)?
u v

b)

(Ez(2) — Eo(2')) (Br(z + 2') — Ex(z) — Ei(2)) + Es(z) — Es(2/) =0
This was Exercise 3, Sheet 1:

Proof. Recall Lemma 1.0.12 where it was proved that

27”52]32(37 + ' u,v) = By(2)Ea(2) — Ea(2)Ea(x + 2') — Ea(2')Eg (2 + 2)

ov
—2E3(z + ') (E1(z) + E1(2'))

We evaluate this expression when = ¢ I' and 2’ — 0. We show that, although
there are poles at ' = 0 on the right hand side, they cancel out. To see this, recall
that -2E, (z) = —nE,41(z). We obtain Taylor developments

Ey(x + ) = By (1) — 20'Es(x) + 3(2')*Ey(z) + O((z')?)

E;s(z + 2) = Es(z) — 32'Ey(x) + O((2')?)
and noting that E;(z') = £ +O(1) and Ey(2') = ﬁ + O(1) we see that the limit
of right hand side when 2’ — 0 is
2mid 0

w0

= lim [Ey(2") (Eao(z) — Eg(z + ")) — 2Es(x + ') Ey (¢)] — Ea(2)* — 2Es(2)Ey ()

z’—0

2 Bs(x) — 3Eq(x) %Eg(d}) 4 6E(x) + O(2')| — Ba(2)? — 2By (2)En (2)

=0 [T

= 3E,(7) — 2E,(2)Es(z) — Ey()?
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which proves part a). For part b), denote the left hand side by B(z,z'). We have

%B(:{:, 2') = —2E3(2)E;(z + 2) 4+ 2E3(2)Eq1(2) + 2E3(2)E; (2') — Eq(2)Eq(z + ')
+ Eo (2 ) Ex(z + 2') + Ex(2)? — Eg(2")Eg(z) — 3E4(2)
= —2E3(2)E (x + ') + 2E3(2)E(2") — Eo(2)Ex(x + 1)
b Bo(2)Ba(z + 7') — Ba(e')Ea(x) — 2”7“5%]32(9;; ", v)

where we used part a) to simplify. Now, if we first substitute 2’ — —z’ and then
x +— x+2’ and recall that E;(—2') = —E;(2’) and Eo(—2") = Ey(2'), we obtain the
identity of Lemma 1.0.12. Thus, we have arrived at %B (z,2") = 0. By symmetry,
we also have -2, B(z,2') = 0. Since B(z,z) = 0 by inspection, we deduce that

ox’
B =0, as desired. it

Theorem 1.0.14. We have
E3 = (Ey — €3)® — 15e4(Ey — €3) + 10(c — eqey)

for
0 864

2 Qv

Furthermore,

2730 aEl
—— — =E; — E.E,. 9
U ov 3 12 9)

Proof. We start from the identity given in Lemma 1.0.12. For fixed z we view
both sides of the identity as a function in z” = z + /. Expanding around x” = 0
and comparing the constant term yields

2mid  Oe
E4(.I') = E2($)2 — 262 : EQ(iL’) — U : 8—1}2(16, U).
Expanding this again at x = 0 and considering the constant terms gives
2110 Oey 9
—_— = = Dey — €5.
B (u,v) eq — €5

Combining these two identities gives

E4($) = (EQ(I’) — 62)2 — 564.
By differentiation one can reduce the first claimed identity to this. The second
identity follows by integrating the first formula from Corollary 1.0.13. it
Remark 1.0.15. Of course the result given in the theorem above strongly resembles
the famous equation

() = 49° — gap — g3

with go = 60e; and g3 = 140es. Note that in the proof we also encountered
p" = 60" = 50
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We write

1" - H Pn- H (Prp—n)-

neL n=M+1
Note that we understand infinite products by taking the logarithm. We will always
(if not otherwise stated) use the principal branch. We define the special infinite

products
E)y1®) t
T+ w H H ( T+ uu+ 1/1))

fta) =11 a-
and ¢ = xH

w
w#0

To see that the definition of ¢ makes sense we write

log(p(z)) = log(z Z log( 1—— Z E)Z (x/w)".

lw|<|z| lw>|z]  n=1

The pieces for n > 3 are all absolutely convergent and the terms coming from
n = 1,2 are still well-defined when summing them in the specified order.

Remark 1.0.16. A different approach would be to consider the o-function, which
is defined by the absolutely convergent Weierstrass (canonical) product

x):xH(l—— efﬁzﬁ; :

w70
Then ¢(z) = o - e~%°/2,

We make the following observations:

E\(z) = - log(p(a)),

dx
ple—t)
fit.2) () ‘
o(t) = —[zf(t, )]o=0. (10)
Lemma 1.0.17. We have
_u Xq(2)
plr) = 21 P(q)?’
where P(q) =[02,(1 — ¢"),
X, ()= (22 =2 ) [JA—q"2)(1 = ¢"27),
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Proof. From the definition we get

) y1(&) t
:1:[ 1;[ (1_x+,uu+l/v>‘

J/

sln(7r( 71 ﬁuv )

=P,
z+u'u ))

sin (7 (=—=—
We put (* = @ and z* = e((*). One easily verifies that

— ()2 (=g —g¢" (")
1 and P,P_, = A=) i= g .

Thus we have actually seen that

X, (2%)
flt,z) =7
R e
The result follows by using (10). The factor 3% comes from the contribution of
lim,_,q _xx_% = 5. yif]

Lemma 1.0.18. Letvy = (g b) € SLy(Z) and assume that 6 = 1. Then we have

Xol) = X2 er ) DO (5],

P(q) 2
for
r at +b r ’ . C . /
T —CT+d,q =e(7), ¢ = and 2" = e({’).

Proof. Looking closely at log f(¢, ) and using the Taylor expansion of the loga-
rithm (at 1) reveals that the sums remaining in

1~ (B)
log(f (¢, x)) +tz (x+7)" EZ (z+7)?

~erl ~yel

are absolutely convergent. In particular the remainder depends only on I' and not
on the basis u, v. In view of the transformation behavior of £; and E, we obtain
directly that

t,od V) = f(t, ~< c ﬁ—2t>.

flt,zu' 0" = f(t,x;u,v) - e 2uu’< xt)

The proof is easily completed with the help of (10) and Lemma 1.0.17. i
Lemma 1.0.19. We have

ol -+ pu+vv) = (~1)*p(w)e (—ovs —ov').
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Proof. One first checks that

Xo(q"2) = a7 P(=2) " X, (2). (11)
The result follows from Lemma 1.0.17. it
Lemma 1.0.20. We have
1 5 C n TL2 n n
Xo(2) = WT(Q’ 2), for T(q,z) =22 Y (—1)"qm+m/2m,

Proof. One starts by formally writing
X, (2) = 23 Z Fn(q)z”+%.
neZ

This will be absolutely convergent for z # 0 since |¢| < 1. From (11) we deduce
that ,
Fn+u(Q) _ (_1)1/Fn<q) . q(u +1/+2nu)/2_

Rearranging the sum yields

Xy(2) = Fo(¢)T(q, 2).
It remains to identify Fy(q). This is done as follows. We first check by differen-
tiation that
2

o)1 (2)* =~ T
In view of (9) we get

a ( 1 Po(x)  Amid dp(z;u, U)) 0

or \p(x)  Oz? up(z) v '
We conclude that the quantity in the brackets is constant (as function of x). By
computing its value at 0 one finds

1 Po(x)  Amid dp(w;u,v)
o(x) 0z up(x) v

and By ()—Ex (2)Ea(x) = %a% (ﬁ 90 8*‘;293)) |

= —362.

It is then straight forward to obtain the equation
O?T  4mid 0T N w2

for T'(¢, z). This gives

dmio 0 9 w2
" ~%log(FP ) =3ey — pex

On the other hand, from the definition of P one obtains

0 2716 = Vq”
S log(P@) =050

v=1
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This lets us obtain

47r15 0
€y = " a—log(q%P( q))-

We conclude that FP~2 and P2 differ only by a constant factor. Since F' and P
are both 1 at ¢ = 1 this factor is one and we must have F' = P! as claimed. &

Exercise 1, Sheet 2: Recall the function
T(q, Z) _ Z% Z(_l)nq(n2+n)/22n
nez
from the lecture notes.
a) Show that T'(¢* ¢*) =T (q, iq%) ce (3 —27), where ¢ = e(7) and 7 € H as
usual.
b) Use the identity X,(z) = Fy(q) - T(q,z) to show that Fy(¢*)P(q*) =
Fo(q)P(q)-
¢) Show that lim, 0 Fy(q) = 1 and deduce that Fy(q) = P(q)~".

Solution. On the one hand
n n n n n 7’1/2 T
T(¢" & _qz P g :Z(_l) P
neZ nez
while, on the other hand
. 1 T 1 n4n n _n Y n:m.n n
T (q,zq2> — eFigi Z(_l) g2 an/2 _ o Z( 1)ring™ /21 (19)
neZ nez

We observe that n?/2+n = m?/2+m exactly when n = m or n+m = —2. Thus,
in equation (12) we can pair the terms with n +m = —2. Looking modulo 4 we
see that only the odd terms survive. Thus, we can rewrite the above as

T (q,iq%> o ZZ-2k+1q(2k+1)2/2+2k+1+1/4 — _jeF Z(_l)kq2k2+4k+7/4
ke ke

If we compare this with (12) and recall e(z) = €™ we obtain part a).

For the claim of part b), note that using part a) and the identity X,(z) =
Fy(q) - T(q, z), the claim is equivalent to

1 37

X()Pat) = (5= 5 ) K Pt)

Recall that
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Thus we find
X () P(g") = (q—q~ H ¢ (1 =g (1= ¢") (13)

In the infinite triple product, the term (1 — ¢?) and the terms (1 — ¢*) for v > 1
appear once, while the terms for v > 1 appear twice. On the other hand

v=1
We pair the terms (1 —1ig”"/?) and (1 +1ig""/?) whose product equals (14 ¢**?),
thus we obtain

N

X,(ig?)P(g) = (e%q — e Fq 3)(1 +ig? H (1 -¢")
now we pair the terms of the first product with the terms (1 + ¢**!) with the
terms (1 — ¢*™), to obtain (1 — ¢**2). We can rewrite the above as
1 1 _mi 1 1 Y Y
X,(iq?)P(q) = (" gt —e g 1)(1+ig2)(1—q) [J(1 - ¢"*) (1 —¢*) (14)
v=1

We observe that in the infinite double product, the term (1 — ¢?) and the terms
(1 — ¢*) for v > 1 appear exactly once, while the terms (1 — ¢**2) for v > 1
appear twice. Comparing (13) with (14) we see that
1
Xpl@)Plh) = ——— ) X gy
(e7gr —e aqg 7)(1+ig2)(1 - q)

Simplifying the factor we get

(a—q") _omap ¢ -1

T T q . y
(e?q% — e_Tq_%)(l + 'L'q%)(l — q) (Zq1/2 - 1)<1 + Zq1/2>(1 - C])

and we have proved part b).

_ A

For part ¢), first observe that 7(0,z) = (22 — 272) = X,(z) directly from the
definitions. By the identity X,(z) = Fy(q) - T'(q, z) we obtain F;(0) = 1. Also,
P(0) =1 from the definition. Thus, Fy(0)P(0) = 1. Seeing Fy and P as functions
of ¢, both are holomorphic on the disk |¢| < 1. Thus G(q) := Fy(q)P(q) is an
holomorphic function on |¢| < 1 with G(¢*) = G(¢) and G(0) = 1. Looking at
the power series development, G(¢) = > 7, anq", and using G(¢*) = G(g) we see
that a, # 0 only for n multiple of 4. Repeating the argument, a,, # 0 only for n
multiple of 16, and proceeding inductively the only nonzero term is ag = 1. We
deduce that Fy(q) = P(q)™!, as desired. i
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Remark 1.0.21. Usually one write 5(7) = ¢21P(q). We have in particular seen
above that

ez = ————log(n(r)).

Recall transformation formula es(u',v") = ey(u,v) — 2mi-S;, where v/ = cv + du
) ) !’ )

v =av+bu, ad —bc=1and ? € H.* We set 7/ = Z:Ig = Z—: and observe that

‘2—7: = (5)2 We compute
. () o d
—1 = — ——1
T es = 0g(1(7)) — -~ 1log(n(7))
u? ,
= —4—(€2(U V') — ez(u,v))
™
1 U 1 c
2 cw+du 2 cr+d
d
= log(er + d)%
Integrating and exponentiating yields
at +b 1 a b
n(CT n d) =€ (et +d)2 -n(7), for g = (c d) € SLy(Z), (15)

. b . . .
for some constant €, depending on g = (CCL d) . The constant ¢, is very interesting

and we will come back to it later.

Finally we come back to Theorem 1.0.14. Note that for w € I' \ 2I" we have
).

In particular we must have Es(%) = E3(3) = E3(*5) = 0. Thus we write

Es(5) = Ea(—3) = ~Ealg

(Eq(7) — €3)® — 15e4(Ey(x) — e3) — 35eg

) (Ea(x) — Bo ety

) (Ea(r) — Bo(“20)).

u v
2 2

Taking the discriminant on both sides gives the formula

u—+v u+v

= E3(2)” = (Ea(7) — Eqf

4(15e4)—27(35¢¢)* = [(Eaf

)=Ba(5)) (Ba(5) —Ba(—5)) (Ba(5)—Ex(3)))

(16)

4Note the difference to (7), where a and d are swapped.
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It can be computed that

u—+v U 1672 1
E2< 9 ) - EQ(E) = u2 q2T1(q) 5
u u+v, w A
E2(§) - E2( 9 ) = ETQ(Q) and
2
U v T
Ex(5) — Ea(35) = —2T3(C])4

The functions T;(q) are given by the series

1 ) .
Ti(g) =5 _d" " = P(@)*P(g)",

Ty(g) =Y (-1)"¢""/* = P(¢?)*P(g)"" and
Ty(q) =Y ¢"/* = P(g)°P(¢*)*P(q2) 2,

but most importantly they satisfy

Ty (@) To(0)Ts(g) = 5 3 (~1)" 20+ D/ = P(g)®

nez
Thus after artificially adding a factor of 2* to both sides of (16) we obtain

_ 9 92 12
A = g3 — 27¢% = 2%3%5%(20¢? — 49¢2) = (5) 12¢P(q)* = (%) 7 (17)

2. SATZ I: THE BASsic THEORY OF MODULAR FORMS

We will now introduce the basic theory of automorphic forms in quite some
generality.

2.1. The Hyperbolic Plane and Fuchsian groups. The hyperbolic plane is
up to isometry the unique simply connected hyperbolic surface.” A (for us) very
convenient model is the upper half plane:
dx? + dy?
¥
Given a matrix v € SLy(R) we associate the Mobius transfomration
az+b b a b
z = where v = )
7 cz+d’ 7 c d

This defines a transitive action of SLy(R) on H. Note that the centre of SLy(R)
is {£1} and it acts trivially. Therefore we will often work with PSLy(R) =

H={z=x+iyecC:y >0} equipped with ds* =

A hyperbolic surface is a smooth surface equipped with a complete Riemannian metric of
constant Gaussian curvature —1.
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{£1}\SLy(R).0
Exercise 1, Sheet 1: Let A = (¢%) € SLy(C). Recall the Mobius transformation
fa: C — C given by

_az—i—b
ez +4d

fa(z) and  fa(o0) = %

a) Show that every Mdbius transformation has at least one fixpoint in C.
b) Suppose that f4 has exactly one fixed point in C. Show that there is
B € SL,(C) and b € C such that

B'AB =+ ((1) ’1’) (18)

c) Let A € SLy(C). Show that f4 maps the upper half-plane H onto itself if
and only if A € SLy(R).

Solution. We look for z = ZIS’ or equivalently, cz? + (d—a)z—b=0. If c =0, oo
is a fixed point, and if in addition d # a, then b/(d — a) is the second fixed point.

On the other hand, if ¢ # 0, the equation is equivalent to

L d-a b (d—a)? L d-a Y (at+dP-—4
2c c 42 2¢ 4c2?

where we used det(A) = ad — bec = 1. Therefore, the equation has at most 2 fixed
points, at least 1, and exactly 1 if and only if the trace satisfies |Tr(A)| = |a+d| = 2.

For part b), note that fa o fg = fap. Also, recall the fact that for any two
3-tuples of distinct points (21, 29, z3) and (wy, ws, w3) there is exactly one Mdbius
transformation that satisfies f(z1) = wq, f(z2) = we and f(z3) = ws. For the
existence, consider

Z1 —R3 % — %9

z =
f21,z2,z3( ) 2 — 297 — 23
which sends (z1, 22, 23) to (1,0,00). Then the transformation fi',, . 0 fa 0.2

sends (z1, 29, z3) to (w1, wy, w3). If two Mobius transformations f4, fp send (21, 22, 23)

to (w1, wq, ws), then fg' o f4 fixes three points, and therefore f4 = f5.

Coming back to the proof of part b), if f4 has exactly one fixed point, after
conjugating we can assume that the fixed point is co. Thus ¢ = 0 and from the
reasoning in part a) above, as f4 has only one fixed point, we must have a = d.
As 1 =det(A) = ad — bc = a® we have a = £1, as desired.

SFor us an element in PSLy(R) will just be represented by a 2 x 2 matrix. This is of course
up to multiplication by £1, which we will usually suppress in the notation.
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For part c), if A € GLy(R), then for z € H we have
az+b  (az+b)(cz+d)  acz|® + (ad + be)Re(z) 4 i(ad — be)Im(z)

cz4+d lcz + d|? lcz + d|?

fa(z) =

and thus fa(z) € H if and only if det(A) > 0. For the other direction, recall the
one-point compactification C := CU{oo} of C, which has the topology that agrees
with usual one on C and such that the open neighbourhoods of {oc} are the sets
(C\ {K})U {oo} for compacts K C C". Also, recall that Mobius transformations
act by homeomorphisms on C. The boundary of H in C is R := RU{co}, and since
fa is a homeomorphism of C that sends H onto itself, it must send its boundary
onto itself, that is, f4(R) = R bijectively. Letting (z1, 2, z3) be the preimages of
(1,0,00), we have fa = f., .,., by the uniqueness above. Since 2, 29, 23 are real
(or maybe one of them is 00), then, by the formula for f,, ., ., above, f., ., .. = f5
for a matrix B € GLy(R). Since fp sends H onto itself, we have det(B) > 0, and
since scalar matrices act like the identity, we can assume B = SLy(R). Therefore
A = AB for some B € SLy(R), and taking determinants A = +1, so A € SLy(R),
as desired. &

Remark 2.1.1. We have seen the upper half plane before. Indeed starting with a
lattice I' = Zu + Zv C C we associated 7 = 02 € H for § € {£1}. After swapping
u and v if necessary we can assume that 6 = 1. Note that, if

vy fa b\ (v
u)  \ec d w)’
——’
=g€eSLa(R)
then we have
, ar+b

T er+d
On the other hand, given 7 € H we can associate the lattice

= gT.

I=Z-1+2Z-r.

The lattice I is similar to I in the sense that it can be obtained from it by rotation
and dilation.

Lemma 2.1.2. The group of orientation preserving isometries of H is the group
PSLy(R) acting via Mdbius transformations.

Proof. Orientation preserving isometries of H are precisely conformal automor-
phisms of the upper half plane. It is a classical result that such maps are (real)
Mobius transformations.

"With this topology C is homeomorphic to 2 as one sees from stereographic projection.
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Let us check that the Mdbius transforamtion given by T = (CCL Z) is an isom-
etry. We compute

Im(z) d 1
m(T2) = —— and T2 =T'(2)———.
m(Tz) lcz + d|? B (Z>(cz—|—d)2

We get
U 2 2
Pty TEEE e,

Im(72)2  Im(z)2

Remark 2.1.3. Another model for the hyperbolic plane is the Poncaré disc
dx? + dy?
(1—1[22)*

The map z — Z=; provides an isometry between the two.

B={z¢€C:|z| <1} with ds* =4

The boundary of the upper half plane is 0H = R U {oo}.

Lemma 2.1.4. The geodesics of H are precisely the arcs of circles intersecting OH
orthogonally.

Proof. We start by computing the geodesic arc connecting two points ¢a and b
with 0 < a < b. Let n(t) = x(t) + iy(t) be curve connecting these two points. Its

length is given by
SN IO O
o= [T
t1 y<t)

By (1)
= / Ok

> | * (log(y(®))Ydt = log(b/a).

t1
The minimum is attained if and only if 3/(¢) > 0 and z'(¢) = 0. We conclude that
the path along the y-axis is the path of shortest distance and thus a geodesic.
The general case is reduced to this one via Mdbius transformations. it

The previous lemma shows that for two distinct points 21, zo € HU OH there is
a unique geodesic segment, denoted by [z1, 23] connecting these two points. The
hyperbolic distance is given by

d(z1, z2) = U([z, w]).

One can check that )
|21 — 2o

cosh(d(z,29)) =1+
(e 2) 2011

for z1, zo € H.
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We equip H with the PSLy(R) invariant measure
du(z) =y *dady.
Elements in PSLy(R) are classified according to their fixed points.

Definition 2.1.1. A non-trivial element v € PSLy(R) is

e elliptic if [tr(y)| < 2; (In this case v has one fixed point within H.)

e parabolic if |tr(v)| = 2; (In this case v has a single degenerate fixed point
in OH.)

e hyperbolic if |tr()| > 2; (In this case v has two fixed points in OH.)

Definition 2.1.2. A subgroup I' C PSLy(R) is said to act properly discontinuous
(on H) if for each compact set C' C H and z € H the intersection I'=N C' is finite.

Definition 2.1.3. A Fuchsian group is a discrete subgroup of PSLy(R).

Lemma 2.1.5. A subgroup I' C PSLy(R) acts properly discontinuous if and only
if it is Fuchsian.

Proof. 1f T' is Fuchsian, then I'z is discrete. This implies that C'N 'z is discrete
and compact and therefore finite.

Assume that I" acts properly discontinuous. We first show that there are points
in H that are not fixed by any non-trivial element in H. To do so take yw = w
and any z € H. Then one has

d(Tz,z) < d(Tz,Tw) + d(tw, z) = 2d(z,w).

Thus only finitely many points in any neighborhood of z can be fixed by non-trivial
elements of I'.

In particular we can fix some w not fixed by any element of '\ {1}. If T" is not
discrete, there is a sequence 7, — 1 contained in I". However, the sequence {v,w}
consists of distinct points and v, w — w as n — oo. This is a contradiction. &P

Remark 2.1.6. Tt is an important theorem of Heinz Hopf that given a hyperbolic
surface X, there is a Fuchsian group I' C PSLy(R) without elliptic elements so
that X =2 I'\H. Note that in general, if I" contains elliptic points then technically
speaking I'\H is an orbifold (and not a smooth surface).

Definition 2.1.4. A fundamental domain F C H for a Fuchsian group I' is a
closed region such that

I'F=H

and for each non-trivial v € I' the interiors of F and v.F are disjoint.

Fundamental domains will play a crucial role for us. For w € H we associate
the Dirichlet domain

Dy ={z € H: d(z,w) < d(z,yw) for all v € T'}.
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It turns out that if w not the fixed point of an elliptic element in I', then D, is
a fundamental domain. Furthermore, D, is convex and bounded by a union of
geodesics. One can even see that the sides of a Dirichlet domain can be used to
find nice generating sets for I.

Definition 2.1.5. A Fuchsian group is geometrically finite if there is a fundamen-
tal domain that is fa finite sided convex polygon.

Theorem 2.1.7. For a Fuchsian group I the following are equivalent:

o I'\H is topologically finite (i.e. finite Euler characteristic);
o ' is finitely generated;
e ' is geometrically finite.

Proof. Omitted. it
Lemma 2.1.8. Let I' be a Fuchsian group and let z € HUOH. Then the stabilizer
I,={yel:yz=2z}

18 cyclic.

Proof. We will use the fact that two elements v, € PSLy(R) commute if and
only if the have the same fixed point set. The result is now obvious since discrete
subgroups of SO, R and R* are cyclic. it

Definition 2.1.6. A Fuchsian group is said to be of the first kind, if every point
in OH is a limit point of I'. (A point in OH is a limit point I' if it is a limit point
of some orbit I'z for z € H.)

Remark 2.1.9. A theorem due to Poincaré and Fricke-Klein classifies the possibil-
ities for a limit set A(T") of a Fuchsian grou I'. There are three possibilities:

e A(T") has 0, 1 or 2 points. (In this case I is called elementary.)

e A(I") = OH. (In this case I is said to be of the first kind.)

e A(T') is a perfect nowhere-dense subset of OH. (In this case I' is said to be
of the second kind.)

Lemma 2.1.10. Every geometricall finite Fuchsian group of the first kind has
a fundamental domain of finite volume. (Furthermore, a Fuchsian group with a
fundamental domain of finite volume is of the first kind.)

Proof. See for example Discontinuous groups by C. L. Siegel (1943). pif

Throughout we will restrict ourselves to geometricall finite Fuchsian groups of
the first kind. These come in two flavors. If the fundamental domain is compact,
then wecall I" a co-compact group.

Lemma 2.1.11. A geometrically finite Fuchsian group of the first kind is co-
compact if and only of it has no parabolic elements.
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Proof. We will argue by contradiction and assume that I' contains a parabolic
element. Without loss of generality we can assume that this element fixes co.

We first show that there is ¢ > 0 so that every (CCL Z) satisfies ¢ = 0 or

1 h
0 1>. Now take

le| > cr. To see this we suppose that 'y, is generated by (

o= (i b) with 0 < |¢| < 1. Among the matrices

d
(1 R\ (1 h\"
Inm =109 1) “\o 1

< Im(o’i) <1 and 0 < Re(o'i) < |h|.

there is one, say ¢’ with
1
(1+|A])?
But this is a finite set which contains only finitely many elements of the orbit I'.
Now define .
U={ze€eH: Im(z) > —}.
cr
Given v € I' \ 'y, (i.e. bottom left entry is non-zero) we observe that for z € U
we have vz ¢ U. We can take a sequence z,, € U with z, — co. Since two distinct
points in this sequence can not be I' equivalent we obtain infinitely many distinct
points in T\H. If the latter is compact, then there must be an accumulation point
7. We can take a compact neighborhood C' of 7 and a neighbourhood V' of co with

'V NC = (. But by construction of the sequence z, there must be elements of z,
in V. This is a contradiction. yif]

The basic example of a Fuchsian group of the first kind is PSLy(Z).
Lemma 2.1.12. The group SLy(7Z) is generated by the matrices

11 0 -1
T = (0 1) and S = (1 0).
Furthermore, a fundamental domain for PSLy(Z) is given by
1
F={Z=utiy | < g e 21}

Proof. We first note that S? = —1 and we compute
a b —c —d

o (c d) - ( a b ) '

On the other hand we have

n (@ by  [(a+cn b+dn
c d) c d ’



ADVANCED ALGEBRA 1: MODULAR FORMS 26

b) we apply T" with a

The procedure is now easy. Given any element v = (Z d

/ /

Z) with 0 < a < |e. Then we apply S.

Repeating the process allows us to create an upper triangular matrix, which then
is +1 times a power of 7'
We turn towards the fundamental domain. For z € H we consider the lattice

N=7Z+7Zxz.

The shortest vector (a,b) € A gives rise to the element 2’ € I'z with the largest
imaginary part:

suitable choice of n so that T"vy = ¢

Im(2)
ez +d|?
Without loss of generality we can assume that —% < Re(?) < % We claim
that |2/| > 1. Indeed of |2/| < 1, then Sz’ has larger imaginary part, which is a
contradiction.
It remains to be seen that elements in 21,2, € F° are inequivalent. Suppose

that zo = y2z; and Im(z;) > Im(23). This implies that

Im(z;)
2 — < 1
lczq +d () =

Im(2")

This implies that |cIm(z;)] < 1 and because z; € F° we have ¢ < 1. The case
c = 0 is easily handled. Let us assume ¢ = 1, then we can write

_fa ad—=1\ . 4opd
’y—<1 d )—TST.

We see that wy = z; —a and wy = 25+ d satisfy w; = Sws and |wy|, |we| > 1. This
implies that zq, zo must be on the boundary. i

Remark 2.1.13. The fundamental domain can be used to compute the co-volume
of PSLy(Z) (i.e. the volume of the fundamental domain with respect to the hyper-
bolic measure dyu(z)). Further, it can be seen from the fundamental domain that
PSLy(Z) is not co-compact. (One can also just note that 7" is a parabolic element
and apply Lemma 2.1.11.)

Exercise 2, Sheet 2: Determine all parabolic and elliptic conjugacy classes
of SLy(Z) and find the corresponding fixed points in the standard fundamental
domain.

Solution. Recall that A € SLy(R) is elliptic if and only if |Tr(A)| < 2 and parabolic
when |Tr(A)| = 2 but A # £Id. Equivalently, A is elliptic when it has a simple
fixed point in H (not in the ideal boundary), and A is parabolic when it has a
double fixed point in R U {oo}. For A € SLy(Z), we have Tr(A) € Z. Therefore,
the only posibilities for the trace of an elliptic A € SLy(Z) are Tr(A) = —1,0, 1.
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After multiplying by —Id if necessary we can assume that Tr(A) = 0 or 1. Recall
also that D := {z + iy | —% <z< % and z% + y* > 1} is a fundamental domain
for SLy(Z).

Let z4 be the fixed point of the elliptic element A € SLy(Z) with Tr(A) € {0,1}.
By definition of the fundamental domain, there is B € SLy(Z) such that Bz, € D.
Thus, C = BAB™! is an elliptic element with fixed point Bz, in the fundamental
domain. As can be checked easily, the formula for the fixed point is

— 2 _
a d—l—\/2(a+d) 4 where C:(a b)
c

c d

where have to choose the square root so that zo € H. If Tr(C') = 0 then d = —a
and the fixed point is z¢ = (a + i)/|c|. As z¢ € D, we have 2|a|] < |¢| and
a’ 4+ 1 > % The only possibility is |¢] = 1 and @ = 0. Therefore, in this case
C=+dwy==+ <(1) _01) with fixed point 7.

Suppose now that Tr(C') = 1. Then d = 1 —a and z¢ = (2a — 1 +/3i)/(2|¢|). As
2c € D we have |2a — 1| < |c| and |2a — 1|*> + 3 > 4|c|?. Thus |¢/ =1 and a = 0 or
a = 1. This leads to the four possibilities

(1 -1 (0 1 (0 -1 (11
Y=l o) 2T 1) T 1) T o oo

Note that wy Ywswy = wy and Wy Ywswy = wo. However, wy and wy are not conjugate
over SLy(R). Indeed, the equality

a+b —a\ (a b\ (1 =1\ (0 1Y\ fa b\ _ c d
c+d —c) \c d)J\1 0) \-1 1)\c d) \—-a+c —b+d
leads to a+d = 0 and d = b—c. Together with ad—bc = 1 we obtain —b?+bc—c? =

1, which is impossible if b, ¢ € R. Observe also that wy and —wy are not conjugate
over SLy(R). Indeed, the equations

S B i B B G R S B

lead toa = —d and b = cso that 1 = —a?—b* < 0, a contradiction. Therefore, a list
of pairwise not conjugate elliptic elements in SLy(Z) is given by {wo, w1, we, —wp, —w1, —wa }.
Working on PSLy(Z), equivalently, working with the group of M&bius transforma-

tions induced by matrices in SLy(Z), the list is given by { f.,, fu:, fu }, With fixed

1++/3i —14/3i
2 2

ZC =

and

points 1, respectively.

Consider now a parabolic element in SLy(Z), say

A= (Z Z) € SLy(Z), Tr(A) =2
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By hypothesis, A has a double fixed point with formula z, := I%d, in particular
z4 € QU {o0}. Recall that the action of SLy(Z) on Q U {oco} is transitive.” Thus
after a conjugation we can assume without loss of generality that the double fixed
point of A is at infinity. Since Tr(A) = 2, we arrive at the conclusion that A must

be equal to
1 n
4, = (O 1)

for some n € Z\ {0}. Suppose that A,,, A, are conjugate in SLy(Z) for n # m. In
that case we could find ((é Z) with integers entries and determinant 1 such that

a an+b\ _ fa b\ (1 n\ _ (1 m\ (a b\ _ (a+mc b+md
c en+d)  \c d 0 1) \0 1 c d) c d
As m,n # 0, we deduce ¢ = 0, and thus ad = 1. As a,d € Z we must have
a = d, which implies n = m. Therefore, a list of the parabolic conjugacy classes in

SL(2,Z) is {A,} U{—A,} with fixed point oo (A, is not conjugate to —A,, since
the traces are different). On PSL(2,7Z) the list is {fa, } i

Another important example are the so called (Hecke) congruence subgroups

To(N) = {(‘C” g) € SLy(Z): N | c}
of level N € N. Note that

1
[SLa(Z): To(N)] = N - [ | (1 + ]3) .
This will be proved in Proposition 4.1.7 below.

Exercise 3, Sheet 2: Show that I'g(4) is generated by

(0 2) () (37)

Solution. First, observe that this matrices are in I'y(4). Next, consider an arbitrary
element of I'4(4), of the form

a b
A_(4c d) a,b,c,d € 7.

Let’s look at the pair (a,4c). If ¢ = 0 we skip the following discussion. Otherwise,
we perform a series of transformation by multiplying on the left by powers of

8Given r € Q, write it as r = a/c for coprime integers, (a,c) = 1. Then find b, d € Z such that
da — be = 1 (this is possible by Bezout’s theorem). Then for A := (CCL Z) we have A € SLy(Z)

and Aoco =

2 = r, proving transitivity.
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: . o 1
the generators above. Operation 1 consists of multiplying by (0 T) on the left,

which has the effect (a,4c) — (a + 4cx,4c) =: (a1, 4c1). By euclidean division, we
can choose a unique x € Z such that |a;| < |2¢| = 2|¢y|. Since (a1,¢1) = 1, we

actually have |a;| < 2|ci|. Operation 2 consists of multiplying by ( 41y (1)) on the

left, which has the effect (a1, 4c;) — (a1, 4ya; + 4c) =: (az, 4ce). We can choose
a unique y such that |co| < |ai|/2 = |as|/2, and since (ag,4cs) = 1, we actually
have 2|cy| < |ag|. While ¢, # 0 we apply the operations alternating between the
two. If |a| > 2|c| we start applying operation 1, and if |a| < 2|c| we start applying
operation 2. Since after any operation |a,i1| + |cht1| < |an| + |ca| the process
has to stop, and it must be ¢, = 0. Thus after multiplying on the left by certain
powers of generators we arrive at

B= (g j) € SLy(Z).

Because r,s,t € Z and rs = det(B) = 1 we must have either r = 1 = ¢ or
r = —1 = t. After multiplying by —Id if necessary we can assume we are in the

first case, but then
11\’
50 )

and we are finished. it

Remark 2.1.14. Note that, T'y(4) = o 'T'(2)a, where a = diag(2,1). Therefore,
the exercise is equivalent to proving that I'(2) is generated by

%) 6D GY)

One can prove that, in fact, the elements T} := (1) ?) and Ty := (; (1)) have
no nontrivial relations, and that {—1I5} does not belong the group they generate,
so that T'(2) ~ Fy x (Z/27), where F, is the free group in the two generators Ty
and T5. There is a beautiful classical proof of this fact, which we now present.

As usual, let f4 be the Mobius transformation associated to a matrix A € GLy(C).
Consider the Mobius transformation
z—1
fa(z) == —zz 1

It satisfies f4(0) =14, fa(1) =0, fa(—1) = o0 and fa(i) = 1, so fa sends the unit
disc bijectively onto H. Note that f4 is the Mdbius transformation associated to
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Define R; = A~'T; A. We calculate

=3 (5D G ) -3
res (56D

Letting S; := R; ', we compute

C(1—i =i _(1+i i
&(i 1+J and &(i 1—9

To deduce that T} and T, have no nontrivial relations it is enough to show that
fr, and fr, have no nontrivial relations, and this is equivalent to show that any
nonempty word in the letters fgr,, fs,, fr,, fs, such that there no occurrences of
Ry, 57 or of Ry, Sy one after the other. Now comes the beautiful geometric fact.
Consider the following figures, where the black circle is {|z| = 1}, the points are
wy =141, wy=—141 w3=—1—1, wy =—1+ 1 and all circles are of radius 1.

Green

Orange

Recall that Mobius transformations preserve angles and send generalized circles to
generalized circles. Since fr,(—1) = —1 and fg,(—%) = i, the transformation fg,
sends the red circle to a circle that passes through —1 and ¢ and is orthogonal to
the black circle. The only such circle is the orange one. Since fg,(0) = (i —1)/2,
which is in the interior of the orange circle, we see that f, sends the exterior of
the red circle to the interior of the orange circle. Arguing similarly, one gets the

i 1\ (—i+2 i+2\ _ (1+i i
—i 1 1 1 )7\~ 1
1(i 1 —i i\ (1-i
o\~ 1)\ ~2i+1 20+1) =\ — 1+

2

)
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following relations
fr, (Exterior of red) = Interior of orange fs, (Exterior of orange) = Interior of red
fr, (Exterior of blue) = Interior of green fs, (Exterior of green) = Interior of blue

Now we look at the action of a nonempty reduced word f,, o---o f, on the set
labeled as Domain in the diagram. This open set is the part of the circle {|z| < 1}
that is exterior to the other circles. We claim that

Interior of orange if z1 = Ry

I i f if v =
fo 0o f, (Domain) C nter%or of red 1 =5
Interior of green if 1 = Ry

Interior of blue if x1 =5,

This is proved inductively, the case n = 1 being clear. For the induction step,
observe that

fz, (Interior of orange) if zo = Ry
fz, (Interior of red) if xo = 5;
fz, (Interior of green)  if zy = Ry
fz, (Interior of blue) if 19 = 5

Now the claim follows using that, since the word is reduced, x5 is not the inverse
of z1. For example, if 21 = Ry, then x5 is not S;. Therefore, f,,0---o f, (Domain)
is exterior to the red circle, and since f,, sends the exterior of the red circle to
the interior of the orange circle, we deduce the claim in this case. The other cases
are similar. The conclusion is that, since f,, o---o f, (Domain) # Domain, the
elements fr, and fr, have no nontrivial relations. Therefore, after conjugating we
deduce that fr, and fr, have no nontrivial relations. This not only shows that
Ty, T, have no nontrivial relations, but also that —I5 is not in the group generated
by 11,75, and we have proved

['(2) ~ Fy x {£I,} where Fj is free in the two generators Ty, 7.

fay 00 -0 fr, (Domain) C fa, (fa,0: - -0 fr, (Domain)) C

Remark 2.1.15. The circles in the diagram above are the isometric circles of the
respective transformations: the red circle is the isometric circle of Ry, the orange
circle is the isometric circle of Sp, the blue circle is the isometric circle of Ry and the
green circle is the isometric circle of S;. The area labelled as Domain is actually
a fundamental domain for the group generated by R, Rs, and is an example of a
Ford domain. More details can be found in the beautiful classical paper titled The
fundamental region for a Fuchsian group by L. R. Ford.

Exercise 1, Sheet 3: Compute the co-volume of the Hecke congruence subgroup
['g(4) C SLy(Z). In case the facts

(1) SLy(Z) has co-volume %

(2) SLo(Z) : To(N)] = N - Ty (1+3):
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are used, these should be proved (in the relevant cases).

Solution. Note that —I isin I'g(4), so [SLa(Z) : T'o(V)] = [PSLo(Z) : {£L}\['o(N)].
Therefore, Vol(I'g(4)\H) = [SL2(Z) : T'y(4)]Vol(SL2(Z)\H). We calculate the in-
dex for general N. Consider the principal congruence subgroup, I'(N) C T'g(N),
consisting of matrices

<1+Na Nb

Ne 1+ Nd) for a, b, c,d € Z with determinant equal to 1

Look at the exact sequence
1 —— I(N) —— SLy(Z) 24X S1,(Z/NZ) — 1

The only part where exactness is not clear is the surjectivity’. Consider A =
(Z Z) with integer entries such that ad — bc = 1 + kEN. We want to find a
matrix congruent to A mod N with determinant 1. Using the Smith normal

form we can write A = BDC where B,C € SLy(Z) and D = (Cél 6?2) with
dl + NLE Ny
Nz dy + Nw
x,y, z,w such that the matrix is in SLy(Z). This is equivalent, after simplifying,
to k + wdy; + xdy + N(zw — yz) = 0. By Bézout we find integers x’,w’ such
that w'd; + 2'dy = (dy,ds). Since (dy,ds) is a unit mod N, we find integers r,[
such that r(dy,ds) + k = NI. Thus, letting x = r2’ and w = rw’ the equation
k+wd; + xdy + N(xw —yz) = 0 is equivalent to [+ xw —yz = 0. We can now put
dy 0
0 dy
D’ congruent to D mod N and with determinant 1. Thus, A" := BD'C is con-
gruent to A mod N and is in SLy(Z), proving the surjectivity in the exact sequence.

dids = 1+ kN. We put X = ( and try to find integers

y =1and z = [+2xw. Thus given D = ( with dyds = 1+ kN we have found

By the CRT, if N = []p" we have Z/NZ ~ [],y Z/p"Z and thus SLy(Z/NZ) ~
[1, n SL2(Z/p**Z). For the cardinality of SLy(Z/p'Z) we consider

1 —— SLy(Z/P'Z) —— GLy(Z/P'Z) -2 (Z)p'Z)* —— 1

where (Z/p'Z)* is the group of units mod p!, of cardinality ¢(p') = (p — 1)p"~L.

Therefore, #SLo(Z/p'Z) = %ﬁ{f%. To calculate the cardinality of GLs, con-

sider first { = 1. In this case Z/pZ is a field, and it is easy to see that # GLa(k) =

9See Shimura Introduction to the arithmetic theory of automorphic functions, Lemma 1.38,
for an argument that works for SLy
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(¢> — 1)(¢* — q), whenever k is a finite field with cardinality ¢. In particular,
# GLo(Z/pZ) = (p* — 1)(p* — p) For I > 1 consider the exact sequence

mod p

1 —— [(Z/p'7) —— GLy(Z/p'Z) 2“5 GLy(Z/pZ) —— 1

14+pa  pb

. z . .
Here I'(Z/p'Z) consists of matrices of the form ( e 1+ pd

) with entries in
Z./p'. Therefore, #T(Z/p'Z) = p*~1 and

#GLo(Z/p' L) = #T(Z/p' L) #GLa(Z/pZ) = p* D (p* — 1)(p* — p)
and finally

#GLy(Z/p'Z) -
SLy(Z/p'7) = === 20 — 322 —
#SLo(Z/p'Z) TS (p*—1)
Recall that we are interested in the index of I'g(N) in SLy(Z). Clearly, I'y(N)

contains I'(N), and the image of (/) under reduction mod N (as in 19) is the

group of upper triangular matrices with determinant one, of the form with

a b
0 d
a,b,d € Z/NZ and ad =1 mod N. We can argue directly, by noting that b can
be any arbitrary residue modulo N, that a must be a unit mod /N and that d is
determined by a, that the cardinality of this group is No(N) = N? ], y(1—p™).
Thus, we arrive at

N3 T, n(1—p2
[Co(N) : SLy(Z)] = N?fﬁfl(ﬁ/ ]_va1> = W %NE1 —i—li - Ng(l +p )

To calculate the covolume of SLy(Z) we just need to integrate the volume form
y~2dxdy over the fundamental domain D := {x +iy |y > 1, y* + 22 >1,-1/2 <
x < 1/2}. We apply Fubini, integrating first over y to get

1

2 o0 % 1 % e
Vol(D):Q/ (/ y‘Qdy) da::2/ (1—x2)_2dy:2/ df = -
0 V1—22 0 0 3

where we have performed the change of variables x = sinf. Therefore, the covol-
ume of I'y(N) is

m -1
p|N

In particular, the covolume of I'y(4) is 27. i

While it is quite easy to construct non-compact Fuchsian groups of the first
kind by just taking subgroups of SLy(Z) determined by congruence conditions it
is slightly harder to construct co-compact groups. A useful tool is the following
result:
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Theorem 2.1.16 (Nielsen). Suppose I' C PSLy(R) is non-abelian and contains
only hyperbolic elements, then it acts properly discontinuous.

Proof. Suppose that I' is not discrete. Then we find a sequence v, — 1 with 7 # 1.
Let o be a fixed (hyperbolic) element of I'. After conjugating I' (if necessary) we
can assume that o fixes 0 and oo and thus is given by o = diag(p,p~!) for some

p € R. Given v = (Z ) € I' we compute the commutator

d

2 2
S G ( —q*)bc  (¢" —1)ab
o] =007y = ( (2=1Ded 1+ (1—qgHbc)"
We see that
tr(fo,7]) =2~ (¢ — 7).
Similar we find that

tr([O', [07 7]]) =2 + ((] - q71)4abcd.
Of course we have

Ve, [0, 7] [0 [, ] = 1.

Note that since I" does not contains only hyperbolic elements the (absolute values
ag bk
Cr dk
br,cr — 0 and ag,dr — 1 as k — oco. Looking at the traces of the commutators
we find that bc < 0 and bc > 0. In other words b, = 0 or ¢, = 0. In particular, we
see that all v, share a fixed point with o.

It can be easily seen that almost all 7, must share the same fixed point with o.
Indeed, otherwise we find infinitely many k, [ with

[ ag bk ([ 0
fyk_<0 dk) and%—(cl dl)

Multiplying these two matrices we see that ¢, d; # 0 gives a contradiction to
ey — 1 as k, [ — oc.

Suppose that almost all v, have the fixed point co (the case that they all have
the fixed point 0 is similar.) If we assume that 0 is not a fixed point then we have

ar b 1 2 — Dagb
’Yk:(ok dZ) and [07'719]:(0 (q 1) kk)

Thus we have found a parabolic element in I', which is a contradiction.

So far we have
. Qg 0
’Yk: - 0 ak —1

of the) traces of the commutators are all > 2. If 7, = , we note that

up to finitely many exceptions.
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Since I' is non-abelian and contains only hyperbolic elements there must be
7 € I that thus not preserve {0,00}. Write 7 = (: ?) Considering the

commutators [y, 7], which tend to 1 as kK — oo one finds that ab = 0 = ¢d. This
is a contradiction.

s

Let p = 1 mod 4 be prime and let n be not a quadratic residue modulo p. We
claim now that the group'’

T(n,p) = {((C iz\%ﬁ\/]—) (C:f\b/\’%/ﬁ> ca,b.e,d €7, a—bn — p+ dPnp = 1}

is Fuchsian of the first kind and co-compact. To see this one first checks that all
elements are hyperbolic. Then Nielsen’s theorem implies that I'(n,p) is a Fuch-
sian group. After checking that I'(n, p) has finite co-volume (i.e. a fundamental
domain has finite volume) we are done. Indeed it contains no parabolic elements
and hence must be co-compact.

Exercise 2, Sheet 8: For ¢ € N let I'(q) = ker(SLy(Z) — SLo(Z/qZ)).

a) Show that, for a prime p and an exponent ¢ € N the quotient I'(p)/T'(p") is
a p-group.

b) Prove that the alternating group A,, for n > 7 is not isomorphic to any
composition factor in a composition series of SLy(Z/p'Z).

It is well known that, if ¢ = p%'p? - - - pls, then
SLa(Z/qZ) ~ | [ SLa(Z /i Z2)
i=1

In particular, the above implies that no composition factor in a composition series
of SLy(Z/qZ) is isomorphic to A, with n > 7.

c) Conclude that, if there is a normal subgroup K C SLy(Z) such that
SLy(Z)/K ~ A, for some n > 7, then K can not contain any of the
subgroups I'(¢) with ¢ € N. (Such a group K is usually called a non-
congruence subgroup).

Remark 2.1.17. The exercise is also true for n > 6. However, it fails for n = 5,
since As ~ PSLy(Z/5Z). The group Ay is not simple and Ay ~ PSLy(Z/37), in
particular this last group is not simple. Finally, Az is cyclic of order 3 and it is
a composition factor of SLy(Z/3Z) (since it is the quotient of A4 by the Klein
four-group) and of SLy(Z/27Z) ~ S.

0T his group is constructed from an order in a quaternion algebra.
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Solution. For part a), observe that we need to count the number of matrices
(1 +pr  py

Pz 14+ pw
ticular, the values of z, v, z,w only matter modulo p'~!. The condition det = 1
translates to

with entries in Z/p'Z and determinant 1 modulo p*. In par-

1+ px + pw + p*zw — p*yz = 1 mod p'  if and only if
r+w+ prw — pyz = 0 mod p'~ ! if and only if
x(1 4 pw) = pyz — w mod p'~!

Since (1 + pw) is a unit in Z/p*~1Z, we can choose y, z, w freely and solve for x
uniquely. Thus, [[(p) : T'(p?)] = p?¢=V.

Moving to part b), we take as granted that PSLy(k) is simple for any field k&
of cardinality greater than 3 and that the group A, is simple for n > 5. The
cardinality of A,, is n!/2, in particular it is composite for n > 3. Since I'(p) is
normal in SLy(Z), a composition series for SLy(Z/p'Z) can be formed by pasting
composition series for T'(p)/T'(p") and for SLy(Z/pZ). By part a), the composition
series of I'(p)/T'(p") will consist of composition factors of prime cardinality (finite
p-groups are solvable). Also, for p > 5, since we have the exact sequence

1 —— {£Id} —— SLs(Z/pZ) —— PSLy(Z/pZ) —— 1

and PSLy(Z/pZ) is simple, the composition factors of SLy(Z/p'Z) are, either of
cardinality p, of cardinality 2, or PSLy(Z/pZ). Comparing these cardinalities
with n!/2 = #A,,, the only possibility is PSLy(Z/pZ) ~ A,. We know that the
cardinality of PSLy(Z/pZ) is 1/2-p(p — 1)(p+1). Therefore, if PSLy(Z/pZ) ~ A,
we must have

n!=pp-1)(p+1)

In particular, n! must be divisible by p, so necessarily n > p, and then n! > p!l.
Setting n = p, cancelling factors, we must have (p + 1) > (p — 2)!. This adds
the restriction p < 5, and comparing 6! to p(p — 1)(p + 1), we see that the above
equality is impossible.

For part ¢), if such a K contained the principal congruence subgroup I'(q) for
some ¢ € N, then A, would be a composition factor of SLy(Z/qZ). Letting ¢ =

pipy -+ pl, since

SLy(Z/qZ) ~ HSL2 Z/p" )

we see that any composition factor of SLQ(Z /qZ) must be a composition factor of
SLy(Z/py7Z) for some 1 < i < s. By part b) this is impossible. i
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2.2. Multiplier Systems. For z € C we choose the argument to take values in
(—m,m| (ie. arg(z) € (—m,m]). With this choice we take the principle branch of
the logarithm to be

log(z) = log(|z]) + targ(z).
Further we define
2% = exp(slog(z)).
We now define the quantity

Jg(2) = cz 4+ d, where g = (CCL Z) € SLy(R)

The co-cycle condition
Jgn(2) = Jg(hz)jn(2),
for g, h € SLy(R), is easy to verify.

Remark 2.2.1. Let us consider the following motivating example. Recall that in
Remark 1.0.21 we have defined the Dedekind n-function. Further we used the
identity

es(1,7) = —4mi - % log(n(7))

and the transformation formula
c

d b) = 1 — 2 —
ex(ct +d,at +b) = ex(1,7) 7rzc7_+d,

which is a special case of (7), to deduce that
n(yr) = €y (1) 20(7).
Here 7 € Hl and v = ( Z) € SLy(Z).
We deduce that

€ghjgh(7)% = egehjg(hr)%jh(T), for g, h € SLy(Z).

The map SLy(Z) — C*, g — ¢, is the prototypical example of a multiplier system
which we will define soon.

Before we continue we look at the following example, which should serve as a

warning. Take
_(N+1 N dh— 1 0
9=\ -N 1-N) TN 1)

Then we see that

1

Jgn(2)% = [(N? —2N)z +1 — NJ? & 1t NJ2[=Nz +1)2 = j, (hz)2ju(2)
e‘ﬁ ~ ~~ o e—H

Indeed, both sides differ by a factor of —1.
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We now define the number w(g, h), for g, h € SLy(R), by

2mw(g, h) = —arg(jon(2)) + arg(jy(hz)) + arg(ju(2))-
It can be seen that w(g, h) € {—1,0, 1} and it is independent of z € H.

01

w(gh,h') +w(g, h) = w(g, hh') + w(h, 1),
(9,h) = w(h, g) if gh = hg,
(ug, h) = w(g, hu) = w(g, h),

w(gu, ) = w(g, uh),
(
(
(

Lemma 2.2.2. For g, h,h' € SLy(R) and u = (1 *> we have

w

€

w(g~'ug, h) +w(g, g~ 'ugh) = w(g, h),
wg,u):w( g) =0 and
w(gug™, g) = w(g,9 'ug) = 0.
Proof. Exercise. it
: * % :
Furthermore, if g = (O d> with d < 0, then
w(g.g7) =1
Otherwise we have
w(g.97") =0.

Definition 2.2.1. For k € R we define the factor system of weight £ by setting
w(g, h) = e(kw(g, h)), with g, h € SLy(R).

We note straight away that this only depends on k£ modulo 1. The purpose of
this definition is the identity

w(g, h)jgn(2)" = Jg(hz)*jn(2)". (20)

This fixes the mistake in (19). If we further define the slash operator |.g acting
on functions f: H — C by

[flegl(z) = jg(2) ™ f(g2),

then we obtain the composition rule

flegh = w(g, h)[fleg]lkh.-
Now let I' C SLy(RR) be a discrete subgroup.'!

Hpg image in PSLy(R) will then be a Fuchsian group as discussed earlier in this Chapter.
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Definition 2.2.2. A multiplier system of weight k for I' is a function ¢: I' —
S1 such that
).

V(1172) = w1, 72)0(11)9 (72
If —1 € I' we additionally require that J(—1) = e(—%)."”

Let us look at examples:

e The function ¥(g) = €, given by the transformation behavior of the Dedekind
n-function is the prototype of a weight % multiplier system for SLy(Z).

o If k € Z, then a multiplier of weight k£ for I" is simply a character of I". A
particular explicit example can be constructed for I'y(/V) from a Dirichlet
character y modulo N by setting

i To(N) = S, (Z Z) =\ (d).

If x(—=1) = (—1)*, then this defines a weight k multiplier system for I'y(N),
which is also denoted by Y.

The following constructions allow us to create new multiplier systems from ex-
isting ones:

e If ) is a multiplier system of weight &k for I' and &' = k£ mod 2, then ¥ is a
multiplier system of weight &’ for T'.

o If ¥ is a multiplier system of weight k for I', then o is a multiplier system
of weight —k for I'.

e If Y1 and ¥, are multiplier systems of weight k; (resp. k) for I, then ¥ -1,
is a multiplier system of weight ki + ko for I'.

e If ¥ is a multiplier system of weight &k for I' and o € SLy(R), then

97 (7) = (ovo w(oyo ™", o)w(o,7) (21)
is a multiplier system of weight k for 0~ !I'c. One verifies that
V7T = (99) and 97 =0,
for 7 € SLy(Z) and v € T.
Exercise 2, Sheet 3: Let I' C SLy(R) be a discrete subgroup and let 9 be a
multiplier system of weight k for I'. Further let o € SLy(R). Show that
a) 97(v) = I(oyo Hw(oyo™, o0)w(a,v) is a multiplier system of weight & for
o 'To;
b) 977 = (9°)" for 0,7 € SLy(R); and
c) 97 =1 for vy eT.
If formulae from Lemma 2.2.2 of the lecture notes are used, then proving them is
part of the exercise.

21t is clear that ¥(—1) = +e(—%) must hold. We choose the positive sign for consistency
reasons. Indeed in connection with modular forms, which we will define soon, this is sensible
since —1 acts trivially on H.
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Solution. For part a) we need to proof that
07 (07 720) = w(o 0,0 1720)07 (07 a) 97 (07 0)

for arbitrary 1,72 € T', where w(g, h) := e(kw(g, h)) is the factor system of weight
k. Using the definition of 97 and J(y172) = w(y1,72)9(711)Y(72) (since ¥ is a
multiplier system of weight k), part a) is equivalent to

w(y1, Y2)w(n1y2, 0)w(o, 0 o) w(o, 0 e0)
= w(n, o)w(y, o)w(o, 0 nyo)w(c o0 o) (22)
Recall the first equation of Lemma 2.2.2, which we will prove below. It implies
w(gh, W)w(g, h) = w(g, ki )w(h, 1) (23)

for arbitrary g, h, b’ € SLy(R). We use it three times. First, let g = 0, h = 0~ 'y 0
and b/ = o7 'y0. We recognize w(g, hh/)w(h,h’) on the right hand side of (22).
Using (23) and canceling some terms, (22) is equivalent to

w92 w172, 0)w(o, 07 e0) = win, O)w(ye, O)w(ne, o o) (24)

Now let g = 1, h = 79 and A’ = 0. We recognize w(gh, h')w(g, h) on the left hand
side of (24). Using (23) and cancelling some terms, (22) is equivalent to

w(m1,720)w(o, 07 20) = w(n, o)w(y10,07 90) (25)
This is equation (23) in the disguise ¢ = 71, h = 0 and ' = 0~ 'y50. Thus, part
a) is proved.

For part b), unravelling the definitions (testing the equality on 7~ 'o~1yo7) we
see that the statement is equivalent to showing

LHS := w(y,or)w(or, (67)Lyo7) = w(vy, o)w(o, 0 yo)w(o v, 7)w(T, (07)tyo7) =: RHS
Using (23) with g = 0,h = 0~ 'y0, i/ = 7 we see that

RHS = w(y, o)w(vyo, 7)w(o, o tyor)w(r, (07)"1yoT)
Using (23) again, this time with g = 7, h = o, h' = 0~ 'y07 we obtain

RHS = w(y,yor)w(yo, T)w(yo, ot yor)w(r, (67)"1yoT).
For the LHS, we use (23) with g = v,h = o7 and I/ = (67)"'y07 obtaining

LHS = w(~,yor)w(yoT, (o1) tyoT).

Comparing the last expressions for LHS and RHS, we can cancel w(7y,yoT) and
we easily recognize the remaining equality as an instance of (23) with g = yo,h =7
and h' = (07)'yo7. This completes the proof of part b).
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Part ¢) is simpler. Indeed,

9 () == (077 w15t Y0)w (e, ¥) = 9(0) " 0(v0y)w (o, )
=9(7)

where we have used the definition of multiplier system twice.

To prove equality (23) from Lemma 2.2.2, recall that w(g, h) := e(kw(g, h)), and
that the definition of w(g, h) is

2mw(g, h) := —arg(jen(2)) + arg(jy(hz)) + arg(jn(2)) (26)

which does not depend on z € H. Plugging in this definition in equality (23),
cancelling some terms and rearranging, we are left to check that

—arg(jgn(2))+arg(jg(hz))+arg(jn(2)) = — arg(jgn(h'z))+arg(jy (hh'z))+arg(jn(h'2)).

But this holds since the definition of w(g, h) does not depend on z € H, and thus
both sides are equal to 27w(g, h). op

2.3. General Modular Forms. Let I" be a discrete subgroup of SLy(R), k € R
and ¢ a multiplier system of weight & for I'. From now on we will assume that I"
(viewed as a subgroup of PSLy(R)) is of the first kind. In particular I' is finitely
generated (or geometrically finite) and has finite co-volume.

Definition 2.3.1. A modular form for I' of weight £ with respect to the multiplier
system ¢ is a holomorphic function f: H — C such that

o flgy =9(y)f for all y € I'; and
e f is holomorphic at every cusp.

The space of all such functions will be denoted by M (T, ).
The last condition requires some additional explanation. First, a cusp of I' is a

fixed point of a parabolic element in I'. Note that, if I is geometrically finite (i.e.
finitely generated), then there are only finitely many I-orbits of cusps. The letters

a,b, ... are usually reserved for cusps. Given a cusp a € RU {oo} the stabilizer
group I'y € PLS,(R) is cyclic and infinite."® Thus we write
[y = <7a>'

There is a so called scaling matrix o, € SLy(R) such that

-1 -
Oy YaOoa =1

BWe can lift 'y to a subgroup of I' C SL, (R). However, if —1 € I, then we have to add —,.
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In particular o,00 = a. We now compute
[flkoa(T2) = Joo (T2) 7" f(0uT2)

= Jou (Tz)ikf(%aa )
= Jou(T2) "1, (0a2) () f (002)
= Joa (Tz) k]’ya(g z) ]Ua(z)kﬁ<7a)[f|k0a](z)'
Now we observe that since jr(z) = 1 we can apply (20) twice to get
Jou (Tz)_kj%(Uaz)kjga(z)'C = Jo, (TZ)_ij(Z)_kjwa(Z)kw(%v Oa) = w((?;u’ (;3))

However, by the last two properties given in Lemma 2.2.2 we have

W(Ya, 04) = w(o,, T) = 1.
This shows that

[flkoal(z + 1) = [f[k0a](T2) = 0(7a)[f]r0a] (2)-
Writing ¥(v,) = e(kq) for k, € [0,1) we find that the function

9(e(2)) = e(—=raz)[f|koa](2) (27)

is one periodic. We say f is holomorphic at a if g(¢) is holomorphic at 0.

Remark 2.3.1. What is happening here is that we equip the orbifold I'\H (where T
is a Fuchsian group of the first kind) with appropriate charts at the cusps. Let us
elaborate on this. Let 7: H — I'\H be the canonical projection. For z € H we find
a disc U, C H such that yU, NU, =0 for all y e T\ T, and yU, = U, for v € T,.
Note that I, is cyclic and of order m > 1. Therefore we choose 7, € SLy(C) such
that 7,U, = U, for U = {z: |z] < 1}. A chart is then given by (7U.), e, 7.7 1),
for €,,(z) = 2™. Similarly one defines charts (7Uy, €50, 7). Now en(2) = e(2),
0, is the scaling matrix and U, is a sufficiently small disc tangent to R U {oco} at
a. The role of U is played by HY = {x + iy: y > Y} for sufficiently large Y.

Note that if g(g) is holomorphic at 0, then we can write down a Taylor expansion.
This translates into the Fourier expansion

[flkod](2) = e(Kqz Zafna nz)

of f at a. The numbers ay(-, a) are the Fourier coefficients of f at a.

Definition 2.3.2. A cusp a of I is said to be singular for ¢ if ¥(v,) = 1. Further
f € M(I',9) is called a cusp form if af(0,a) = 0 for all singular cusps of I'. The
space of all cusp forms for I' of weight k£ with respect to the multiplier system 9 is

denoted by Si(T',v).

Let us give some examples that we already encountered:
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(1) The Dedekind 7 function is a modular form of weight 3 for SLy(Z) with
respect to Yeia. It is a cusp form because there are no Smgular cusps. Indeed
(up to equivalence) the only cusp of SLy(Z) is a = 00, but Jera(T') = €(55).""

(2) Let k > 4 be even. Recall the numbers ey (u,v) appearing as the constant

term in the Taylor expansion of the elliptic functions
Eiz)=aF+ep+....

We claim that Ey(z) = G )ek(l z) is a modular form of weight & for SLy(Z)
with respect to the trivial multiplier system. To see this we compute

[Bilin)(2) = jy(2) " Bi(32) = (e + ‘”_k%
_eplcz+daz+b)  er(l,v2)
2 (k) - 2((k)
e (1,2’)
— gg(k’) = E(2)

fory = (Z b) . The Fourier expansion is already computed in Lemma 1.0.9

d
and upon noticing that 2((k) = (22!)kBk we obtain

Ex(2) —1+z—20k 1

In particular these are not cusp forms.
(3) Note that

Es(z) = Z(C( _1_24201 (28)

is not a modular form of weight 2 for SLy(Z) with trivial multiplier system.
Indeed, according to (7) we have

ex(cz +d,az+d) 12 c
20(2) = Fy(2) + — -

2mi cz+d
But, we can compute that f(z) = Es(2) — NE2(Nz) is a modular form of
weight 2 for I'(N) with trivial multiplier system. We first note that

az—i—b_aNz—i—Nb
cz+d %Nand'

[E2|27](2) =

H1For now this will be the only exciting multiplier system we will encounter.
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Thus applying the transformation behavior of Fy observed above we find

that
[fl(z) = f(z) +

12 c ~

.[cz%—d %quLd]

271

This is again no cusp form.

(4) To find a cusp form of integral weight we observe in the new normaliza-
tion the Eisenstein series Ej (for k > 4) have constant term equal to 1.
Thus if we can take the difference between two of these we get a function
without constant term at oo. However, for this function to have the right
transformation behavior we have to take care of the weight:

_ E3(2)° — Eg(2)?
1728

This is a cusp form for SLy(Z) of weight 12 and trivial multiplier system.
Actually we have already seen a version of this function in (17) above.
Indeed we get

(2m)12 - A(z) = 2'3%5%(20e4(1, 2)* — 49¢e6(1, 2)?)

A(z)

=e(z)+....

A.

Furthermore we get equality
A(z) = n(2)*".

The latter implies that ¥2% is trivial and that we can write

A(z) = e(z2) [[(1 = e(n2))** = D r(n)e(nz).
n=1 n=1

The coefficients 7(n) form a very special arithmetic function called the Ra-
manujan function. Of course we have 7(1) = 1, but it has many more very
interesting properties. Ramanujan conjectured that 7(n) is multiplicative
and satisfies the bound 7(p) < 2 - p% for primes p. Both conjectures are
now known, but are very deep.

(5) Non-example: The function

o Ba(2)?
This function transforms like a modular form of weight 0 with respect to
SLy(Z) (and trivial multiplier system), but has a simple pole at co. Thus it

is not holomorphic at the cusps! (It anyway plays a major role in number
theory.)

Exercise 3, Sheet 3: Recall that the n-multiplier ¥, of weight % for SLy(Z) is
given by the functional equation

(NI

N(72) = Veta(7)71(2)20(2) (29)
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a) Show that
1 a b )
Deta(—7) =€ 1 Veta(7y) for v = . d) € SLy(Z) with ¢ > 0,

m
Deta(T™) = € <ﬂ> and
Dera(S) =2

Since T and S generate SLy(7Z) this is in principle sufficient to understand the full
n-multiplier. But the analysis is a bit tedious. The final result is

a+d—3c 1 a b .
Veta(7) = € (T — is(d, c)) , for v = <c d) with ¢ > 0. (30)

Here s(d, ¢) is the Dedekind sum given by

o= Y 0 (212 - ) (31)

0<n<c

This sum satisfies the reciprocity law

12\c¢c d cd
b) Derive the reciprocity formula (32) modulo 2 from (29) and (30).

1 [/d 1
s(d,c) + s(c,d) = — (— +i4= - 3) , for coprime ¢, d > 0. (32)

Solution. Recall the definition

1 T
(1) = ¢ Plq) = e,
Since e(7 +m) = e(7) we get n(T™7) = e (
using jrm(z) = 1 we get

) P(q) where g = e(7) and 7 € H.

m

™) n(7), and comparing with (29) and

Veta(T™) = € (;n_4)

Note also that, since —yz = vz, from (29) we have

N1

Jy\%)?

ﬁeta(_7> = ,’Y( ) lﬁeta<7)

J—y(2)2
Recall j,(2) = cz +d € H since ¢ > 0, and that the branch of the logarithm has
arg € (—m, 7). Writing ¢ := arg(cz+d) € (0, ) we have j,(z)z = lcz+d|2e's. On
the other hand, arg(—cz — d) = arg(cz +d) — 7 € (—m,0) = ¢ — 7 and therefore
. 1 1 ;9 ;=
Jor(2)2 = |cz+d|ze'27"2. Thus

ﬁeta(_r)/) = %eeta(’}/) = 62%19@&(’7) = e(i)ﬁeta(y)
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Recall that S = ((1) _01>, with ¢ as fixed point, S7 = i. Thus, plugging v = S
and z =17 in (29) we see
P S ¢ -1
l(’leta(s) :]S(Z) 2= 2= e(?)

with the branch of the logarithm as above (we have used js(z) = z). This finishes
the proof of part a).

For part b), let ¢,d > 0 coprime and choose a,b so that ad — bc = 1 (this is
possible since (¢, d) = 1). Write v = (CCL Z) Applying the definition of multiplier
system of weight 1/2 to v and S gives

ﬁeta<75> — e <_ arngS(Z) + arng(Sz) + a’rng(Z)> ﬂeta(’}/)ﬁeta<s>

47

for any z € H. Put z = 4, so that Sz = z = i and observe that argjs(i) =
b —a
d
Jy(1) = ci+d. Since di — ¢ = i(ci+d) and ¢,d > 0 we get (with our branch of arg)
that arg (di — c) = § + arg (ci + d). Therefore we arrive at

arg(i) = . We calculate 7S =

5 and therefore j,g(i) = di — ¢ while

1

Veta(VS) = Deta(7)Veta(S) = Veta(y)e <_§)

From formula (30) after rearranging we see

1 1 fa+d c¢c—0b 1 /d ¢ 1
5(5(d7c)_5(_cud>>—ﬂ( c + 7 _3)_ﬂ(2+3+a_3)

modulo 1, where we have used ad — bc = 1. Using s(—c,d) = —s(c¢,d) (apparent
from the oddness of the sawtooth function in the definition (31)) and multiplying
by 2 we get (32) modulo 2. i

The next result gives an alternative description of the regularity condition of
modular forms at the cusps.

Lemma 2.3.2. Suppose f: H — C is holomorphic and satisfies f|ry = 9(v)f for
ally €.

(1) f € My(T,9) if and only if f is of moderate growth (i.e. |y f(z + iy)| <
C(y* +y=4) for constants C; A > 0.)
(2) f € S, V) if and only if Tm(-)2 f(-) is bounded.

Proof. We will only proof the first part and leave the second part as an exercise
(see below). If ' is co-compact, then there is nothing to show. Thus, suppose that
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a is a cusp of I'. Since f is holomorphic in H we have the expansion

[flrod(z) = Y as(nsa)e((n+ ka)z).
This is noting but the Laurent expansion of g as defined in (27). The coefficients
can be computed by

zo+1
owia) = [ fluaal(Ghe(—(n+ o))z
20

for zp € H with sufficiently large imaginary part. Note that this is independent of
2o and of the path of integration.

Assume that f has moderate growth. We first consider the case when a = co. In
this case we can choose the scaling matrix to be 0., = diag(h, h™!) for some positive
real number h. Using the moderate growth condition we obtain the estimate

lag(n;o0)| < hk/o |f (R (y+iz))| exp(2m (ntrq)y)de < C(f, D)y” exp(2m(ntrq)y).

The crucial observation is that, for n < 0 the right hand side goes to 0 as y — oc.
This implies that ay(n; 00) = 0 for n < 0. Second we consider another cusp a # oo.
Observe that

Im(2) 4 ~1
Im = = > Cy(c,d > Cy(c,d
(72) lcz+dlP  y?+ (ca+d)* e )y +y T e dy™
for z =z +iy with x € [0,1], y > 1 and o, = (CCL Z with ¢ # 0. Combining this

with the moderate growth property we end up with
[f1k0s] ()] < Ca(f) Im(ow)* Tmn(2) "% < Ca(f.a)y™ 2.

With this estimate at hand we can proceed as in the case of the cusp oo.

For the opposite direction we assume that f € My (T",9). Note that f is bounded
in any compact subset of H. Furthermore, [f|;04](2) = af(0;a) for z — oo. Thus
flkoa is bounded in a neighbourhood of co. By definition of the slash operator
this implies that f is polynomial bounded in a neighbourhood of a. i

Exercise 1, Sheet 4: Let f : H — C be holomorphic and assume that f|zy =
() f for all v € I'. Show that f € Si(T', ) if and only if Im(-)¥/2f(-) is bounded.

Solution: Note that Im(-)*/2|f(-)| is invariant under I'. Indeed, by the modularity
of f

Tm(y2)"2 f(v2) = Tm(2)2|cz 4 d|7*9(7) 4, (2)F £ (2).
Since |j,(2)| = |cz + d|, taking absolute values we find

[Im(v2)*/2 £ (y2)] = [Im(2)"2f(2)].
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Therefore, g(-) := Im(-)*/2f(-) is bounded on H if and only if it is bounded on
a fundamental domain. The groups I' C PSLy(R) that we are working with are
discrete, finitely generated and with finite covolume. This implies that for a fun-
damental domain we can take a geodesic polygon with finitely many sides, such
that all the vertexes (if any) that are in RU{oo} correspond to inequivalent cusps
of I'. Let the finitely many inequivalent cusps be denoted by a;,as,...,a,, and
denote by I'y, the stabilizer of a; in I". This is an infinite cyclic group, and recall
that a scaling matrix o,, € PSLy(R) satisfies

0o, (00) =a; and o, 'Tg0, = (I) where Tz =z +1.

In particular T = o, '7,,04, for a generator q, of I',.

We now solve the exercise. If I'\H], then there are no cusps, so the hypothesis
of the exercise imply that f € Si(T',0) by definition, and g(-) is always bounded
since it is I' invariant and I" has a fundamental domain F which is compact. From
now on we assume that there are cusps for I'. The structure of the argument will
be the following

k<0, or k:(],@?é@tr \

/ =
fe ST, 0) ——— Tm(-)*2f(-) is bounded ———2"=" __, f=cecC
k>0 f € Sk<F7 9)

We will proof, in particular, that S(I",9) = 0 for k£ < 0 or kK = 0 and ¥ # ¥y,, and
also that Sy(T', 9¢,) = C.

Let f € Sp(T,9). The goal is to show that g(-) := Im*?f(.) is bounded on
H. Since g is I' invariant, it is equivalent to show that ¢ is bounded on a nice
fundamental domain F as above. For a parameter L > 0 write C(L) := {z + iy €
H|0<z<1,y> L}. The important property about a nice fundamental domain
as described above is that, for large L > 0 we can express F as a disjoint union

F = ( |_| Uaz(C(L))) |—||_|~7:comp(L)

cusps a;

where Feomp(L) is compact in H. We say that o,,(C(L)) is a cuspidal zone around
a; = 0q,(00). By compactness, g is automatically bounded on Feomp(L). For the
cuspidal zones, we need to show that g(o,,(2)) is bounded for 0 < x < 1 and
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y > L. We have
9(06,2) = Im(04,2)"2 f(05,2) = Im(04,2)* 5, (2)"[f 0w (2)

k)2

= Im(0q,2)"" " Jo,, (2)"€(Kq, 2 Zaf n,a;)e(nz)

:Im(aaZ )k/2jga< ) (Hal )hf(Qa a%)

where h¢(-; a;) is holomorphic in the disc {|¢| < 1} and, k,, € [0,1), and if k,, = 0,
then h(g; a;) has a zero at ¢ = 0, so we can write hy(q; a;) = gk(q; a;) in this case,
for k¢(¢; a;) holomorphic in {|g| < 1}. Anyway, taking absolute values we get

Im(2)*2|q||ks(q; a;)], if ke, = 0;
9o = {0 Jallkstg o), i (33
Im(2)"2|q|"i|hs(q; a;)], 0 < kg <1

For z = « + iy such that y > L, ¢ remains in the closed disc {|¢| < exp(—27L)},
which is compact inside {|¢| < 1}. Therefore, in each of the cases ks(¢;a;) or
h¢(g; ;) is bounded. Since On the other hand, for any r > 0 the expression
Im(2)¥/2|q|" = y*/? exp(—27ry) is bounded for y > L and, in fact, tends to 0 with
exponential decay when y — oo. This proves that g is bounded on F as desired.

Now suppose that g is bounded. By Lemma 2.3.2 we already know that f &€
M, (T, 0). By the same calculation as above

9(00,2) = Tm(0,2)" o, (2)° [ 80w (2) = Im(00,2)"% i, (2)"e(ri0,2) s (g5 ;)

where h; is holomorphic on {|g| < 1}. Suppose that & < 0. If f #, then also
hy = 0. If |hs(qo)| = C > 0 for some ¢y with |¢| < 1, then by the maximum
modulus theorem we know that, for any » < 1 such that r > |go|, there is ¢, with
l¢:| = r such that |hs(g,)] > C. For any ¢, we can find unique 0 < = < 1 and
0 < y < oo such that ¢ := e(z) = g,. Therefore, for this z we have

19(00,2)| > y™?e(—2mkay)C

Letting r — 1, we find a sequence of points z; with y; — 0 such that the above
inequality holds. When k < 0 the right hand side tends to 400, which contradicts
the fact that ¢ is bounded.

In the case k = 0, we obtain
|f(0-uiz)| = |g(o-lliz)| = 6(_27Tkaiy)|hf(q; az)|
By the maximum modulus principle, we have

sup |hy(q; a;)] < max |hy(q; a;)]

la|<r lal=r
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Since e(—27k,,y) is decreasing as a function of y we deduce that

su Z)| = max z)] < max z
ZE%(IC)(L))IJ‘( )] ZG%(H(L))IJ”( = Comp(L)|f( )
where H(L) :={z=a+1iy | 0 <z <1,y = L}, and the inequality follows from
H(L) C Feomp(L). Therefore, f is a bounded holomorphic function on H that
attains its maximum, and must be a constant by the strong maximum modulus
principle. If ¥(y) # 1 for some v € I, then

F(2) = [fl07)(2) = 9(3) (=), for all z € H— f =0, (34)
Finally, we assume k > 0. As before, we already know that f € M (T',4). We
only need to look at singular cusps, so that x,, = 0. We have

2 Jou, (2) Ry (a; ;)
where hy(q; a;) = > 07 ar(n, a;)e(nz) and the objective is to show that hf(0; a;) =
0. Taking absolute values

|9(00,2)| = Im(2)*"2 |y (g; a7)| (35)

By hypothesis, the left hand side is bounded. When y — oo we have ¢ — 0 and
therefore |hs(q; a;)| — |hf(0; ;)] Since k > 0, it must be that h¢(0;a;) = 0, since
otherwise g would be unbounded as y — co. Since this is true for all singular cusps

and we know that f € My (I",9), we deduce that f € Si(I',), as desired. i

g(aaiz) = Im(aaiz)

The previous lemma allows us in particular to define the so called Petersson
inner product:

(f,9) = - f(2)g(2) Im(2)*dp(2),
for f,g € Sp(T,0).

Remark 2.3.3. First note that the integral is defined by
. dxdy

/ h(2)dp(z) = / ha + i) DY

T\H F Y

Where F is some fundamental domain for I". To make this well defined h should
be I'-invariant. It is easy to verify that the integrand in the definition of the inner
product is indeed I'-invariant. Furthermore one directly sees that the integral is
finite. This is because (under current assumptions) u(F) < oo and Im(-)2 f as

well as Im(-)2 g are bounded.

Lemma 2.3.4. The space Sp(I',9) equipped with (-,-) is a finite dimensional
Hilbert space.

Proof. 1t is clear that (-,-) defines an inner product. Once we see that Sy (I, 4) is
a finite dimensional complex vector space completeness is also clear.
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We will show that M (T",¥) is finite dimensional by reduction to a weak ver-
sion of the Riemann-Roch theorem, which we now recall. Let X be a compact
Riemann surface, Py,..., P, € X and let r1,...,7, be positive integers. Then we
consider the (complex) vector space V' of meromorphic functions on X, which are
holomorphic except for possible poles of order at most r; at the points P; (with
i=1,...,m). Then the dimension of V is at most r| + ... 4+ r,, + 1.

To apply this result be put X = I'\(H U {cusps of I'}). This is a compact
Riemann surface. Now take 0 # fy € My(I',9), if non such function exists we are
done anyway. Recall that fj is holomorphic on X. Let Py, ..., P, be the zeros of
fo and let r; be the order of vanishing of fy at P, for i = 1,...,m. (At elliptic
points P; the order of vanishing must be slightly modified but this is not essential.)
We define the map

M(T,9)> f— fi eV,
0

where V is defined as above. This is an isomorphism, so that we obtain the bound
dim Mp(I,9) <ri+ ... 4+ 71y, + 1 < oc.
it

2.4. Modular forms of integral even weight, trivial multiplier for SLy(Z).
We will take a look of the very classical when k € 2N, ¥ = ¥, and I' = SLy(Z).

Theorem 2.4.1. Let f € My(SLa(Z),Vy,) be non-zero and let my(z) € NU{0} be
the order of vanishing of f at z € HU { cusps of I'}. Further set

m(z) = {|F_z\ if z € H is an elliptic fized point of PSLy(7Z),
1t else.

Then we have

I\ (HU{ cusps of T'})

Proof. For R > 0 sufficiently large let
1 1
Fr={x+iy: —§§$§§, |z +idy| > 1 and y < R}

be the truncated standard fundamental domain and let v be the path around the
boundary of Fr. We modify this part slightly by forming little circles of radius r

around the elliptic fixed points i, p+ = j:% + 2‘/7?:
We first observe that by a theorem of Cauchy we have

= f/(z)dz: Z my(z).

2mi v f(Z) z€Int(y)

Furthermore, for all z € Int(y) we have m(z) = 1.
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The top piece of the integral is given by
1 % f(—z+iR)

2mi Jy f(—z+iR)

Since the left and the right hand side of Fr are equivalent via T' they cancel

each other.
To compute the contribution of the arcs around the elliptic fixed points zy = 7, p+

we write
) mp)
flz)  z—x +h(2)

for a holomorphic function h. As r — 0 the contribution then approaches

1 / my(2o)
b —— = —u(Zg)Mm¢(20),
271 azo(’Y) Z— 20 ( 0) f( 0)

dr — —my(00) as R — oo.

where a,, () is the piece of the arc and 27u(zg) is the arc length. Note that

1 1

(i) = 5 and p(ps) = ¢
Finally we have to compute the contribution of bottom of the curve ~ with
1, p+ removed. We can write this as AU SA, where A is the arc of the unit circle

connecting p_ and 7. One checks that
f'(52) 5 _k  f'(2)
z :
f(52) 2 f2)

This gives us

1 fz) ., 1 [f(2) L[ f(5z)
2ri AUSA f(Z)dZ_ﬁ Af(z)dz_ﬁ Af(SZ)dSZ
1 k k

o J, 2 Ty
Combining everything gives the desired formula and completes the proof. &3
Note that
My (SLa(Z), V) - Mi(SLa(Z), Ve) © Mi41(SLa(Z), V).
This motivates us to define the (graded) ring
M (SLa(Z), V) = €D Mi(SLa(Z), s
k>0

Using Theorem 2.4.1 we can understand this ring completely. But we first make
the following observations:
o If £ =0 we have My (SLy(Z), ) = C. This is because by Theorem 2.4.1
we have > my(z)m(z)~t = 0 for f # 0, which implies my(z) = 0 for all
z. But this can only happen if f is constant.
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e If k = 2 or odd, then My (SLy(Z), ;) = {0}. The argument for k = 2 is
similar to the case k = 0. If k is odd we observe that —f(z) = [f|z—1](2) =
f(2), which is a contradiction.'”

o If k = 4, then we have My(SLy(Z), V) = C - Ey. From Theorem 2.4.1 it
follows that Ey(p+) = 0 with mg,(p+) = 1. At all other points E; does
not vanish. Suppose now that f € M;(SLy(Z), ;). Then there is ¢ € C
so that g = f — cE, satisfies m,(c0) > 1. Applying Theorem 2.4.1 to g we
find that g must be zero. In particular f = cFEjy.

e Similarly one can show that Mg(SLy(Z),¥y,) = C - Eg, Ms(SLa(Z),0¢,) =
C- EZ and Ml()(SLQ(Z), ﬁtr) =C- E4E6.

e We have

M12<SLQ(Z), 194“) - C : E12 @ (C . A
Note that ma(co0) = 1, so that by Theorem 2.4.1 we see that A is non-zero
on H. Take f € My5(SLy(Z),J¢,) and define

g(z) = /) ;(Cjw(z).

We can choose ¢ so that g € My(SLy(Z),V,). This shows that g is constant
and proves our claim.
e Inductively one obtains that

M;(SLo(Z), 94r) = A - My_15(SLo(Z), 9yy) & C - Ej. (36)

In particular we have

| &) if k=2 mod 12,

dim M (SLy(Z), V) =
im M}, (SLa(Z), Vs, ) {L%J‘H if £ # 2 mod 12.

Theorem 2.4.2. The Fisenstein series Ey and Eg algebraically independent over
C and they generate M (SLy(Z), V) as a polynomial ring:

M<SL2<Z)7 ﬁtr) = C[E4; E6]

Proof. That M (SLy(Z), V:,) is generated by E; and Eg follows directly from (36).
To see that they are algebraically independent we suppose that

P(E,, Es) = 0 for P € C[X, Y]\ {0}

for P with minimal degree. Note that we can assume that (after inserting the
Eisenstein series) the monomials have equal weight. Now we have two cases:
o P(E4, Eg) = E"+ Eg-Q(Ey, Fg). But evaluating at i gives a contradiction
since E,(i) # 0 = Eg(7).
o P(E,, Es) = E{'+EyQ(FEy, Eg). But evaluating at p1 gives a contradiction
since Fy(p+) = 0 # Eg(p).

5Note that actually ¥, is not a multiplier system for odd k because it does not satisfy the
consistency condition.
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Exercise 2, Sheet 4:
a) Show that

Mq(SLy(Z),94,) = C - Eg and Mg(SLy(Z), 9y,) = C - Ef.
b) Deduce that for n € N one has the identity

o7(n) = o3(n) +120 Y o3(m)os(n — m)

0<m<n

between divisor functions. (It can be used that % = 240 and % = 480.)

Solution. Recall that if f € M;,(SLa(Z), ¥,) is non-zero then the following formula
holds (for I' = SLy(Z), see Theorem 2.4.1)

mg(z) k

'\ (HU{cusps of I'})

where my(z) is the order of the zero of f at z, and m(z) =1 for all points except
for m(i) = 2 and m(p) = 3, where p = # (note that p and —p~! = #are
identified by S € I'). Recall that Es is not zero and is in Mg(SLa(Z), 6;,). Testing

(Egl6S)(2) = Eg(2) for S = ((1) _01) and z = i, since S7 = i we obtain

Eg(i) = [Eol6S1(1) = js (i) Es(i) = i°Ee(1)
and thus Eg(i) = 0. Similarly, testing (E4|sy)(2) = Eu(z) for 2 = p and v =

1 -1 . .
1 o) we obtain, since yp = p,

Eq(p) = [Ea|l7)(p) = 55 (p) " Ea(p) = p~"Eu(p)-

But p is a primitive 6-th root of unity, and thus E4(p). Therefore E4(-)? has a zero
of order at least 2 at p. By the valence formula the only possibility is that:

(1) Eg has exactly one zero in the fundamental domain, it is located at i, and
it is of order 1.

(2) E? has exactly one zero in the fundamental domain, it is located at p and
it is of order 2 (if one wants to consider p and —p~! as two distinct points
in the fundamental domain, then one puts m(p) = m(—p~') = 1/6).

If we are given f € Mg we can consider w € H not elliptic where Eg does not
vanish, and form ¢ := f — cE for some ¢ € C so that g(w) = 0. Then, looking at
the valence formula we have

14 > my(2) _ 1/2,

m(z)
(T\(HU{cusps of I'}))—{z}




ADVANCED ALGEBRA 1: MODULAR FORMS 55

which is a contradiction unless g is identically zero. The same argument works for
k =8 and F?. This finishes the proof of part a).

For part b), note that since Fg € Mg(SLy(Z), y,) we have Eg = cE? for some
c € C. Using the expansion

Ei(z) =1+ ki* B Y oy1(n)e(nz)

n=1

we deduce ¢ = 1, and then comparing coefficients we get

8 4 16
§807(n) = 25403(70 + B Z os(m)os(n —m).
0<m<n
Using B% = 240 and B% = 2240 we arrive at the desired identity. it
Exercise 3, Sheet 4: Let
f(z) =) ay(n;00)e(nz) € My(SLy(Z), V).
n=0

a) Let K be an algebraic number field (i.e. a finite extension of Q) and
suppose that

max{n € Zxo : af(m,o00) € K for all 0 <m < n} > dim M;(SLy(Z), ¥y,) — 1.

Prove that all coefficients already lie in K (i.e. af(n,00) € K for all
n c Zzo).

b) Show that if the Fourier coeflicients as(n,00) of f (at co) are algebraic
numbers, then they are all contained in a finite extension of Q.

Solution. Recall that a basis of M (SLy(Z), V) can be chosen of the form g¢; :=
Ep_12;A% for 0 <4 < dim M}, (SLy(Z), ¥:;)—1. The point here is that the coefficients
ag,(0,00),...,a4(i —1,00) of g; are 0 while the coefficient a,,(i,00) = 1 is non-
zero, and all the a,,(j, 00) for j > 0 are rational. We look for the (unique) linear
combination such that f = )" ¢;¢;. Equating the first dim M, coefficients we arrive
at a system

Qgo (Oa OO) T Aggim ry, 1 (O’ OO) Co af(07 OO)
ag, (dim My, — 1, 00) Agipn a2 (dim M}, — 1, 00) Cdim Mj,—1 ap(dim M}, — 1, 00)
(37)

Recalling that ag,(j,00) = 0 for j < 4, and ag,(i,00) = 1, we see that the matrix
lower triangular with non vanishing diagonal, and therefore invertible. Since it has
rational entries, its inverse also has rational entries, and since by hypothesis the
column vector ay has entries in K we deduce that the numbers ¢; are in K. Since
f = > cig; and the coefficients of the g; are all rational we deduce that f has all
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coefficients in K. This finishes the proof of part a).

For part b), let K be the field generated by a(n,oco) for n < dim M}, — 1. By
hypothesis we know that the a;(n, co) are algebraic, and since K is generated by
a finite number of them, then K is a finite extension of Q. Applying part a) we
deduce that all coefficients lie in K, a finite extension of Q. it

Remark 2.4.3. The exercise above can also be solved by applying Theorem 2.4.1.
The idea is the same as above, but this time {g; : 0 < i < dim My (SL2(Z), 0y,) — 1}
is an arbitrary basis of My(SLa(Z), J¢,) such that all the coefficients ay, (j, 0o) for
j > 0 are rational'®. As before, the key step is to show that

a90<07 OO) agdikafl <07 OO)

g, (dim My, — 1, 00) dim M}, — 1, 00)

Agdim ry, -1 (
is invertible. This is equivalent to showing that the matrix has 0 kernel, which
by the system (37) is equivalent to the assertion: if f € M (SLy(Z), ;) and the
coeflicients as(j,00) = 0 for 0 < j < dim M}, —1), then f is identically zero. Recall
the formula

0, if kK odd or k£ <0;

dim M, (SLo(Z), V) = 4 [35], if k> 2, and k = 2 mod 12;
| £ +1, ifk>2 and k=0,4,6,8 or 10 mod 12.

Now let & > 4 even (otherwise the exercise is vacuous) and suppose that f €
My (SLo(Z), ¥y,) satisfies af(j,00) = 0 for 0 < j < dim My —1). Then f has a zero
of order at least dim M}, at co. By the formula from Theorem 2.4.1, if £k = 12l +1r
with r € {0,4,6,8,10}, if f is not identically zero we have

my(z)
[+1 =1 12 38
+1+ E B +7/ (38)
(T\(HU{cusps of I'}))—oo

Since all the summands are nonnegative, this equation cannot hold and f must be
identically zero. If » = 2 then the equation is

my(2)
l g =[+1
+ m(z) /6 (39)
(T\(HU{cusps of T'}))—oco

Since the weights m(z) are less or equal than 3 and m(z) are nonnegative integers,
this equation cannot hold either. Therefore, f is identically zero and the matrix
above is invertible, as desired.

Exercise 1, Sheet 5: Let k € 2N be even and let f € M, (SLo(Z), Vy,).

16We could use, for example, the basis consisting of the monomials EZEg such that 4a+6b = k,
where a, b are non negative integers.
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a) Determine the constant C' € C such that
1
Ouf = %f/ — CEyf € Myy2(SLa(Z), V)
(The resulting operator 0y : My (SLay(Z), V) — My2(SLa(Z), ¥4,) is some-

times called Serre derivative.)
b) Find the polynomial P € C[X,Y] such that ;oA = P(Ey, Es).

Solution. Recall that Fy(z) := e;ééj) which transforms under v = <Z Z) by

12 c
E =5 —
[Bal2)(2) = Bale) + 5 - ——

Now look at the derivative. Since f € My(SLy(Z),9y,) we have f oy = j,’j - f.
Applying & - to this relationship we get

(fro)(z) -5y = kil f + 55 f'

which is equivalent to

[ ks2y] = kit f + f.
On the other hand

12
(o] = (Bak] - ] = (Bo+ 120557 ) £
Putting all together
ck
Ol = ges(Plissy = CBD it = g+ i f = OBof — O f

271
Qkf—F( - 126’)—],y f

Therefore, we obtain C' = k/12. Note that, by looking at the power series de-
velopment, it is clear that 6, preserves holomorphicity at infinity, so that for
C' = k/12 the operator 0y sends My (SLa(Z), V) to Myi2(SLa(Z),0¢,). Also, if
f € Sk(SLy(Z), 0y,) then it is also immediate by looking at the expansion at infin-
ity that O f € Sgr2(SLa(Z), V). In particular, 12A is a cusp form of weight 14,
which has to be zero. Therefore, the polynomial of part b) is P = 0. it

2.5. Poincaré series. Our goal is now to construct automorphic forms for given
(discrete Fuchsian group of the first kind) I' € SLy(R), weight & € R and multiplier
system . We can carry this out under the following assumptions that will be in
place throughout this section. We assume that k£ > 2 and that a is a cusp of I,
which is singular with respect to 9. (Recall that a comes with a scaling matrix
o, and a generator 7, of I';. The condition that a is singular is precisely that

79(7‘1) = 1')
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Given a holomorphic function p: H — C of period 1 we define the map 7: I" x
H — C given by
m(7,2) = 9(y)w(oa ', )iy, (2) Fplogv2).

We claim that 7(, z) is left I'y-invariant in the first variable (i.e. it only depends
on the coset I'yy). To see this let € Ty, put 4/ = 7y and observe that n = o,80, "

for g € <(1) %) . Since p is one periodic we have

plog ' 2)p(Bog %) = p(og '7%).
Similarly using that jg(x) = 1 we get

ja;ly’(’Z)ik = jﬂaa_l'y(z)ik = jau_l'y(z)ik'

Now we use that the cusp a is singular with respect to 1 and observe that
V() = 9(ny) = wln, 7)I(y).

We had already observed earlier that
w(n, Yw(og, ) = wlog ).

Putting these observations together allows us to deduce that 7(v/, z) = 7 (v, 2) as
desired.
This allows us to define the series

Pop(2) = Y 7(7,2). (40)

I\l

Before we can study convergence and other properties of P, ,(z) we need to
develop some preliminary results concerning the decomposition of translates of I
into double cosets. To do so let a, b, ... be a complete system of inequivalent cusps
of I'. The corresponding scaling matrices are denoted by g, 0y, . ... Let

U(Z) = + (3 %)

where we suppose for simplicity that —1 € I".'7

Lemma 2.5.1. For any two cusps a, b for I we have the double coset decomposition

0, 'Toy = 0uU(Z) U\ | U(2Z) (‘; 2) U(Z),

c>0d mod c

where the union is only taken over tuples (¢, d) such that (z 2) € o, 'Toy.

1"The modifications necessary for the case when —1 ¢ I are straight forward.
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Proof. We first consider the subset
Qo = {7 €0, 'T0oy: T00 = 00}.

These are precisely the upper triangular matrices in o, 'T'gy. Suppose 7 € Q..
Then we can write 7 = o, 'vo,. We get

b = 0‘a7'0'b_1[7 = 0,00 = .

Thus a and b are equivalent (i.e. a ~ b). In this case Q2,, = U(Z) by definition of
the scaling matrix.

: : *
Any other element in o, 'T'oy can we written as 7 = (CCL d)' We compute

I m\ {a *\ ({1 n\ [a+cm *
0 1 c d)\0 1) c d+cn)’
In particular, the double coset Q4. = U(Z) (: 2

and d modulo c. Tt is easy to observe that given T € o, 'T'g, with lower row (c,d),
then the double coset does not depend on the entries of the upper row. if

U(Z) determines ¢ uniquely

For applications it is often important to control the number of double cosets.

We define
C(a,b) = {c > 0: (Z :) € aa_lfah}.

Let ¢(a, b) = min C'(a, b) and define ¢(a) = ¢(a, a). Finally pu ¢, = max(c(a), ¢(b)).

Remark 2.5.2. To see that c(a) exists we use the the following construction of
the fundamental domain F, for o, 'T'o,. First note that U(Z) C o, 'Ta,, so that
we can chose our fundamental domain to be contained in the strip P = {z =
x+1y:y> and 0 < x < 1}. We further define

E={z € H: Im(z) > Im(yz) for all v € o, 'Ta,}.

Then F, = EN P is a fundamental domain. (It is sometimes called the standard
polygon and the construction is due to L. R. Ford.)
The isometric circle
C,={z€eH: |j,(2)] =1}

a

for v = € 0,'To, \ U(Z) is centered at —¢ and has radiues [v|~!. In

b
d
particular c(a)™! is the radius of the largest isometric circle and therefore must
exist. This observation also gives the useful bound

c(a) = Vol({x +iy: 0 <x < 1,y > c(a)”'}) < Vol(F,).
Concerning the numbers ¢(a, b) one can show that

C(Cl, b)2 Z Ca,b-
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Lemma 2.5.3. For any X > 0 we have
X

Z c_ljj {d mod c: (Z 2) Gaa_lf‘ab}g—.

0<e<X Ca,b
Proof. Without loss of generality we assume that c(a) = c¢,p5. Suppose we have

two elements 7 = (z Z), T = (j, ;,) in o, 'Toy, and with 0 < ¢,¢ < X. Then

we find

" /-1 * * -1
TN =TT = €o, To,.
<c’d —cd *) a a

If dd — cd = 0, then an easy computation shows that a ~ b and ¢ = d'. If
c'd — cd' # 0 we obtain the important inequality
!
249, A
d ¢ ce c
Summing this over 0 < ¢ < X and 0 < d < ¢ ordered by the size of the fraction
gives the result.

(41

~—

%ml&.

Lemma 2.5.4. Let a be a cusp for I and let z € H and Y > 0. We have
10
e\l Im(o,'y2) > Y} <1+ ——.

f{y € Ta\l': Im(oy "y2) > Y} <1+ )Y
Proof. After conjugating the group we can assume without loss of generality that
a=o0and ['; = U(Z). The vertical strip P of width 1 (defined above for example)
is a fundamental domain for I';. Without loss of generality we can assume that z
is in the standard Polygon F;, of I'. In particular

*

lcz+d| > 1 for and v = (;k d) e'\U(Z).

This gives the estimate

)
I = —>Y.
m(72) lcz + d|—2
Using this we obtain the three bounds
y>Y,
< ! d
c an
VyY
1
Y\ 2
d| < <—) .
|cx + d v
Recalling (41) we can estimate the number of relevant pairs (¢, d) with C' < ¢ < 2C
by
1 1
1+£(£>2S100(g>2 (42)
c(a) \Y c(a) \Y
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Summing these bounds over C' = 2*"(yY)_% with n > 1 yields ﬁ. We add 1 to
account for I',. 5if

We can now return to studying the series defined in (40). Let us first pretend
that everything converges fine and make the following computation. Given any
cusp b we have

[Paplkoe](2) = Jo, (2) 7 Pap(042)
—Je(2)7" Y wlowyeytovz)
YEU(Z)\og 'Tay
=Je(2)7" Y ooy Dwlont 00voy )iy (062) Fp(32)
+EU(Z)\o 'Tor

= ) Pa(i(2) Fe(y2), (43)

YEU(Z)\og 'Top

where

Dap(7) = Iowyoy Yw(os ", oavoy Hw(yoy ', o).

In general this is not a multiplier system. However, if a = b, then ¥, , = ¥, is the

multiplier system for the conjugate group o, 'T'o, obtained by conjugating . In
particular we have

[Pa,p’ko'a](z) - Z ﬁa(V)jv(z)_kp('yz)'

veU(Z)\og 'Toa

This looks a lot nicer than the original definition and many computations can be
reduced to considering this form by conjugation.

Lemma 2.5.5. Suppose that p is bounded and k > 2. Then the series defining
Py ,(z) converges absolutely and defines a holomorphic function on H. Further-
more, it satisfies

[PapleT](2) = 9(7) Pap(2)
forall T €T.

Proof. We first check convergence. Since we are assuming that p is bounded we
have to estimate

. _ k _ k
D o, (2) =97 ) (Im(og'72))7.
Lo\l YEL T

To control this sum we recall that

#H{y € T\ Im(o,'y2) > Y} <1+ %.

Convergence is immediate.
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To check the transformation behaviour we can conjugate the group and assume
a=o00 and g, = 1. Take 7 € I' and compute

Pop(r2) = Y 9(7)j(72)"p(y72)

YET N\
= > 9T )y (r2) Fp(v2).
vyel\I'

This follows just by a simple reordering of the sum (which is allowed now). We
are done after checking that

Iy = w(y, 7)) = w(y, 7 Hw(r, 7 )I(1)d(v)
and

Jrr1(2) 7 = w(y, 7713 (2) e (72) T = w(y, 7 w(r, T (2) 5 ()7

i

The next step is to check holomorphicity at the cusps. To do this we need to
compute the Fourier expansion. We start by inserting Lemma 2.5.1 into (43):

[Paplkoe](2) = daep(2) + Z Vap(7)15(2) (44)
1#4€U(Z)\og 'Toy /U (Z)

where for any representative v = (CCZ Z) with ¢ > 0 we have

L(2) =) jyr(2) " p(/T"2)0 ()

= clz+n k. a_ L ce(—rpn).
_%(( +n)+d) p(c c(c(z+n)+d)) ( )

Applying Poisson summation to the n-sum yields

L =Y /R(c(z +)+d)Fp (9 - ! ) ce(—(n + Ke)t)dt.

=~ c  cle(z+1t)+d)

A change of variables leads to

1 d icy+oo a 1

L(z)= - Z e((n+ krp)z)e((n + Iﬁb)z) : / ) x’kp(z - a)e(—(n + Hb)g)dx.

Note that the integral is actually independent of the path of integration taken,
so that we can replace icy by iy for some yo > 0. At this point we specialize to
p(z) = e(mz) with m € N. For this choice we get

L) = Y ellnt m)2)elln 4 m) 4 m?) Imma),  (45)

nel
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1Yo +00
I(m,n;c) = / z ke (—m — M) dzx.

Yo—o00 cx c

where

This evaluates to

7 m

k—1
2 (ntme) iz g (AR ) e S

0 else.

We define the (generalized) Kloosterman sum

Sa,b(ma n; C) = Z ﬁa,b(7>e

d mod c,

a ®\_
y= o5 'Top
c d) "

Inserting (45) into (44) we find that

(ma +(n+ ,{b)d) |

Cc

[Paplkoe)(2) = dgpe(mz) + Z e((n+ Rp)2) Z %Sa,b(m, n;c) - I(m,n;c).

c>0

We thus have computed the Fourier expansion of the Poincaré series P, , at the
cusp b. Since this is an important result let us phrase it as a theorem:

Theorem 2.5.6. Let I' be a Fuchsian group of the first kind, let k € R.o and
let 9 be a multiplier system of weight k for I'. Put p(z) = e(mz) with m €
N and assume that a is a singular cusp. Then we have the Fourier expansion

[Paplios](2) = e(kyp) ZZO:LH%J ap,, (n;b)e(nz) with

k—1
2 2 1 4
o 058) = Soenit 35 (02) 75 Lsuntm i ( . Rb)) ,

m C
c>0

where b is any cusp and Sqx(m,n;c) is the (generalized) Kloosterman sum defined
Corollary 2.5.7. Under assumptions of Theorem 2.5.0 we have P, , € Si(I',?).

Exercise 3, Sheet 5: Let I' = I'y(¢) with ¢ = rs for (r,s) = 1. Consider the two
cusps a = oo and b = % with scaling matrices

0
0,=1and o, = (r\/i L)
/5
a) Let a’ and b’ be cusps of I'g(¢g) with scalling matrices o and oy. Suppose

that a = ya’ and b = b’ for 71,72 € T'o(¢). Show that there are real
numbers t1, t5 independent of n and m such that

Sapr(m,n;c) = e(mty + nta)Sep(m, n;c)
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b) Show that

T

Sap(m,n;c) =e (n—) S(ms, n;lr)

S

if ¢ = Iry/s with € N and (I, s) = 1 and otherwise the Kloosterman sum
is 0. In the equation above 7 denotes the inverse of r modulo s, and s
denotes the inverse of s modulo Ir.

Solution. Part a) works for any discrete group I" with cusps. Recall that, for two
cusps a, b and scaling matrices o, 0, we define

Ca[,:{c>01 (* *) Eaa_lf‘ab}
c %

and the Kloosterman sum (for the trivial multiplier) is defined as

Sap(m,n;c) = Z e (nc—i + mg>

a * -1 ¢ ¢
(2 5)eB\oa'Toy/B

0 1
and if v, € I" with v;d’ = a then I'y = wleayl. It follows that o, 'v0400 = 00
and

where B = { <1 n) ‘n € Z}. Also, if Ty is the stabilizer of a, then o, 'Tyo, = B

(O'a_l’Yan/)_l B (Ua_l’VIO'a’) = O-c;l’Yl_lI‘fﬂ/an’ = Uc;lru'aa' =B.

This implies that o, 'y00 = (§%) for some x € R, so that oy = v, 0, (§ 7).
Similarly 0;17201,/ = (é ?1/) and thus oy = v, 10y ((1) @1/) for some y € R. It follows

that
0‘;1F0[,f = ((1) —1x) UglFab ((1] ‘?{) )

Therefore, there is a bijection that sends the double coset B\o,-1T'cy/B repre-
sented by (%7%) to the double coset of B\o,'I'cy /B represented by (™ diey)
(recall that in the double coset the entries a,d are defined modulo ¢). Therefore,

looking at the definition of the Kloosterman sum we see
Sare ¥ (m,n; ¢) = e(=max +ny)Sey” (m,n; ¢)

In particular, the absolute value of the Kloosterman sum is well-defined for equiv-
alent cusps (and any choice of scaling matrix). This finishes the proof of part a).

For part b) we compute
a b \/50_\/§(a+rb)\/ig_\/§x\/i§
qc d) \ry's \/Ag — \Vs(ge+dr) \% - \Wesru
where a, b, ¢, d are integers with ad — gbc = 1 and x,y, u, v are also integers. Since
u = sc+d and (d,c) = 1 we deduce that (u,c) = 1. On the other direction if we



ADVANCED ALGEBRA 1: MODULAR FORMS 65

Vs L

Vs

start with a matrix ( Voru 2

) with zv — ruy = 1, multiply by on the right by

o, ' and check if the resulting matrix belongs to I'g(q) we get

Vs \/ig \/% 0 _(x—yr oy

Vsru =) \—rvs /s r(u—v) v
This matrix belongs to I'y(¢) if and only if u = v mod(s), which by the determinant
condition is automatically a unit mod(s). Therefore

N

Lo(q)oy = P ey, u,v€Z, xzv—yur=1, u=vmod s, (u,s)=1,.
Vsru NG

Fix u € Z with (u, s) = 1. Note that, by the determinant condition, v determines

x modulo ur. Also, multiplying by elements of B on the right and left we observe

that in a double coset v is determined only modulo gu, and since we must have

v =wumod , and ¢ = rs with (r,s) = 1, by the chinese remainder theorem the

Y

map (\/;:; V' ) — v mod ru is injective from double cosets B\I'oy/B with fixed
/s

u, to residues modulo ru. The image of the map are exactly the units modulo ru.
Indeed, given such a unit ¢, using that (ru,s) = 1, we can find an integer v such
that v = € mod ru and v = v mod s. Then, we let x be an integer representing
the inverse of € modulo ru and we let y the unique integer such that zv — yur = 1.
The matrix with these entries is in I'g(¢q)op, with the entry v as desired. Therefore,
the corresponding Kloosterman sum is

()

v=u mod
v a unit mod(urs)
where v is the inverse of v modulo ru. Let 5 be an integer representing the inverse
of s modulo ur and w,7 be integers representing the inverses of wu,r respectively,
modulo s. We can parametrize v in the Kloosterman sum as v = dss + uurur
where d moves in the units modulo ur. Also, T is represented by dss. Therefore,

Sap(m,n; \/Eru) =

Z . (nd?s + nuurur + mEEss)

rsu
de(Z/(ru)Z)*

nuur nsd + mdss nr _
= Z e ( ) e <—> =e (—) S(ms, n;ru).
s U s

de(Z/(ru)Z)™

This is what we wanted to show. it

It is not obvious that the Poincaré series are non-trivial in general. However,
using the explicit form of the Fourier coefficients one can produce estimates that
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ensure that the Poincaré series are non-zero for large enough k. This means that
we have constructed some non-trivial cusp forms in quite some generality.

Lemma 2.5.8. Let I' be a subgroup of PSLy(R) that is discrete, finitely generated
and such that Vol(I'\H) < oco. Let m € N and consider a cusp a of I'.  Then
there is a large enough ko > 2 such that for any weight k > ko and any multiplier
system U for I' (of weight k) the Poincaré series P, of weight k associated to 6
and p(z) = e(mz) is nonzero.

Proof. We use Theorem 2.5.6 to write

o0

(Paplioa)(2) = e(raz) Y ap,,(n;a)e(nz)

n=|1—kKaq]

where

ap,,(n; @) = dnem + ) m p

o (”+““)Iglzlsa,a(m,n; Vi <4W\/m>

c>0

In particular, for n = m this has the form 14 & and we want to show that for large
k the stuff £ is less than 1 in absolute value. It is important here that x, € [0, 1),
in particular it is bounded. Recall that we have a bound

Z 1|Sa7u(m,n; o) <cla)'X
c

0<eLX

where ¢(a) is the minimum moduli of the cusp a. Also, we have a power series
expansion (valid for example for Re(z) > 0)
1.2\"
(i2%)

Jea(2) = (g)k_l i(_l)rm.

For k > 1 we can bound trivially (this is a very bad bound when z is large but it
is enough for our purposes)

o [2*
| Jk—1(2)| < 2 T exp( 1)

In particular, since we fixed m = n, k, < 1 and the moduli satisfy ¢ > ¢(a) we see
that imvm tmerg sz””““ is bounded. Therefore

4 2
Jk—l( Tm —i—m/ia) < A@2m/m2 T mrg) LA (k) !

Cc

for some A > 0 (we have disposed of the bad term exp(|z|?/4) noticing that it is

. /m?2 .
bounded, since z = VM EtMka roamaing bounded). Therefore
’ c

|Z a,a m n;c Jk 1 <4W m(n_l'/{a)) | < A(27r) . <2m )T Zc_klsa,u(m7n; C>|

c ['(k)

c>0 c>0
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Using the trivial bound (47) and integrating by parts we get

oh —
S M Sualimmi )] < 230(a)1_k

c>0

(note that £ > 2). One can also obtain this bound dyadically, by individually
estimating the contributions of 2"c(a) < ¢ < 2""¢(a) and summing over i > 0
(this gives a worse constant 1_2%, but it is the same for our purposes). Putting
it all together, we obtain

k—1
T 4 ;
27 <m+l-€a> Z%Sa,u(ﬂ%m; Vs ( T/m(m+ K ))

ap,,(m;a) =1+ —
i m pr c

5 om )1 (om2) 5t ok —
:1+0<(1+%) (2m) ng) ) Zkk_23c(a)1"“>. (47)

Using the Stirling formula for the Gamma function
T(k) ~ V2me k1% as k — oo

one sees that the error in (47) tends to 0 when k& — oo. Therefore, since one of
the Fourier coefficients of P, , is not zero, it must be that F;, is a non-zero cusp
form of weight k and multiplier ¥. it

The Poincaré series also satisfy the following interesting property:

Theorem 2.5.9. Let ' be a Fuchsian group of the first kind, let k € R<o and let
¥ be a multiplier system of weight k for I'. Put p(z) = e(mz) with m € N and
assume that a is a singular cusp. Then, for [ € Sk(T',v¥) we have

L'k—1)
(dmm)F—1

<f7 Pa,p> =

~ar(m;a).

Proof. Without loss of generality we can assume that a = co and g, = 1. We
simply compute

(f, Pap) = / RECFCIROITO

-/ o ) EIO)HE) )

YEU@)\T i ()2 £ (72)

:/F\H Z Im(y2)" f(v2)e(myz)du(z).

YEU(Z\I

Recall that the integral fF\H ...du(z) is understood to be an integral over a suitable
fundamental domain F of I'. Interchanging sum and integral as well as a change
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of variables then yields

= mZk zlelmz Z).
P = Y /Im 2)e(m z>du<z>—/U(Z)\H1 (2)" f(2)elmz)dp()

~yeU(Z)\I'

Inserting the Fourier expansion of f (at a = oo) makes it easy to compute the
remaining integral:

f7 ap Zaf n;a / e {L'(TL — m))dl‘/ yk_Qe_zﬂ("+m)ydy,
0

The z-integral evaluates to d,,—n, and recognising the y-integral as a I'-function
gives the desired result. pif

We can now establish the following very strong formula, which will later play a
crucial role in applications.

Theorem 2.5.10 (Petersson Formula). Let " be a Fuchsian group of the first kind,
let k € Roo and let ¥ be a multiplier system of weight k for I'. For two singular
cusps a,b of I' we have

%-Zm-amb)

feo

47/
= OmenOap + 271~ ch s Sap(m,n;c)Jg_1( ﬁcmn)’

c>0
where O is an orthonormal basis of S(I',1).

Remark 2.5.11. Note that there are no convergence issues on the right hand side
of the formula, since S(T',¥) is finite dimensional. See Lemma 2.3.4 above.'®

Proof. Let p(z) = e(mz) and p/(2) = e(nz) Then we first write

Pmp(z):Z( Pap, 1) (2) 47ka 1Zafma (2).
feo
This way we can compute

(I;Srkm—)kl_)l ZW.U’ Pyy) = (le;ffmﬁ Zaf m;a)-ar(n;b).

feo
On the other hand we have

<Pap>Pb7p’> =

<Pa,pv Pb,p’> -

F(k ~1)

Evaluating a pup(n b) using Theorem 2.5.6 and combining the two expressions for
(Pyp, Po ) gives the desired result. i)

(n;b).

18This was not discussed in the lecture and added there afterwards for completeness.
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Example 2.5.12. For our amusement we can apply the Petersson formula in the
following special situation. Take k = 12, T' = SLy(Z) and ¥ = ¥,. Recall that

S12(SLa(Z), 9y) = C - A so that we can take O = {A/(A,A)2}. On the other
hand the essentially only choice of (singular) cusps is @ = b = 0o and in this case
the Kloosterman sum takes the shape

S(m,mic) = Swooc(mimic) = 3 e(m_md),

c
d mod c,
(e,d)=1
where d - d = 1 mod ¢. Thus the Petersson formula for m = 1 and n € N reads
ray  _—u 7(n) S(1,n;c) 4mt/n
; — 5y + 27 SLmie) :
T w L R Dhret F S

ceN

Is this formula helpful in understanding the properties of 7(n)?

Exercise 2, Sheet 5: Let A = > 7(n)e(nz) € Si2(SLa(Z), J,) be the Ra-
manujan A-function. Show that
- Y d'r ( ) (48)

d|(m,n)

Manual:

i) Use the Petersson Formula (i.e. Theorem 2.5.9 of the lecture notes) to
write down an expression for 7(n)7(m) in terms of Kloosterman sums and
J-Bessel functions.

ii) Manipulate the resulting right hand side using the identities'

S(m,n;c) Z dS(mnd 2 1;cd™") (49)
d|(e,m,n)

and

Omen = O1mp (50)

Solution. By the Petersson Formula (Theorem 2.5.10), since S12(SLa(Z), ¥y, ) is one
dimensional and A # 0, we have

T(m)7(n) = %HAH%Z < m— n+27ch 1S(m,n;c)Ji (47@)>

(51)

19A brief elementary proof of Selberg’s identity (49) can be found in the note Selberg’s identity
for Kloosterman sums by G. Harcos and G. Kérolyi.
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Since 7(1) = 1, in particular

1 mn (4my/mn)'! 1o (M 4t/mn
A e G _1+27TC>ZOC S (5 tie) (=2

for any d|(m,n). It is now clear that the part involving delta functions in (48)
follows immediately from identity (50). On the other hand, we can use (49) to
rewrite the sum of Kloosterman sums in a different way

gclsa,b(m,n;cuu (“im) :Z 3 —S(dQ, : >J11<

c=1 d|(m,n,c)

"
- 3 St () (LE)

d|(m,n) r=1

A/

where we have changed variables ¢ = rd. Therefore,

rlmyr(n) = S gz, S (51 mn+2w2r‘15( ") (4”{% ))
dl(m;n)
Z Jr ( >

d|(m,n)

as desired. o

Exercise 3, Sheet 8: For a fixed prime p we consider the space L*(Z/pZ) of p-
periodic functions from Z to C. We equip Z/pZ with the Haar probability measure
so that the inner product is given by
1 -
(G.H)y== > G(n)H(n), for G,H € L*(Z/pL).
P

n mod p

For G € L*(Z/pZ) we define the normalized Fourier transform by

Further we set

p h mod p
(h,p)=1
a) Let (a,q) =1 and set K(n) = %S(l an;p). Compute K and show that
. -1 if n = a mod p,
-5 else.
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b) Determine the kernel of the map (-) : L*(Z/pZ) — L*(Z/pZ) and show
. oL
that (-) is self-inverse on ker (()) .

Solution. For part a), we compute directly

xS (5) L E () 5 ()

nmodpdmodp d mod p n mod p
(d,p)= (hp)=1

The inner sum is 0 unless da + h = 0 modulo p. Since a,d are invertible we have
two options. If h = 0 then the inner sum is always 0 and K (h) = 0. Otherwise,

da+h = 0 modulo p exactly for d = —ah, and we find K(h) = e <_“h> Therefore,
we have
. 1 (n —a)h
Ry=2 3 (—) |
\/]_) h g);i p p
(h,p)=1
Since ZZ L€ ( > = p—1 or —1 according to whether a is 0 or not modulo p, part

a) is clear.

For part b), observe that G — G, which we will denote by F(G), is the Fourier
transform, which is an isometry in L?*(Z/pZ) whose inverse is given by

FUG)) = — 3 G(he <_—h”)

\/]_)hmodp p

Denote by P : L*(Z/pZ) — L*(Z/pZ) the map P(f)(n) = f(n) if n # 0 and
P(f) = 0 otherwise. If 6 € L*(Z/pZ) is the function described by §(0) = /p
and d(n) = 0 for n £ 0 modulo n, then P is the orthogonal projection onto the
orthogonal complement of P. Let H := (§)*. Clearly, (§) is the kernel of P, and
P acts like the identity on H. Also, consider the isometric involution described by
S(f)(0) = f(0) and S(f)(n) = f(—n) for n # 0 modulo p. We have S? = Id, and
it follows that S o P is self-inverse on H. The map (-) described in the exercise is
precisely F ' o S o Po F. Therefore,

ker ((T)) = F1((8)) = (const,),
FUH) = (consti)) = {f € LX(Z/pZ): Y fln

n mod p

and (-) is self-inverse on the subspace F~1(H). it
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Remark 2.5.13. To check that F and F~! are inverse isometries, simply observe

that F(\/pd,) = e <;”) and F~! (e (;”)) = /Pon, and check that the sets

{V/P0n}n mod p and {e (F”) } are orthonormal basis.
n mod p

Exercise 4 (Bonus), Sheet 7: The goal of this exercise is to verify

o

B, ,(2):= —+Z ZX A(d) | e(nz) € My(To(4), x_4). (52)

We start by defining

X*4(d) —2s
Eiizs) = Y 2% jerd, (53)
(0y0)¢(|c7d)622
4|c

for Re(s) > 1.

a) Modify the argument leading to Theorem 2.5.6 of the lecture notes to
compute the Fourier expansion of Eq, ,(z,s) at oco.

b) Show that E;, ,(z,s) has an analytic continuation to Re(s) = 0. This
allows us to define E;, ,(2,0). Here it can be used that the Dirichlet
L-function L(s, x—4) defined by >\ x—4(n)n™* when Re(s) > 1 has an
analytic continuation to s € C.

c) Relate By, ,(z) to E;, ,(z,9)
L(0,x-4) = 5 and L(1, x_ 4):§

Solution. We can write

and deduce (52). It can be used that

1
E17X74(278) :2L(1+2S X~ 4 +QZZ 4Cz_|_4n_|_1)|4cz—|—4n—|—1|25

c=1n

1
-2 o4
ZZ (4dez + 4n + 3)|4cz + 4n + 3|28 (54)

c=1n

We want to apply Poisson summation formula to the function

1
Juos (@) = (w+ z)|w + z|*

for certain choices of w = u + iv € Hp. First we calculate the Fourier transform

. o e(—at) B e(—at)
Fusl) = /R (o tivt ut vt i = “low) /R CEDIETE

B o e(—avt) e te(—awt) . e(—aut)
™ [t = o™ ([ g [ e

— e(au (_ﬂ‘;‘” / ff;f?;l a-i | Hdt) |

)
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This is Basset’s integral, which is very important for the spectral theory of auto-
morphic forms. It is related to the modified K-Bessel function in the following
way:

dx ’ 2
27r7,,3t —x s—1 _—x 2mipt —tx
F()/ 1—|—t2 dt = // (t2+1> dt / e /Re e " Tdtdx
2[32
:ﬁ/ T 3e e da.
0

When 5 = 0 we arrive at

dt_ Ts-1/2)
L =

When g # 0, we change variables x = 7|3t obtaining

€<ﬁt> 71.355—1/2 /oo - B N 7Ts|/8|8_1/2
dt = §=3/2 o —mB(z+3) de =2———K,_ 2
/R TENETA A v R S =2y Reara(2mlA)

where one can take as definition

1

K(z) = 5/ 25 le 30D gy
0

for Re(z) > 0 and s € C. This is the modified Bessel function of the second kind of
order s and argument z. Although at first we need Re(s) > % for the computations
above to be valid, we observe that K(z) is an entire function of s for fixed z. Also,
note that

Ki(2) = K_4(2)
as follows immediately from making the change of variables x — ™" in the integral
defining K(2). In order to perform the analytic continuation of E;, (2, s) in the

variable s we will need uniform bounds for K,(z) where a < Re(s) < b and
Re(z) > ¢. We show that there is a constant C' = C(a, b, ¢) such that

|Ks(2)| < Ce Rel?)

for all such s and z. Let 0 < € < ¢/2, and find C' big enough such that
max(z°1,27971) < Ce® for # > 1. Then, using # + 1/2 > 2 for z > 0 we
obtain

[Ks(2)] < %/ R ) dw—i—;/ ol "2 @4 ) g
! 1

0o R ( ) 00
< Ce_Re(Z)/ o o(2) (4 + 2)+ex dx < Ce™ Re(z)/ e—%(m+%—2)+em dr
1 1

1

c

e 2te
c/2 — ¢

e—Re(z) < Cle—Re(z)
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as desired. Coming back to the Fourier transform of f, s for w = u + v, we can
write

Tov ,n,s’a,u‘s—l/2 _7T5+1|04U|S+1/2
K_1/2(2 —
s [(s) y2(2mlav]) +i I(s+1)

Fus(@) = —2e(au)v™ ( Ko /2(27r|0w|)>

for a # 0, and

ﬁu\s(o) = —Z'\/7_Tv_2sr‘1£‘z:_—+1{)2)

for a = 0. Applying Poisson summation formula to f, s for w = cz + 1/4 we get

1
; (dez + 4n + 1)|dez +4n + 1%
1 —_—
= 4_28_1 — 4—28—1 n
;(CZ+1/4—|—’R>|03+1/4+R|23 %f,(m
r 1/2
ey LTy et S e+ 1/4)) ()
I'(s+1)
0#n€Z
ey 7|y 7 172
Ks_ 2 —Ks 2
s T'(s) 1/2(27|ney|) + i (s + 1) +1/2(27|ney))

Similarly

> : —aEy 1
(4dez + 4n + 3)|4cz + 4n + 3|8 —~ (cz+3/4+n)|cz +3/4+n|?

LBy et S cnfer +3/4))(cr) > x

= —id™ /7 (ey)

F(S - 1) 0#n€eZ
ey ,n.s|ncy|sfl/2 '7Ts+1|ncy|s+1/2
K, 1,5(2 K, 2 .
s F(S) 1/2( 7T|ncy|) +1 P(S n 1) +1/2< 7T|ncy|)

Recalling (54), we arrive at

Ei, (2, 8) = 20(1 + 25, x_4) — 472 i 3 <e (g) e (%”)) (cy) "2 x

c=1 0#n€Z

s—1/2 s+1/2

7Ts+1|ncy‘
I'(s+1)

Koo ol2nlney]) + i

ey 7 ney|
i
s ['(s)

K5+1/2(27T|ncy|)] e(ncr).
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Note that for fixed y > 0 the double series converges absolutely since Re(s) > 1/2,
and because of our bound for K. Writing m = cn can rewrite the double sum as

Bi, (2 8) = 20(1 + 25, x_4) — 4~ 2y~ Z S e 28( (—)—e(i—T)) X

0#mEZ c|m

s—1/2 ,7T8+1|my]5+1/2

LTTIY 7‘8|my‘
K, 1521 NI L N,
1/2( |my|) 7 (5 1)

s [(s)

Ks+1/2(27f\my\)] e(mz).

Now, because of our bound for K, and the fact that L(s, x_4) and sF(s = (81+1)

are entire functions, we deduce that Eq,_,(z,-) has an analytic continuation to C.
Evaluating this continuation at s = 0 and using K /5(-) = K_1/2(-) we see that

Ei.,(2,0) = 2L(1, x_4) — ZZ(() (i—T))x

0#meZ c|m

[z sgn(m \/_K1/2 (2m|my|) +Z7T\/_K1/2 (2m|myl) ] e(mx) (55)
=2L(1,x_4) — 2mi i Z (e <4mc) —e (1—?)) Vmy Ky o (2mmy)e(ma)

m=1 clm

For holomorphicity at infinity we need to look at K/o(2mmy) more closely. Let
Re(z) > 0. Then

1 oo 1 . —z [e'e) 1 . - 1
Kip(s) =5 | e84 > / 1 s g
0 0

4 - —Z(u—1/u)? _ z/ 1 t ) —2¢2
=e e 2 du=-e + —— e 2" dt
/ R (2 2v/12 + 4
1\/277
e

—ﬂ'CC da,/,

where the square root is the principal branch. We have used the change of variables

y = Y Vf“ that maps R bijectively onto (0, 00). Coming back to E; ,_,(2,0), we
have
1 S m 3m —2mm
Eiy ,(2,0) = 2L(1,x ) — me |Z ( (4)—e (4_)> =2 ()

— L1,y ) — i i 3 (e (7) - <%)> e(m>).

m=1 ¢|m
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To evaluate the sum over divisors, observe that
m 3m d 3d
() (5) -2 ((5) (%))

If d is even, then expression in the bracket is 0. When d = 1 mod 4, the expression
is 2i, and when d = 3 mod 4, the expression is —2i. Therefore,

E17X74<z7 0) = 2L(17 X—4) + 27 Z Z X—4(d) e(mz)

m=1 \ d|m
Finally, using that L(1, x_4) = m/4 we arrive at

o0

By, ,(,0) = 2r ;ﬁz S ald) | e(ms) | = 2mEry L (2).

The only thing left to prove is that E; , ,(z,0) € M;(I'o(4), x—4). Observe that

X-4(d) o X-4(d) o
B\, (z,8) = Y e d T = (14 25) 3 e
(0,0)#(c,d)€Z? (c,d)=1
4lc 4lc
=C(1+2s) > (=) HE P xa().
~yEB\I'0(4)

Therefore, applying the slash operator for § € I'y(4)

[E17x74('7 3)|15](Z) = g(l + 23) Z jé(z)_ljw(éz)_l|j'y(5z)|_28X—4('7)

vye€B\I'o(4)
= [75(2)P*X-1(0)Er,y (2, 5)

where we have used that y_4 = x_;. The relation above holds for Re(s) > 1/2.
Fixing z and ¢ € I'y(4) and looking at both sides as holomorphic functions on s,
by analytic continuation we get

[E1y (5 0)[10](2) = x-4(0)Ery_.(2,0) (56)

and the same holds for E;, ,(-). Finally, we need to show holomorphicity at all
the cusps. These can be done by mimicking the proof of Theorem 2.5.6, finding
the expansion at at a different cusp and performing the analytic continuation on
s. However, there is a fast way of concluding from facts we have learned from
the course. Recall Lemma 2.3.2, which says that if E;, ,(-) is holomorphic and
satisfies [E1, ,|7] = x=a(7)E1x_,, then By, (1) € M;(To(4), x-4) if and only if
[y 2 f(x +iy)| < C(y* +y~*) for some C, A > 0. Since it is holomorphic at oo,
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it is clear that |Ey, ,(2)| < C for some C' > 0 and all Im(z) > 1. For Im(z) <1
observe that, for any 1 > ¢ > 0 and y < 1/(27), we have

4By, (2)] < 1+4ZUO n) exp(—2mny) < 1+C’12n exp(—2mny)

n=1
<1+4+C; [—1 e L o1 (2my) 0 27y Z (2myn)© exp(—2myn)
T
’ -,
1 o0
<14+ C[=—1"+ 01(27Ty)_1_5/ e dr < O(1+y 179
my 1
where we have used op(n) < Cn€ for a constant depending on ¢, and we have
bounded the series by the corresponding integral, using that x‘e~" is decreasing

for x > €. Therefore, F;, , is polynomially bounded, and we conclude that it
must be in M;(Ig(4), x_4), as desired. i

3. INTERMEZZO: THETA SERIES
We consider the following space of matrices

SPy = {A € Matyyr(Z)| A > 0, symmetric

and the diagonal entries of A are even},

where k£ € N. Given A € SP;. we can write A = B'B for a real matrix B. There
is a minimal N4 € N such that N - A~! € SP;.. This integer is called the level of
A. To A € §SP,, we can associate the quadratic form

Qa(x) = %XtAX = %A[x].

Let P(x) = P(xy,...,xx) be a homogeneous polynomial of degree . We call P,
harmonic, if

AP =0,
where A = 59—:; +...F 8 . We denote the space of homogeneous harmonic poly-
nomials of degree l by Hl Since for P, € ‘H; we can write

P(x) = |val<§|>

it is completely determined by its values on
1 =I{x e R": |z| =1} = SO(k)/SO(k — 1).
Thus H; is isomorphic to

& = {P|Sk71: Pe Hl}
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The importance of these function spaces lies in the decomposition
;Sk 1 6}) é&
leNu{0}

where S*~1 is equipped with the rotation invariant measure

in coordinates

x1 =sin(fg_1) - - -sin(fy) sin(6y), xo = sin(fx_1) - - - sin(fy) cos(6y),
o Tp—1 = sin(fx_1) cos(Ox_1), x = cos(0_1)
with 0 < 6 < 2mand 0 < 0; < mif 1 < j < k. This is nothing but the

spectral expansion (Friedrichs extension) of the Laplacian Agk-1 acting on (smooth
functions in) L?(S*7!). Indeed one easily checks that

Agr1 P = —l(l + k- 2)Pl for P, € &.

Here the Agi-1 is the Laplace-Beltrami operator on the (positively curved) Rie-
mannian manifold S¥~!, but for our purposes it suffices to know that it arises by
writing

”? k-1

Oor? r

A:

0 1
or Tt
in polar coordinates.

Definition 3.0.1. Let A € SPy, P, be a harmonic polynomial, z € H and r of
the congruence

Ar=0 mod Ny4.

Then we define the (generalised) theta series

1
Op.0.(% Z P (B(n+N~'r))e (§A[n + N_lr]z) .

nezk
There are (at least) two obvious things to note:

¢ HPz,QA (Z7 ) ( )lepz Qa (Z I‘) and
e 0p.g,(z1) depends only on r modulo N4.

® Opqalzr) = Ny' 3 mod Ny D1(Bm)e (2N2 Alm]z).

We are now going to study the transformation behavior under the action of
SLs(Z) on z. Recall that this group is generated by

11 0 1
v (0 was (1)
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Lemma 3.0.1.
1
0p.Qa(- r)|§+lT} (2) =e (Wrtflf) 0r.Qa(21).

Proof. This follows directly form the definition of 6p, ¢ ,. &

We now prove a kind of functional equation which is crucial for our further
analysis.

Lemma 3.0.2. Under current assumptions we have

> R(B(m+x))e (%A[m + X]z)

meZk

For | = 0 the proof is a straight forward application of Poisson summation and
the direct evaluation of the Gaussian integral. In most modern expositions one
deduces the general case by applying suitable integral operators. However, we will
use a proof given by Eichler in 1973.

Proof. We set

Z P(B(m +x))e (%A[erx}z).

mecZk

Since the sum converges absolute and uniformly (for fixed z € H) f determines a
continuous function with period 1 in each argument. Thus we obtain the Fourier

expansion
= Z cne(n'x) (57)

nezk
with coefficients

/ / f(x —n' x)dzy ... dzy

_ Z/ /pl (m + x))e (%(m+x)tA(m+x)z—ntX)dxl...dxk

meZk

:/ /PZBX ( tsz—nx)dxl...dq:k.

Since the integrand is holomorphic we can make the change of variables x —
271A7'n — x and shift the contour back to the real line. Thus we obtain

1 1
Cn = e(—gntA_lnz_l) / o / P(Bx+ z 'B'n)e (ixtsz) dzy ... dxy.
R R
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By holomorphicity in z it is enough to compute the integral for z = iy with y > 0.
We make the change of variables \/yBx > x, which yields

e(—3 infA nz1)
(B / /PIWX_ZB e <2 X>d$1”'dxk'

At this point we Spectrally expand

Pi(yyx —iB™'n) = (i)' A(B™m) + ) beQ(x)

deg(Q)>0

in harmonic polynomials ), which are orthogonal with respect to integration over
the unit sphere. We now switch to polar coordinates. Note that by orthogonality
we have

Q(x)dx —
Sk—1
for all @ with deg(Q) > 0. We arrive at
Cn = Vol(Skfl)—( Z(;e(tl(/;; e(—gntAlnzl)Pl(Btn)/o e R
Inserting this formula for the Fourier coefficients in (57) completes the proof. ©Z

Corollary 3.0.3. We have

i l( ZZ) +l
Z w(nl)@Pz,QA (Z, 1)7
VIdet(A)| 4o e Na

QPhQA(_Z_l: I‘) -

for (r,l) =e (”Al") .

Proof. There is a one to one correspondence between m € Z? and n € Z?* such
that An = 0 mod N4, which is explicitly given by n = NsA 'm. Using the
previous lemma with x = Nglr we find

k(_ by tA tA
Op.g,(—2 " 1) = Tzt Z P(BnN e <n no R r) :

Videt A A 2N? N2

An=0 mod N4

The result follows directly from rearranging te n-sum. it

Exercise 3, Sheet 6:

a) Suppose A € SPy and A™! € SP;. Show that k is even. (Recall that
SPy. is the set of positive definite symmetric integral matrices with even
diagonal.)

b) Show that there is A € SPy, such that 0, ¢,(2) € M (SLy(Z), ¥y, ) if and
only if £ =0 mod 8.
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Solution. For part a), we simply look at the trace. Let B, C' be symmetric matrices.
Then

Te(BC) =Y (BC)i=> BiC;+» BiC/+) BiC!
i i i<j i>j
=2_BiCi+} BiCl+) BIC) (58)
i i<j i>j
=Y BiCj+2) BiCY
i i<j
where the symmetry of B, C' is used in the third equality. The last equality follows
by swapping the indexes 4, j. If, in addition, one of B, has even diagonal, we
deduce that Tr(BC) is even. Also, if BC' = Id then Tr(BC') = k. Therefore, if A
is a symmetric matrix such that both A and A~! have integer entries and one of
them is in SPy, then k is even.

For part b), assume that there is A € SPj, such that 6, g, (2) € M (SLo(Z), Vs ).

Since 6y, is a multiplier system only for even integers, this implies immediately that
k/2 is an even integer. Also, recall Corollary 3.0.3, which states that

QPLQA(_Zilvr) = M Z w(r71>0PL7QA(271)‘
VIdet(A)] 4o N4

In our case, [ =0, P, =1 and r = 0 mod N4, which implies ¢(r,1) = 1. Therefore,
for we deduce

P2000,(2) = BrausSI(—=) = brgu (=) = 2L S g ()

N det(A) Al=0 mod N4
0 —1

where S = 1 0 ) € SLy(Z) and we used the hypothesis that 6, ¢, € M (SL2(Z), 04y ).

Canceling the power of z,

e .
QI,QA(Z> - \/m Z 91,@,4( 71) (59)

Al=0 mod N4
Recall the definition
1 _
01.0,(2,1) = le e <§A[n + NAll]z)
ne

and observe that, since A is positive definite, ¢, g, (2,1) has a nonzero constant co-
efficient iff 1 = 0 mod N4, in which case the coefficient is 1. Therefore, comparing
constant coefficients in (59) we deduce

(—i)¥/? = \/det(A)
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which implies det(A) =1 and k£ = 0 mod 8.

For the other direction, note that if we are given A; € SP;, and Ay € SP; and

we define A; & A, by
A 0
A1 ® A, = ( 01 A2>

then 01 g, o4, (2) = 0104, (2)01.9,, (). Inparticular,if 0, g, (2) € M (SLo(Z), V)
and 01, (2) € Mé(SLg(Z),ﬁtr), then 01,0, 4,(2) € M%(SLQ(Z),ﬁtr). This
shows that it is enough to consider £ = 8. Assume that we can find A € SPg with
det(A) = 1. Then Al = 0 mod N, if and only if 1 = 0 mod N4 and Corollary 3.0.3
gives
QLQA(_Z_I) = Z4011QA (Z) that is [QI,QA |1QS] = 017QA'

From the definition of 0, ¢, it is immediate that 0, ¢, (2 + 1) = 010, (%) (see the
remarks after Definition 3.0.1). Therefore, since T' and S generate SLy(Z), we

deduce 0y g, € My(SLy(Z),V;,) in this case. An example of such a matrix is given
by

21000000
12100000
01210000
A:O()121000
00012100
00001220
000002471
000O0O0O0T1 2

Writing f, for the principal minor of size r x r, we have f; = 2, fo = 3, f3 = 4,
f4 = 5, f5 = 6, f6 =7 and ﬁnally f7 = 4f6 —4f5 =4 and det(A) = fg = 2f7 _fﬁ =
1. Note that all the principal minors are positive, and consequently A is positive
definite. Therefore, 61 o, € My(SLy(Z), V) as desired.” i

Remark 3.0.4. Let A be a symmetric matrix of size k, with k odd. Suppose that
A has integer entries, which are even on the diagonal. We claim that det(A) is
even. Reducing modulo 2, B := A is an antisymmetric matrix of odd size k, that
is B® = —B. We need to see det(B) = 0 in this case. Let X be the generic
antisymmetric matrix of odd size k. To describe it, we introduce variables z; ; for
every pair 1 < ¢ < j < k. Then X is the antisymmetric matrix of size k& with
entries in the polynomial ring Z[z; |, and such that the entry of X at row i and
column j equals x; ; (for i < j). Since X' = —X we deduce

det(X) = det(X") = det(—X) = (—1)*det(X) = — det(X)

200bserve that, for such an A, necessarily 01,0, = E4, since My(SLa(Z),0,) = CEy.
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which implies det(X) = 0 (since the ring Z[z; ;] does not have characteristic 2).
Now consider the ring homomorphism f : Z[z; ;| — Z/27Z that agrees with re-
duction mod 2 on Z and sends the indeterminate z;; to B; ;, the entry at row ¢
and column j of B. Then, since the determinant is a polynomial on the entries,

det(B) = f(det(X)) = 0, as desired.

Note the following consequence of the above: if A is a symmetric matrix of even
size, with integer entries which are even on the diagonal, and |det(A)| = 1, then
A~! has even entries on the diagonal. The reason is that the entry of A~! at row
i and column j is given by det(A)~'(—=1)"*C;;, where C;; is the determinant of
the matrix that results from A after removing row j and column 7. In particular,
when ¢ = j this is a symmetric matrix of odd size with even entries in the diagonal,
and we can apply the paragraph above to conclude that C;; is even. This can be
applied to A € SPg; such that det(A) = 1, deducing that N4 = 1 in this case.

Let us define
G ={rmod Ny: Ar =0 mod Nu}.

Lemma 3.0.5. G is a finite abelian group with
1G = det(A).

Proof. The group structure (with respect to addition) is obvious. Further, we note
that the fundamental parallelogram given by A - [0, 1]* has volume det(A) and has
integral vertices. Thus #(A - [0, 1]¥ N Z*) = det(A). On the other hand we see that
the matrix N, A maps [0, N]*¥ to A-[0,1]*. Furthermore vectors r € [0, N4]* with
Ar = 0 mod N4 are precisely those that map to integral elements of A - [0, 1]*.
Thus the count above concludes the argument. it

Example 3.0.6. If A =diag(ay,...,ax),then G =Z/aZ & ... D ZL/apZ.

Note that the (symmetric) bilinear form (x,y)4 = x'Ay is non-degenerate.
Therefore, every character of G is given by

r— Y(r,1) = e(%lt/lr)
A

for some 1 € G. We have symmetry ¢ (r,1) = ¢(1,r) and orthogonality
det(A) if r =0 mod Ny,
Y o)) = { ) g

= 0 else.

We now want to compute the transformation behavior of p, g, (2, r) for general
v € SLy(Z). This is of course possible since we understand what 7" and S do
(which generate SLo(Z)), but the computation is cumbersome to carry out in

general. Suppose
a b
= <C d> € SLy(Z).
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If d =0, then v = £7*S and everything is easy. Thus we assume d > 0. (If d < 0
we can work with —v instead. The computation uses a neat trick. We start by

considering
b —a
V=98 = (d —c) '

dy'z=0b—(dz—c)"".

Note that

Thus we can write

oo =S e (gt (- )

m=r mod N4

o 3 () S e (A 1)

g mod dN 4, m=g mod dN 4
g=r mod N4
! bA[g] —1
— s Y e
Z c (Zd]\ff1 PQua\ o — o8
g mod dN 4,
g=r mod N4y

By Corollary 3.0.3 we have

~1 L (i(c — dz))sH
9 T o) =g Dp.0,.(dz — c,1).
P,Qaa (dz — . g) i det(dA)E lm(;NA’ 1/1(8 ) By QdA( )

Al=0 mod N4

Note that det(dA) = d* det(A) and cA[m] = cA[l] mod 2dN3%. Thus we get

DNCAS T iUl i SIS Pt(Bm)e(A[m]Z),

7 gk 1 2
i'd2 det(A)z | L STana, m=1 mod dN 4 2NG
Al=0 mod N4
where A[ ] tA A[ ]
bA|g| + 2adl' Ag + acdAlg
plr)= ) e ( 2dN? ) '
g mod dN 4,
g=r mod N4

We claim that ¢(r,1) depends only on 1 mod N4 (instead of dNy4). Indeed we first
change g to g + cl and observe that

2al' Ar — acAll]
SO(I‘, ]') =€ ( 2Ni

) o(r —cl,0). (60)

e m)d) 1
e ar,
( 2N% (ar.1)
['hus we can write

Opqa(721) =i7ld"% det(A) " Z(i(c — d2)) 5 > (W), (2 ).
h’eg
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Now we recall that vz = 4/(—1/z). Thus

Op.qa(v2,1) = 0p g, (7' (=1/2),1)
11 1
= i7ld™% det(A) "2 (=(cz + d))2H - S (e, 0)0pq.(— = b).
VA
h’'eg

Q| =

We can apply Corollary 3.0.3 again to the right hand side. This gives

Op,qa(v2,1) =i 2d "2 det(A) ez +d)> Y B(r, )05 04 (2:1),
leg
where
®(r,1) = > o(r,h) - y(',1).
h'eg
Note that in order to identify the co-cycle we used that*!
(Z(cz + )5+ - (—iz) 2™ = (cz+ d)3H.
z

Our remaining task is to analyze ®(r,1). To do so we assume that Ny | ¢
(i.e. v € I'9(IVa)). This allows us to conclude that for Al = 0 mod N4 we have
A[l] = 0 mod 2N4. Inserting this in (60) we get

p(r,1) = (ar, )p(r, 0).
The point is that we can use orthogonality of characters to compute

(I)(I‘, l) = Z QD(I‘, h,) ) ¢(h/7 1)

h’'eg

= SD(I'7 0) Z 1/)(&[‘, hl) ) ¢<h/7 l) =

{gp(r, 0)det(A) if 1= —ah mod Ny,
h'eg

0 else.

Before we perform the last steps let us state what we are aiming to prove:

Proposition 3.0.7. For v = ((Z 2) € I'o(Na) with d >0 and d =1 mod 2 we
have
abAlr
0p.0.(v2, 1) =G(e,d) - e ( 2N[2 ]) (ez+ d)g’” 0p o,(z,a-1),
A
where
A[x})
G(c,d) =d 2 el —2c .
( ) x%d ( d

21This is checked by recalling that d > 0 and considering the distinct cases ¢ < 0, ¢ = 0 and
c>0.
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Proof. So far we have obtained

IMES

HPl,QA (727 I') - (,0(1‘, O)d_ : (CZ + d)g—H : Z'QZQPZ’QA (Z, —CLI‘) .

~

ZGPL,QA (#,ar)

- T ()

g mod dN 4,
g=r mod N4

Recall that

Since ad = 1 + bc = 1 mod N4 we can write g = adr + xN4 for x mod d. We
obtain

so(r,O):e(%éM) 5 e<b§5‘]>=e(“§f§§]> 3 e(_%g[){])'

x mod d x mod d

In the last step we have used the assumption that d = 1 mod 2 in order to make
the change of variables x to 2cx. s

Essentially the last task is to evaluate the Gaufl sums G(c, d). We first treat the
one dimensional case. To do se we define the Legendre symbol by

n\ _ )1 if n = y? mod p, (61)
P —1 else

for odd primes p and (n,p) = 1. This is extended to all d = 1 mod 2 and (n,d) =1

6-G) G

where d = p}' - - - pl* is the prime factorization of d. This is the Jacobi-symbol.
Lemma 3.0.8. Ford € N with d =1 mod 2 and for ¢ with (¢,d) =1 we have

g(c,d) = Z 6(0%2) = (2) eqVd,

x mod d

“1\? 1 ifd=1 mod 4,
€= | — =3 .
d i ifd=—1 mod 4.
Proof. We first execute several reduction steps.

Suppose that d = ¢r? where ¢ is square-free. Then we can write z mod d as
x = u + qrv where u mod ¢r and v mod r. We obtain

gled)= Y e(%;) 3 6(20;“’).

u mod qr v mod r

where
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By character orthogonality we can execute the v-sum and obtain

gle.d)y=r Y 6(%):%9(0@).

u mod gqr,
u=0 mod r

Thus we can restrict to square-free d.
For d square-free we have

ﬁ{xmodd:xQEymodd}:H(l—l—(%)) :Z(%)

pld qld

Inserting this into the Gaufl sum yields

0= % ()e(%).

gld y mod d
By character orthogonality the inner sum vanishes unless ¢ = d. So that
Y cy c
0= 3 (4D (5o
oed) = 3 (3= (3ot
Next suppose d = q1¢2 with (¢1, ¢2) = 1 and square-free. Then, using the Chinese
Remainder Theorem we can write

2)]d7 = L]GW7 X L] 7.
This gives

Z Z Qﬂ +Q1y) ) =9(@2,q1) - 9(q1, ¢2)-

z mod ¢; y mod q2

Note that by quadratic reciprocity we have®

q2 q1 €q1 " €go

Thus it remains to be seen that g(1,p) = €, - \/p, where p is prime.
We give an argument due to Schur (1921). Define the matrix

k
B= (e(”—)) .
D/ o<nk<p—1

22Here it is important that ¢; and g are both positive and odd. Note that a standard proof
of this actually uses the sign of the Gaul sum that we are trying to compute. But there are
other arguments, so that our proof is not cyclic. For example one can Artins general Reciprocity
Theorem to derive quadratic reciprocity.

2To see that |g(p,1)| = /P is relatively easy. Indeed we can simply compute

P = Y (T S ) 3 etei)
z,y mod p x mod p y mod p

23

Since p is odd the y-sum vanishes unless x = 0. But for x = 0 it contributes p and we are done.
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Of course we have
Tr(B) = 9(1,p) = € - /.

And we want to determine the sign €,. By character orthogonality we compute

p 0 -+ 0

(p—l n+kz) 00 - p
S e -
v=0 0<n,k<p—1 o )
SR 0O p -+ 0

In particular B* = p*- 1,. Thus the fourth power of an eigenvalues of B must be
p®. Thus we write the eigenvalues as A, - \/p with X} = 1. Put m, = f{v: \, ="}
Then we must have

ep:)\0+---+)\p,1:mo—m2+i-(m1—m3).

The eigenvalues of B? are 4p and it is easy to compute the dimension of the
respective eigenspaces. This gives the constraints

—1

mo + Mo = andml—i-mg:pT.
Since we already know that |e,| = 1 we are left with two cases. First, mg = mo
and m; — mg = 1. In this case it easy to see that p = —1 mod 4. Second,

mo — mo = 1 and my; = mg. In this case p = 1 mod 4. So far we have seen that

41, 1 %fpzlmodél,
1 if p=—1 mod 4.

We still have to pin down the remaining sign, which turns out to be quite com-

plicated. We claim that det(B) = i(g)pg. With this at hand we can proceed as
follows. Indeed we gain the new identity

im1+2m2+3m3pmo+m1+mz+m3 _ det(B) _ Z'(g)p%

Looking at the ¢ powers we find that

-1
m1+2m2+3m352m2+m1—m35%mod4

Suppose we have p = 1 mod 4. Recall that in this case we already know that
mo — mo = £1 and my; = mgz. We compute

1 1 -1
+1 = mo—mo = m0+m2—2m2 Z%—QmQ mi+ms = p—; p( B ) mod 4.
Since we have p = 1 mod 4 we find that £1 = 1 mod 4. This determines the sign.
The case of p = 3 mod 4 is similar and we omit it.
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However we should still compute the determinant. Since B is a Vandermonde
matrix we have

=TI e@-gr= I aghegh-a-g
— (). H e(k;]—?n). H (QSin(ﬂ-(kp_ n))>

The first product is easily computed to be

I1 (M o2 g

2
0<n<k<p—1 P

The second product is positive. Thus we find that det(B) = i) . K for something
positive. But we already know that C' = |det(B)|) = p2. This concludes the
proof. s

We are now ready to compute the multi-dimensional version:

Lemma 3.0.9. Suppose d € N with (d,2cdet(A)) = 1. Then we have

- (449 ()

Proof. Since d is odd we find an integral matrix V' such that

VAV = M mod d

for M = diag(as,...,ax). (This follows from the exercise below.) Note that we
still have (det(V'),d) = 1. At this point we change variables x to Vy in the sum
defining G(c, d). Note that we have

k
Alx] = Mly] = Zaiyf mod d.
i=1
We get
k
G(c,d) = a2 Hg(—2cai, d).
i=1

We are done after inserting the evaluation of the one dimensional Gaufl sums
obtained above. Note that we have m; - - - my, = det(A) det(V)? mod d. i

Exercise 2, Sheet 6: Let A € Matyyx(Z) be a symmetric matrix and let d be an
odd integer. Show that A can be diagonalized modulo d, i.e. there exists a matrix
M € GLi(Z/dZ) such that M*AM is congruent to a diagonal matrix modulo d.
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Solution. Write d =[], p». The Chinese remainder theorem says that

z/dz.~ || Z/p"Z

p

From this isomorphism we obtain

My(2/dz) = [ Mi(Z/p"2)

p

and looking at the group of units

GLy(Z/dZ) = (My(Z/dZ))* =~ [ [ (M(Z/p"2Z))" = | | GLa(Z/p™)

p

These observations reduce the problem to the case d = p" for some n > 1,
so that we work with matrices in the ring Z/p"Z. Consider a symmetric matrix
A € My(Z/p"Z), which we can assume to be nonzero. Let r := minj<; j<x(v,(4;;))
be the minimal valuation of all the entries of A. If v,(A;,;) = r for some 1 <1i <k,
we can swap rows and columns to assume v,(A; 1) = r. Otherwise, after swapping
some pair of rows and columns we can assume that v,(A; ;,) = r for some j, > 2,
but that v,(A;;) > r for all 1 <i < k. Then, letting P = Id + Ej, 1 € SLy(Z/p"Z)
we see that (PtAP)Ll = Al,l +2A17]’0 +Aj0,j07 and then /Up(Al,l +2A17]’0 +Aj0,j0)24 =
vp(Aujy) = mini<i <k (vp(Aij))-

Now we can assume that v,(4; ;) > r =v,(Ay;) for all 1 <4, j <r. Therefore,
for any j > 2 there exists ¢; € Z/ka such that A,; = c¢jA;;1. Considering

P=1d—- Z?:z c;Eyj € SLi(Z/p"Z), we observe that

¢ (A1 O
PAP—(O B

for a symmetric matrix B € My_1(Z/p"Z). Proceeding inductively, we can find
P € SLi(Z/p"Z) such that P*AP is diagonal, as desired. Note that the algorithm
actually gives P'AP = diag(dy, ..., d,) where d; | diy1 for 1 <i <k —1. i

Remark 3.0.10. The conclusion of the exercise does not hold if d is even. For a
counterexample, we let A € My (Z/dZ) be a nonzero symmetric matrix with all
diagonal entries equal to 0, and the rest of the entries satisfying 2A4; ; = 0 for all
1 <14,5 < k. Then, we see that

2" Az = 0 for all x € (Z/dZ)*

As a consequence, for any P € GLi(Z/dZ), the diagonal entries of P*AP are all
zero. If this matrix was diagonal, it would be identically zero, and then A would
also be identically zero, contrary to hypothesis.

24We use that p is odd to guarantee that v,(2) = 0.
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We extend the Jacobi Symbol from d > 0 odd to all odd d by requiring

c c c
—)=——] if .
<d> Ic] (—d) ifc#0
9 )1 ifd =41,
d) 10 else.

We can now combine everything:

We also set

Proposition 3.0.11. Let A € SP;. and let P, be a harmonic polynomial. Suppose

that v = (CCZ Z) € SLy(Z) with Ny | ¢ and d =1 mod 2. Then for any r € G we

have e
a
[0p.a (1)l +ﬂ ( N7 >19th Y)0p,0.4(2,ar),

= (40) o 2))

Proof. The case ¢ = 0 is easy. For d > 0 we can apply Proposition 3.0.7 together
with the evaluation of the Gaufl sum given in Lemma 3.0.9. The case d < 0 is ok
due to our modification of the Jacobi symbol. yif

where

Remark 3.0.12. It can be seen that the (generalized) theta functions 0p, ¢ ,(2,r)
for r € G are modular forms for the principal congruence subgroup

[(4N) = ker[SLy(Z) — SLo(Z/AN1Z)].

b

Indeed for v = (CCL d

) € I'(4N4) the transformation behavior simplifies to

0.l = (%) Onaun)

Furthermore these are cusp-forms as soon as P, is not constant.
We are mostly interested in the case of 0p g, (2) = 0p g,(2,0).
Theorem 3.0.13. Let A € SPy. and P, be a harmonic polynomial. Then
Or,Qa(2) € My (To(2Na), Vun).
If 1 >0, then 0p,q,(2) is a cusp form.

Proof. The transformation behavior follows directly from our earlier considera-
tions. (Note that since (d,c) = 1 it must be odd.) It remains to check the
regularity conditions at the cusps. This is done as follows. First we note that
every cusp of I's(2N,4) can be translated to oo using a matrix in SLy(Z). (This
is different from the scaling matrix, but good enough!) However, as we have seen
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above acting on 6p, ¢, (z) by an element of SLy(Z) gives us a linear combination
of the (generalized) theta functions 0p, g, (z,r) where r runs through G. Thus it
suffices to check that all 6p, ¢, (z,r) are holomorphic at infinity. Vanishing at the
cusps is similarly easy to see when [ > 0. This is because P;(0) = 0 as soon as P,
is non-constant. e

Things simplify when £ is even. Indeed in this case we have

D , k
00(2) = xo4(0) = (24 with Dy = (1) qe(a).
This is simply a character.

Theorem 3.0.14. Let A € SPy for even k and let P, be a harmonic polynomial
of even degree l. Suppose that Ny > 1. Then

HPL,QA (Z) S M%-H(FO(NA)a XDA)'
Furthermore, if | > 0, then 6p, g, (2) is a cusp form.

Proof. Essentially everything is clear except for the transformation behavior in the

case when )
a
v = (C d) - Fo(NA)

with d even. If such a 7 exist, then 24 N4 and 2 1 det(A). In this case one sees
that .
Dy = (—1)2det(A) =1 mod 4.

In particular xp,(d) depends only on d mod N4. Thus we can do the following

trick. Let
; _f(a a+D
W_PYT_(C c+d)'

Our transformation law applies to this matrix. Indeed we get

07.Qal571(2) = [0r.Qul 517 1(2=1) = XD, (d+0)0p.qu(2=1) = XD (d)0p.q4(2).
&

Remark 3.0.15. Note that we can ask if the statement of the theorem above remains
true when A € SPj, and det(A) = Ny = 1. In this case k must be even and we can
ask about the transformation behavior of 0p, ¢, () with respect to SLy(Z). For
this we need to consider the action of matrices with vanishing lower right entry
(for example ). This can be established by means of Corollary 3.0.3.

Recall that a Dirichlet character y : Z — C* modulo N arises as follows. We
start with a character y : (Z/NZ)™, also denoted by Y, in the usual sense. Then
we put

~Jx(kmod N) if (k,N)=1,
x(k) = {O else.
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To a Dirichlet character modulo N we associate the Gaufl sum
x
)= Y x@e(5)-
z mod N

An example of a Dirichlet character modulo 4 is

1 if d =1 mod 4,

X_4(d) =< —1 if d =3 mod 4, (62)

0 if 2 | d.

Exercise 1, Sheet 6: Let y be a non-trivial Dirichlet character modulo p, where

p is an odd prime. Write x(—1) = (—=1)? for p € {0,1} and
0y(2) = Y x(n)n’e(n’z)

ne”L

b) Find M € N (depending on p) and a multiplier system ¢ such that 6, €
Mer% (FO(M>7 19)

a) Show that

Solution. We will apply Corollary 3.0.3 with A = 2p, Ny = 4p and P, = 2, where
p € {0,1}. From Definition 3.0.1 we have

Oura (2, 4K) =) <\/2_p (n + %))pe <%2p (n + %)2 z)

ne”L

- (;)m S (o + )re ((pn + k)Qg) |

nez
It follows that

02 = ()" S ) (02,48 (64)

k mod p
Similarly, we have

Our a2, 2k) = (\/Q_p (n + %))pe <%2p (n + %)2 z>

nez
— (2p)"2S " 2pn + k)Pe [ (2pn + k)22
(2p) ™ “(2pn + k)e  (2pn + i
nez
and we also have the expression

Ou(2) = 207 Y x(K)0ur 4 (4p2, 2K) (65)

k mod 2p
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From Corollary 3.0.3 we obtain the identity
i (—iz)zte Ak2p2l

exp7QA(—Z_1,4kf) = W Z € (Tﬁ) exp7QA(Z,2l)

[ mod 2p
Zlip(—Z'Z)%—i_p Z <k’l>
= - e —_— QJL"’,QA(Z721>‘
v 2p [ mod 2p p
Applying the identity for any & modulo p and using the expression (64) we obtain

% (_%z) B (g)m Y X(K)bwq, (—2%,41{)

k mod p

- (g)ﬂ/z % Z Z x(k)e (k—l) 00 0, (22,21)

k mod pl mod 2p p
. . 1
e s (5 (2
= <— _ x(k)e | — ) | b0, (22,20).
2 \/2_p [l mod 2p \k mod p p
If (I,p) = 1, we can change variables, writing k& = [z in the inner sum, to obtain
kl .
> xke (=) =x"' D7 (x) (66)

k mod p p

If p divides [ the inner sum is >, 4, X(k), which equals 0 since y is primitive.
Since x~!(1) = 0, equation (66) also holds in this case. Thus, we arrive at

b (5 ) = (3)" %o@ S X (6ar0(22,2])

- (O T ey ()
- EE 0 (5)

where we used the expression (65) for xy~! in the second line. This finishes the
proof of part a).
For part b) we will apply Proposition 3.0.7 using the expression (64). Let v €

a b
Ap?e d)' We see that

(5 3) Ge 0)= (e ) ()

[o(4p?), which we can write as 7 = (
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Letting v, := (4?76 %), and using j,(2) = j,, (pz) we obtain formally
[‘92”7QA (p'7 4k)|%+p7](z) = jw<z)7§+pj (pz)§+p[9$p,QA('7 4k>|%+p71]<pz)

= [0ar.@u (-, 4K) |1 0] (P2)
Applying Proposition 3.0.7 to 0.0, (-,4k) and 71 € I'g(4p) we arrive at

[Oar @ (P 4F) [ 14,71(2) = [0ur @a (-, 4K) |14 ] (p2)
apb2p(4k
—¢ <%1(92)) Oin(71)020 0, (D2, dak) (67)
= Oun(71)020 0, (P2, 4ak).
Using expression (64) and the fact that (a,p) = 1, we obtain

0Ol E) = (B) 3 X 000)er 04 (02 A0) = () @) (2).

k mod p
Therefore, 0, € M1, ,(To(4p?), ) where the multiplier system o) is defined as

I(y) = Oum(1)x " (a)
for v € Ty(4p?) and v; and a defined as above. it

Remark 3.0.16. Let Qg be the quadratic form

Qs(x) = Z + = <Z xr> — T1T9 — ToTg.
Then there is a harmonic polynomlal Py such that

QPS’QS <Z> = A('Z)

Proof. For now take P to be some harmonic polynomial. If deg(P) = 0, in other
words P = ¢, then
Op0s(2) = cEy(2).
On the other hand if deg(P) > 0, then 0p,(2) is cuspidal. In particular, if 0 <
deg(P) < 8, then pg,(2) = 0 since there are no cusp forms of the corresponding
weight and level. Furthermore, if deg(P) = 8 then 0p,(z) € CA. Thus it suffices
to find P for which fpg,(z) # 0.
Next let us note the following triviality

Opqs(2) =Y _ Bp(n)e(nz) for By(n) = > P(Bx).
n>0 x€7Z8,
Qg(x):n

This of course implies

0P+I5,Qs (Z) - HP,Qs(Z) + HP,Q8<Z)
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On the other hand, our discussion above implies
240-c-o03(n) if P=c,
By(n) = :
0 if 1 <deg(P) < 8.

We make the Ansatz
XtAQgOé

V Qs(x)Qs()

and some a € Z8 to be specified soon. Here Py is a certain even Polynomial of
degree 8. We can write

Po(Bx) = Py(u)[@s(ct) - Qs(x)]" for u =

7
Py(u) =u® + ) ¢, Hpy(u) — ws,
p=1

for Legendre-like-Polynomials H, of degree p.*> Since Py is orthogonal to the
constant function one determines wg = 277.
Using our remarks above we compute

Bpy(n) = (Qs() - n)* Z (u® — ws)

QRs(x)=n
=278 [x'Agsal® — 277240 - a3(n)(Qs(a) - n)®.
Qs(x)=n

To see that our generalised theta function does not vanish we only need to look at
the first Fourier coefficient. We now choose « such that Qg(a) = 1. Thus we get

PBs(1) = Y [x'Aga]’—2715>2° - 2715 =2°(16 — 15) = 2° > 0.
Qs(x)=1

>2.(2Q5(c))®

J/

In the first step we used that the x sum includes x = «a, —a and we drop all
the rest by positivity. Thus we have seen that Bg(1) > % which implies non-
vanishing.?’ if

251f we were working in 3 variables these would really be just Legendre polynomials. However,
in our case they are determined (up to constant) by their property of being polynomials of degree
p and by the differential equation

(1—w?)H) — TuH) + p(6 4 p)H, = 0.

2GVVOIking more precisely one can get Bg(1) = 1973 on the nose.
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4. SaTz II: QUADRATIC FORMS

In this section we illustrate basic applications of modular forms to quadratic
forms via theta functions. Here we are interested in the specific case of positive
definite quadratic forms with integral coefficients:

1 , 1.1
Qx) = Zazjxﬂj + 3 ;aiﬂ?i = 5X Ax = §A[x]. (68)

i<j

In particular A is a symmetric positive definite matrix with integral entries and
even diagonal (i.e. A € SPk). Let k be the rank of @ (i.e. A € Myxx(Z)). Then
we are interested in studying problems surrounding the diophantine equation

Q(m) = n for m € Z* and n € N.

For k = 2 this can be approached using algebraic number theory. On the other
hand, if k is sufficiently large analytic tools such as the circle method turn out
to be very powerful. Another possibility, which we will pursue here, relies on the
modularity of theta functions.

The maybe most famous example is the proof of Jacobi’s four square theorem
using modular forms. Set

ra(n) =#{x € Z": n =23 + 25 + 23 + 23 }.
Then
> ra(n)e(nz) = 01,0, (2),

n>0

where A = diag(2,2,2,2). In particular N4 = 4 so that
O1.0.(2) € Ma(Lo(4), Vur).
We have two candidates of modular forms in My(T'o(4), ¥4, ):
Es5(z) = Ea(2) — 2E5(22) € My(Tg(2),0,) € Ma(To(4), 0¢,) and
Es4(2) = Ey(2) — 4E5(42) € Ma(To(4), V).

Since we know the Fourier expansion of Fy at 0o (see (28)) we can write down the
expansions of Ey, with a = 2,4 at oo:

Bro=(1—0a)—24)  [01(n) = bgn - a - 01(n/a)] e(nz).
neN
We see that they are linearly independent so that
2 S dim MQ(FQ(4), 19“).

We claim that the dimension actually equals 2. To show this we derive the following
general result.
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Lemma 4.0.1. Suppose I' C SLy(Z) is of finite indez, then
k
dim M (I',9,) < — -
1m k( ) t) = 12
Proof. We let d = dim M(I",J,). Then we observe that there is f € My (T, V)
with mys(co) > d — 1. (This is a problem in linear algebra, since we can build

linear combinations eliminating at least the first d — 1 Fourier coefficients.) Now
write ;1 = [SLo(Z): I'] and find representatives

[SLy(Z): T]+ 1.

m
SLy(Z) = U L.
=1

This allows us to construct the function
I

9(z) = [ [1f11i() € My, (SLa(Z), D).

i=1
By Theorem 2.4.1 we conclude that

k
d—1<ms(oc0) <my(oo) < l—g
oy
Since [SLy(Z): Ty(4)] = 6°" we have dim M,(Ty(4),9,) < 2. Thus we have seen
that
My(Ty(4),04) =C- Eyo 4+ C- Eyy.
One can even show that Sy(I'(4), ) = {0} (Exercise) but this is not relevant
at the moment.

Exercise 1, Sheet 7: Show that Sy(I'g(4), J) = 0.

Solution. Let f € S5(I'0(4), ;) and consider
gz) =] (v (2.
7€l0(4)\SL2(Z)

Recall that [I'g(4) : SLy(Z)] = 6. Also, it is clear from the definitions that [(f; -
fo)lkwy] = Ualey] - [feliy] for k,1 € R and v € SLy(R). Using this remark, we let
d € SLy(Z) and observe that

ghos = I W)= ][ fwl=g
7€l (4)\SL2(Z) €0 (4)\SL2(Z)

since right multiplication by ¢ permutes the right cosets of I'g(4) in SLy(Z). This
proves that g € Mi5(SLa(Z),Yy,). Since f is a cusp form, for each v € SLy(Z) the
function f|yy vanishes at infinity, so in fact g € S12(SLa(Z), ¥y). We now show

270ne can show by writing down general systems of representatives that [SLa(Z): To(N)] =
N -1, (1 +p~"). This is the content of Proposition 4.1.7 below.



ADVANCED ALGEBRA 1: MODULAR FORMS 99

that g = 0.

Given v € SLy(Z), recall that stabilizer of the cusp yoo is ['g(4) NyU(Z)y™! =
v (v 'To(4)yNU(Z))y~t. Since T'y(4) contains T'(4), which is normal of finite
index in SLy(Z), we deduce that

7' To(4)y NU(Z) = (T*)

for a unique positive integer d,, where T = (}1). It follows that [f|»7](%) has

period d.,, since yT%~y~1 € I'y(4) and therefore
[Fl2AlleT™ = [flo(VT Ty )]y = flov-

Since f|o7y is holomorphic, zero at infinity and has period d,, we can write

Fl2)(z) = ¢ iy (a*)

for a holomorphic function h, on the unit disc, where ¢ := e(z) and ¢" := e(rz)
for any real r. Therefore, we deduce

g(z) = qzwerow\SLz(Z) e~ H ho(q™).
v€l0(4)\SL2(Z)

On the other hand, we know that g(z) is holomorphic on ¢. After observing that
all d, are positive and that diq = 1 we deduce that g has a zero of order at least
2 at infinity. Since S12(SL2(Z), ¢,) is spanned by A, which has a simple zero at
infinity, we conclude that g = 0. By the identity principle, we deduce that f =0,
as desired. it

Remark 4.0.2. Another way to do the exercise is as follows. First, recall that
My(Ty(4),0y) = CEy9 + CEy 4

where Ey y(2) := E(2) — NE3(Nz). The Eisenstein series Fy has an expansion
at infinity

Ey(z)=1-— 24201(n)e(nz).

It is not a modular form, but satisfies instead

az+0b 12¢
E = 2E =
9 (cz—i—d) (cz + d)*Ey(z) + 2m,(cz+d)

for ad — bc = 1, a,b,c,d € 7Z. Using this transformation law one sees that
Esn € My(Tg(N),d,) and, in particular, Eyo, Fay € My(T'o(4),9). Also, we
have expansions

Eyn(z)=1—N — 245_03 <01(n) — Nénno1 (%) e(nz)) :
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If feSy(I0(4),V) we can write f = aFso + bEyy4. Since f is cuspidal, looking
at the constant coefficient in the expansion we deduce a = —3b. Now we look
at a = 0, which is a cusp inequivalent to oo. Consider S := (1) _01) Since
f € S2(I'o(4), V), we must have [f|2S5](z) — 0 when Im(z) — oco. Using the

transformation behaviour for Ey, we calculate

N —1 Z\?2 z 12 =z
NE N :N _2E _— :N _2E —_— :N —2 <_> E (_> N 2
NENLSI(:) = Ve (<5 ) = N () = 8 () B () + Ve
1 z 12
_ K <_> .
N 2\N +27m'z

Therefore, we have

(B n[25](2) = Eay(2) — %EQ (%)

and we obtain

7b81() = (a+ D) — 58 (5) - 32 (5)

Looking at the constant term of the expansion at infinity, we deduce 2a = 3b,
which together with a = —3b implies a = b =0, so f = 0 as desired.
We return to studying the representation numbers of the sum of four squares.
By looking at r4(0) = 1 and r4(1) = 8 we see that
1

91,QA(Z) = 3 s L2y

Comparing coefficients in the corresponding Fourier expansions gives the following
theorem:

Theorem 4.0.3 (Jacobi’s four square theorem). We have
rain) =8{x €Z n=a}+...+ 21} =8 [o1(n) — 4 0y, - o1(n/4)].

For educational purposes we can rewrite this as follows:

ra(n) =82 T U T

1 — p_vp(n) -1
Qv2 (n) :

1—pt
We have used that o1(mn) =3_,, ., d = oi1(m)oi(n) for (m,n) =1 and
k
., 1— pfkfl
a1(p") = p* ZP =p"- 1——p_1
s=0

Furthermore we have written n =[], pUr(™ thus v,(n) (the p-adic valuation of n)
is the exponent of p in the prime factor decomposition of n. After recalling that

T=@=n=]Ja-»"

neN P
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we can further write this as

24 (<" pp Lo
_ 2 AT AT Y =P 2
ry(n) = an ( o) > lld = (1—-p77).
=600 (M, 4) N —~ ~ poddx ~ -
:52(TL,A) :610("7’4)

To explain this yoga we give now the proper definitions of the local densities
d«(n, A) and verify that they agree with the formulae given above.
We start with . (n, A). For general A € SPy we define

e Vol(@41(U))
)= i )

where the volumes are computed with respect to the Lebesgue measure and the
limit is taken over neighborhoods of {n} in R. Let us compute this for A =
diag(2,2,2,2):

1
500(71, A) = hm—/ ]l{|x‘2_ne(_e7e)}(x)dx
R4

e—0 26
1 T T 2
= lim — / / / / 7’3]]_{7.2_”6(_6 6)}(7“) sin2(91) Sin(eg)degdegdeldT
=02 JrJo Jo Jo ’
| T 1 9 2 o
=limo-2m-2- 5o llnte)” —(n—eff=7"n

This agrees with the factor found in the representation of r4(n) given above. The
computations suggests that in general we have

B (271')%
- T(k/2)

So(n, A) det(A) znz L. (69)

Recall that Z,, = @k Z/p*Z equipped with the pro-finite topology. The quotient
field Q, is a locally compact field and thus features a Haar measure (with respect
to addition). Thus we can define

_ o Vol(Q1'(U))
S A) = M o)

where U runs over a a system of neighborhoods of n in QQ, and the volume is taken
with respect to the Haar measure. Using that Vol(p"Z,) = p~" and that n + p'Z,
are open (compact) neighborhoods of n it is easy to see that one can rewrite this
as

3 1 T T

lim mﬂ{x € (Z/p"Z)": Q4(x) =n mod p"}. (70)

r—00
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We claim that this agrees with the factors we have found for A = diag(2,2,2,2).
Indeed for odd p we can compute

Z%ﬂ{x € (Z/p"Z)": Qa(x) =n mod p'}

Y d
=p > > (5 (e} + af 4 af + 7 =)

d mod p” x1,r2,r3,2£4 mod p”

4
d d

=y > 6(--?)( > 6(7562)))
alp” d mod p”, p x mod p” p

(pd)=1
_ dn
et Y
alp” d mod p",
(p.d)=1

The d-sum is a so called Ramanujan sum. It evaluates to

> 5= 3 beta/h),

d mod p", bl(n,a)
(p.d)=1

where p is the Mobius function. Recall that the Mobius function is multiplicative
and satisfies

1 if s =0,
p(p®)=q-1 ifs=1,
0 else.

on prime powers. In total we have
1 T T -
Wﬁ{x € (Z)p"Z)*: Qa(x) =n mod p"} = Za 2 Z b-pu(a/b).
alp” bl(n,a)

If (n,p) =1 it is straight forward that this evaluates to
1 .
2Eﬂ{x € (Z)p"Z)F: Qa(x) =n mod p"} = (1 —p~?)

for all r > 1. If (n,p) > 1, then we suppose that r > v,(n)+ 1. In this case we get

vp(n)

1
Fﬁ{x € (Z/p"Z)": Qa(x) =nmod p"} =1+ Z p 2 (p* —ptt) — pr(2

s=1

-1 +p—1 o p—vp(n)—l . p—vp(n)—Q
= (1—p ™ 1 +p)

1 _pfvp(n)fl _
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Thus we have interpreted Jacobi’s formula for r4(n) as a product of local density
which can be defined as local volumes.

e The product [],d,(n, A) converges absolutely as soon as k > 4. The situ-
ation for k = 2,3 is more tricky.

e For general integral quadratic forms ) = )4 one would hope for an as-
ymptotic

rq(n) = du(n, A) - [ 6,(n, A) - (1 + 00(1))

to hold. Under favorable circumstances this can be shown using the circle
method and furnishes a local to global principle.

In the next subsection we will see what can be said in general. But before we
include a elementary proof of Lagrange’s four square theorem as an exercise.

Exercise 1, Sheet 1: The goal of this exercise is to give an elementary proof of
Lagrange’s four square theorem:

a) Show that for every p > 2 there is 1 < m < p so that
mp::c%—l—xg%—xg—l—xi

with X1,To,T3,Tq4 € ZZO‘

b) Show that every prime p is representable as a sum of four squares (of non-
negative integers).

c) Show that every integer n can be written as a sum of four squares of non-
negative integers.

Solution. For part a), note that the subsets of Z, defined by A := {2* | x € Z,}
and B := {1—y* | y € Z,} have both cardinality ’%1, and therefore must intersect.
Thus 22 = —1 — y? mod p has a solution. By modifying # — —z and/or y — —y
if necessary, we can choose representatives with 0 < z,y < ’%1. Therefore
2 2 _ . p—1
r“+y +1=mp with 1§m§T
For part b) the classical argument by descent runs as follows. For a prime p > 2
as above let m > 1 be the smallest positive integer such that mp is a sum of four
squares. By part a) we know 1 < m, < ’%1. The goal is to show m = 1. For the

sake of contradiction, suppose that m > 1 and consider the integers y; congruent
to x; modulo m and such that (1 —m)/2 <y; < m/2. We have

Yl s+ syl =mr

for a certain 0 < r < m. If r =0, then all x; are divisible by m, which contradicts
S~ 2?2 = mp with p a prime strictly greater than m. Similarly, if » = m then
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yi = m/2 for all i which gives x; = % (2t; 4+ 1) for some ¢; > 0 and therefore

2 (2t +1)2 4 (2t + 1)2 4+ (23 + 1) + (284 + 1) oy
y —

for some k£ > 0. In this case m | p again, which is a contradiction to m > 1 and
p > m prime. Therefore, we must have 1 < r < m — 1. Now we use the Euler
identity

pmPr = (af + a3 + 23 + ) (Y +v5 +¥5 + i)

20,20 .2 2
mp = r1+x5+2r3+T =m

= (T1y1 + Taya + T3y3 + 1‘4y4)2 + (T1y2 — Toy1 + T3y4 — x4y3)2
+ (213 — T3y1 + Tayz — Toya)” + (T1ys — Tayr + Loys — T3ys)’
=: z%—l—zgjtzg—i—zi.
By the choice of y; it is clear that each zs, 23, 24 are divisible by m. To see that
m also divides z; note that

n=zi+as+a5+2;=0 modm

by hypothesis. Therefore, considering z; = z;/m we find an expression for pr as a
sum of four squares. As 1 < r < m, we have a contradiction to the minimality of m.

For part ¢) we simply express n as a product of primes and use part b) and the
Euler identity inductively. if
Exercise 3, Sheet 7: Let

ro(n) = #{r, 29 € Z: n = 17 + 23}.
Use the fact

Fun (o) = 5+ 30 [ S xald) | elnz) € MiTo(a), x )
n=1 dn

from (52) to show that

ro(n) =4 Z 1-— Z 1

dln dln
d=1 mod 4 d=3 mod 4
. . : . 2 0
Solution. Consider the quadratic form ()4 associated to A := 0 2 and form

the theta function
1
raa(2) = X e (3Alls) = X rafuetns
nez? n>0

where the second equality follows from the definitions of A and ry(-). Clearly
A € 8P;, and 4A~! € SP,,. Therefore, we can apply Theorem 3.0.14, with k = 2
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and N4 = 4, to deduce that 0, g, € Mi(I'o(4), xp,). Here Dy = —det(A) = —4
and

wa0) = (5 ) =@

where v = (2 %) € T'g(4). Since r5(0) = 1, we observe that
9(2) = 010.4(2) = 4B\, (2) € Mi(To(4), x-4)

with a zero at co. Since y_4 is a quadratic character, we see
9(2)* € Ms(To(4), )
with a zero at oo of order at least 2. Proceeding as in exercise 1 we can consider
h(z) = H [9°]27] € M15(SLa(Z))
v€T0(4)\SL2(Z)

It follows that h has a zero of order at least 2 at co. Since Si2(SLa(Z), V) is
spanned by A, with a zero of order 1 at co, we deduce that h = 0. By the identity
principle this implies ¢ = 0. That is,

Zm(n)e(nz) =1+ 42 ZX,4(d) e(nz).

n>0 n=1 din
Comparing coefficients and using the definition of y_4(-), we are done. it

Bonus Exercise: Prove the following formula
ra(m) :=[{(n1,...,ns) €Z° :n{ + ... +ng=m}[ =16 (-1)"d® (71)
dlm
Solution. Letting Ag := diag(2,2,2,2,2,2,2,2), we recognize
1
0105 (2) = %Z:S e (§A8[n]z> = Zzorg(m)e(mz)

Also, recall that 0(z) =Y, ,e(n®z) € M (T'o(4), Vtn), where ¥y, is a multiplier
that takes values in p4, the group of roots of unity of order dividing 4. Therefore,
V% = V4. Since we recognize that

010, = 0°

we deduce that 0, o, € My(T'o(4),9). Let Ey € My(SLo(Z), V) be the usual
Eisenstein series of weight 4 for SLy(Z). We claim that

My(To(4),0y) = CEy & CEy(2-) & CEy(4-).
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Since Fy(2:) = t12(Fy) and Ey(4-) = 114(Ey), we know that these are modular
forms of weight 4 for I'q(4). Looking at the Fourier expansion at co we see

Ey(z) =14 240 Z os(m)e(mz)

m=1

E4(2z) =14 240 i O2|m 03 (%) e(mz)
m=1

> m
Fy(42) = 1+ 240 Zl S im0 (Z) e(mz2).
Therefore, if f = aFy+ bE4(2-) + cE4(4-), we have, for m > 1

af(m;o0) = 240 (aag(m) + bom o3 (%) + CO4jm0s3 <%>) )

In particular, if f = 0, taking m = 1 we deduce a = 0, then taking m = 2 we
deduce b = 0, and finally taking m = 4 we see ¢ = 0. Therefore, the modular
forms Ey, E4(2-) and E,(4-) are linearly independent. On the other hand, recall
from Lemma 4.0.1 that for a finite index subgroup I' C SLy(Z) we have

k
12
In our case, k = 4 and [SLy(Z) : T'y(4)] = 6. Therefore, we deduce dim My (T'o(4), V¢,) <
3. Together with the paragraph above we arrive at the conclusion that

dim M (T, ¥) < —[SLo(Z) : T] + 1.

In particular, there exist unique a, b, ¢ € C such that 6y o, = aE4+bE,(2-)+cEy(4).
Looking at (72) and taking m = 1 and m = 2, together with the equation for the
constant coefficient, we arrive at the following system
a+b+c=1
240a = r3(1)
24005(2)a + 2400 = rg(2).

Since rg(1) = 16 and r5(2) = 4(3) = 112, we deduce

1 b 2 16
= — = —— C = —.
“T 1y 15’ 15

Since 240 = 15 - 16, we see from (72) that

) =16 ()2 () 1650 (1))



ADVANCED ALGEBRA 1: MODULAR FORMS 107

If m is odd, this agrees with (71). If m = 2¥mg with mg odd and k > 1, we need
to prove

k

k
rs(m) =16 | > d* =Y " d* | =16(-1+> _2%)> " d® = 16(—1+ ) _ 2*)a3(my)

djm dlm r= dlmgo r=1
d even d odd

When k£ = 1, we know that
rs(m) = 16(o3(m) — 203(my)) = 16(03(2)o3(me) — 203(myg)) = 16(—1 + 8)a3(my)

as desired, where we use that o3(mims) = o3(my)os(ms) when (my, my) = 1 and
that 03(2) =9. When k > 2, we have

rg(m) = 16(o3(2"mg) — 203(28 " 'mg) + 1603(252my))
k k—1 k—2

=16(1+ > 2% —2) 2" 421> 290y (my)
r=1 r=0 r=0

k k—1 k—1
— 16<1+Z23T _2_2237‘+1+Z23T+1)03(m0)
r=1 r=1 r=1

k

= 16(—1+ Y 2°")a3(mp)

r=1

as desired. sid]

4.1. The General Theory of Quadratic Forms. We start by develop some of
the general theory of quadratic forms. Throughout let () be a positive definite
quadratic form with integral coefficients of rank k. We associate the matrix A as
in (68).

Definition 4.1.1. We define the discriminant of () by
(—1)% det(A)  if k is even,
- {% det(A) if k is odd.
Remark 4.1.1. This makes sense because for A as above show that

k P
det(A) = {(—1)2 mod 4 if k is even,

0 mod 2 if k is odd.
Exercise 2, Sheet 7: Let A € SPy, and let N4 denote the level of A (i.e. the
smallest positive integer N such that N - A~! € SPy,).
a) Show that if a prime p divides det(A), then p divides Ng.
Now suppose that k is even and assume that 2 fdet(A).
b) Show that (—1)*/2det(A) = 1 mod 4.
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¢) Conclude that xp,(d) = (W) depends only on d modulo Ny,.

Solution. For part a), suppose that p does not divide N. Denote by B the reduc-
tion of the matrix B modulo p. Then A and N4-A~! are two matrices with integer
entries such that A- Ny - A—1 = Ny - Id, which is invertible modulo p. Therefore,
A is a unit in My, (Z/pZ) which implies that det(A) = det(A) is a unit in Z/pZ.
Equivalently, p does not divide det(A).

Now suppose that & is even and that det(A) is not divisible by 2. We will work
modulo 4. Since the entries of A are integers, and the entries in the diagonal are
even, there must be an index 2 < j < k such that a} is odd (otherwise det(A)
would be even). Interchanging rows and columns 2 and j (this corresponds to
multiplying A by a transposition matrix on both the left and the right, which does
not change the determinant), we can assume that a} is odd. We can write

— (P X 2a b
A= ( Xt Q) P= < y 2a> X € Moy (o2)(ZJAZ), Q € Myayx(s—2)(Z/AZ)

and the diagonal entries of ) are even. Since b is odd, we see that det(A) =
—1 mod 4. In particular it is invertible. It is easy to see that

P X\ (I o\(P 0 I PlX
xt Q) \xtpt 1) o g-xtpix)\0o I

Since P~! has even entries in the diagonal, we deduce the same thing for the
(k —2) x (k —2) symmetric matrix X*P~1 X and therefore also for Q — X'P~1X.

Clearly det(A) = det(P)det(Q — X*P~'X). Since det(P) = —1 mod 4, we can
proceed inductively with Q — X*P71X to deduce (—1)¥2det(A) = 1 mod 4, as

desired.

For part c), assume that d is odd. Write d = (—1)“[],p" and det(A4) = [], ¢’s,
where the primes are all odd. Using the definitions and the law of quadratic
reciprocity we calculate

((_1)k/izdet(A)) = (-1)¥ ((—1)12;1&(@) =(-1=]] ((—1)k/;det(A)>ip

it | (G Ve || (q> 1| (p> T (- 1)t

q p.q

- (é_t(l,l)) (dLCELn) - <dei4>
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In the fifth equality we use that (—1)*/?2det(A) = 1 mod 4 to deduce that k/2 +
> " q;21 Jq 1s even. Since the last expression only depends on d modulo primes that
divide det(A), and since every such prime divides N4 by part (a), we deduce that
Xp,(d) only depends on d modulo N4, as desired. i

Remark 4.1.2. There is another way to prove part a) which gives a bit more
information. Let Ny = p“n and det(A) = p’m where (nm,p) = 1. Let adj(A) be
the adjugate matrix to A, so that A adj(A) = det(A)I; holds. Then,

_ Ny : —p Mo .
NyA™ = —F— adj(A4) = p""—adj(A) € My(Z).
4 dot(A) adj(A) = p*7""—adj(4) € My (Z)

We deduce that the p-valuation of each entry of adj(A) is at least v —u. Therefore
vp(det(adj(A))) > k(v — u).

On the other hand, from A adj(A) = det(A)I; it follows that det(adj(A)) =
det(A) 1. We arrive at

(k—1)v>k(v—u), equivalently, v < ku.
Therefore, if v > 0 we must have u > 0, as desired.

Definition 4.1.2. Two quadratic forms @1 and @5 (of equal rank) are equivalent
(over Z) if there is U € GLg(Z) such that

A, = UT A,U.

Remark 4.1.3. We can view () as above as a quadratic form over any ring R
containing Z. Equivalence over R is then defined by the obvious modification of
the definition above.

Definition 4.1.3. The group of automorphs of @) is defined by
0(Q) ={U € M(Z): UTAU = A}.
This is a finite group and we write f0(Q) = o(Q).
The numbers D and o(Q)) are invariants of classes of equivalent forms. We write
r(n, @) = H{m € Z": Q(m) = n}

for the representation number of n by Q. (Since @ is assumed to be positive
definite this is a finite number.)

Definition 4.1.4. Two positive definite integral quadratic forms ), and ()5 are
said to be in the same genus (i.e. @2 € gen(Qq) or Q1 € gen(Q))) if they are
equivalent over Z, for all primes p.

Remark 4.1.4. Note that since both @)1 and (), are positive definite they are au-
tomatically equivalent over R.
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Exercise 1, Sheet 8: Give an example of two integral quadratic forms that lie
in the same genus but not in the same equivalence class (over Z). Both assertions
should be proved.

Solution. We will prove that setting

_(p O (1 0
A= (0 q) and A, = (O pq)

for distinct odd primes p,q the matrices are in the same genus iff p is a square
modulo ¢ and ¢ is a square modulo p. By quadratic reciprocity, this implies
that one of them is congruent to 1 modulo 4. First of all, it is evident that the
quadratic forms are not equivalent over 7Z, since A, represents 1 but A; does not
(using positivity of z2). To see that they are in the same genus, we recall the
following version of Hensel’s lemma:

Proposition 4.1.5. Let r be a prime (including r = 2) and let f(X) € Z,.[X] be
a polynomial with p-adic integers as coefficients. Suppose that there is xo € 7,

such that v,.(f(xo)) > 2v.(f'(x0)). Then, there is x € Z, with f(x) = 0 and
vr(@ = x9) 2 v, (f(%0)) — vr (' (o))

Proof. See Serre’s A course in arithmetic, page 14. it

Now consider an odd prime r distinct from p and q. We assert that equation
pX? + ¢Y? = 1 has non-trivial solution mod r. Indeed, considering the two sets
A:={l—-pz? |z € Z/rZ} and B := {qy* | y € Z/rZ}, they have cardinality
(r +1)/2, so they must intersect. Lifting to Z, that means there are xg,yy € Z,
such that pz3 + qy2 = 1 mod r. One of xg,y has to be a unit, say xo. Then,
considering f(X) := pX? + qy2 — 1, we have f(zg) = 0 mod r and f’(zo) = 2px3
is a unit. We can apply Hensel’s lemma and find x € Z, and y = yo such that

pr? + qy? = 1. It is an easy matter to check that, for P = <z _piy) we have
det(P) =1 and

rar= (2 ) (600 () =00 m)
—qy pr)\0 q)\y pzx 0 pq

So far, no conditions on p and ¢ were needed. Now let’s see what happens at Z,.
For A; and A, to be equivalent over Z,, in particular they need to represent the
same numbers. For A; to represent 1, we need there needs to exist a solution to
pX?+4qY? =11in Z,. Reducing modulo p, it is necessary that ¢ is a square modulo
p. This condition is also sufficient, since then the polynomial f(Y) := ¢qY? — 1 has

a solution yo modulo p with f'(yo) = 2qyo € Z);, so that a true zero y € Z, exists.
-1

That is, y?> = ¢~ !. As before, considering P = (2 _% ) we find P!A, P = A,.

The same argument works over Z,. In particular, for A; and A, to be equivalent
over both Z, and Z, it is necessary and sufficient that p is a square mod ¢ and
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vice versa. By quadratic reciprocity, at least one of the primes will have to be
congruent to 1 mod 4.

Suppose that ¢ = 1 modulo 4. As before, for A; and A, to be equivalent over
Zs it is necessary and sufficient that A; represents 1 (if this holds we apply the
same change variables as before). We need to find a solution to pX? +¢Y2 =1 in
Z,. Working modulo 8 we have two cases. If ¢ = 1 mod 8, then f(Y) :=qY? —1
has va(f(1)) > 3 and ve(f'(1)) = 1, so by Hensel’s lemma there exists y € Z; with
qy? = 1. Therefore (0,y) is a solution to pX? + qY? = 1 as desired. On the other
hand, if ¢ = 5 mod 8, we consider f(Y) := qY? — 1 — 4p. As before, vo(f(1)) >3
and ve(f'(1)) = 1, so by Hensel’s lemma there exists y such that (2, y) is a solution
to pX? + qY? = 1, as desired. Some examples can be, letting ¢ = 5,p = 11 or
q=17,p=13. yif

Of course two forms that are equivalent over Z are automatically in the same
genus. It turns out that the genus can be decomposed into finitely many equiva-

lence classes:
gen(Q) = |_|[Qz]

7

We define the genus mass by
m(gen(Q)) = Y o(Q) "
We also define the weighted sum

r(n,gen(Q)) = m(gen(Q)) "

%

r(n, Q;)
o(Q:)

We have the following important theorem:

Theorem 4.1.6 (Minkowski-Siegel-Smith). Let @ be a positive definite integral
quadratic for. Then we have

r(m, gen(Q)) = 6o(n, A) - [] 6,(n. A).
P
where A € SPy such that Q = Q4 and the local densities are defined in (69) and
(70).
We omit the proof and return to the theory that involves modular forms (more
directly). To do so we need to understand the spaces M g(FO(QN 4), O4n) where
A € §P;. better.

Proposition 4.1.7. A set of representatives of I'o(N)\SLs(Z) is given by

N
(* z> forv| N, (u,v) =1 and u mod —.

U v



ADVANCED ALGEBRA 1: MODULAR FORMS 112

In particular
[SLy(Z): To(N)] = N [J(1 +p7").
pIN

Furthermore, an ezhaustive set of inequivalent cusps for T'o(N) is given by
Y with v | N, (u,v) =1 and u mod (v, N/v).
v

Proof. We write

a B\ [(a b\ * * e
v 0)\ec d) \va+dc y+dd)  \u v)’
—_—— ——

€lo(N)  €SLa(Z)

We first observe that (d, N) is invariant under right multiplication by elements
in ['y(N). Furthermore, choosing v and § appropriately allows us to ensure that
v =(d,N) | N. Note that all possible solutions

Yo+ dd=v

are of the form ¢’ = § — bt and v’ = v + dt. Since we need N | 7' to hold we need
to assume that t = 0 mod N/v. This is however the only restriction. Note that we
have ' = v'a + 0'c = u +t. Thus we can choose u freely modulo N/v. It is clear
from the argument that we have found our set of representatives. To compute the
index is now straight forward and we omit the computation.

Since I'g(N) C SLy(Z) all cusps are equivalent to oo over Z. Write

-1
T:S'<* *) :<u *)
U v V%

In particular we have 7oo = * with (u,v) = 1 and v | N. We now simply check
when such fractions are equivalent:

u (a B\ u
o \y 0) v
——
€lo(N)

From v' = yu + dv we obtain v | v/. Similarly we also have v’ | v so that v" = v
and 6 = 1 mod N/v. We conclude by observing that

u' = au+ fv=au = du=umod (v, N/v).
&

Example 4.1.8. For example I'y(4) has (up to equivalence) the three cusps oo, 0
and 2.
2
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Since in general it is important to know if a cusp is singular (with respect to

Vi) for example we will compute the stabilizers in detail. Given a cusp a = % as

above we have

Ty = (u *> € SLy(Z) with 1,00 = a.

v
We must have
7o Tata C T

Thus we can recover

_ 2
PaITaFooTalﬂFO(N):{:I:(l "“2“’ mu >:mv2EOmOdN}.

—mu 1+ muv

Thus m ranges over all integers divisible by m, = N/(N,v?). Thus I, is generated

by
(1 —=mquv mau?
To = —mge? 14+ mauw )

Note that in particular a real scaling matrix is given by
vm 0
O-Cl == Tu * < O ¢ 1 ) .
N
To each singular cusp a of I'y(N) we attach the (generalized) Eisenstein series

= > Ga(wloa’ )i, (2) 7" (73)
~eLNT
For k > 4 this converges and we have F,(z) € M§ (To(N), O¢n). Note that Ey = Py

where the Poincaré series was defined in (40) for p = 1 being constantly one. For
another singular cusp b the same procedure that we used to compute the Fourier
expansion of Poincaré series yields

[Eal504)(2) = da- b+Znab (74)

where .

na,f,(n):( ) >S90

Remark 4.1.9. We leave it as an exercise to check that for N = 1, 4 | k and
Uy, = Uy, one recovers the correct Fourier coeflicients of the Eisenstein series Ex
2

from 7eg 00 (12).

Exercise 1, Sheet 9: Recall that the Ramanujan sum was defined by

= 3 e(5)
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It evaluates to

yl(q,d)
where p is the Mobius function given by

()™ = uln)n™ (76)
for Re(s) > 1.

Let k > 4 be even, let I' = SLy(Z) and take a = co. Recall the definition of the
Eisenstein series F, € M (SLs(Z), 0y,) and its Fourier expansion.

a) Evaluate the Fourier coefficients

Too,00(N) = (2;) k % D RS 00(0, 15 0)

c>0

as explicit as possible.
b) Conclude that the Fourier expansion of E, agrees with the one of the clas-
sical Eisenstein series Fj,.

Solution. Clearly, Soc.00(0,n;¢) = c.(n). Using (75), (76) and letting d = cy we
get

docten) =3 Y tu (@) y=>_ > (dy) Fuldy = (k)" >y
c=1 )

=1 y|(c,n yln d=1 yln
= () =n o)
din

It follows that,

) = () g @)

Then we use one of the identities for the Bernoulli numbers, 2((k) = (2m* By, =

k!
0" B From this, it follows that

kT (k)
2r\"* 2k op(n) 2k
et = () . = o)

Since this expression agrees with the n-th Fourier coefficient of Ej, we are finished.
i

Remark 4.1.10. We explain how the identities (75) and (76) are proved. We say
that a function f : Z-o — C is multiplicative if f(nm) = f(n)f(m) for coprime
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positive integers. For example, f = ¢, the Euler totient function, is multiplicative.
Given two functions f, g : Z~o — C we define its convolution as

(f +9)(n dzlnjf 9 (%)

Convolution is commutative and associative, and the function d; is the identity.
Furthermore, the convolution of two multiplicative functions is multiplicative. In-
deed, if n, m are coprime and d | nm then we can write uniquely d = d;ds where
dy | n and dy | m. Therefore,

(f*xg)(nm) = Zf(d)g <%) - Z Z f(didz)g (%)
djn

di|n d2|m
() (S (z)

Recall that the Mobius function p is the multiplicative function defined on power
of primes as (1) = 1, u(p) = —1 and p(p™) = 0 for n > 2. Also, define id, as
idg(n) = nif n | d, and zero otherwise. This function is clearly multiplicative, and
the identity (75) is equivalent to proving c.(d) := (u * idg)(+). Observe also that if
d is fixed and ¢ = nm coprime, then since € (Z/(nm)Z)* can be expressed as
x = rmm + snn for unique r € (Z/nZ)* and s € (Z/mZ)*, we deduce

= X (BT () ()

z mod nm r mod n s modm
(z,nm)= (r,n)=1 (r;n)=

= ¢, (md)cy,(fd) = cp(d)ey,(d)

where the last equality follows since (7, m) = (7, n) = 1. Since all functions are
multiplicative, to check c.(d) := (u*idy)(-) we can restrict to prime powers. Let p
a prime and d = p"dy with (do,p) = 1. Then it is very simple to check

1, if a =0;
a a—1 :
. a p*—p*, if0<a<n;
*1d =
(1 * ida) (p”) - fa=ntl;
0, ifa>n+2

We need to prove that these formulae also hold for cp.(d). For a = 0 it is clear.
For a > 0 we evaluate the sum as

v ¥ () 5 () 5 ()

r mod p? x mod p? y mod p@—

(z,9)=1
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Then the formula follows by character orthogonality. This proves (75). We move
o (76). To any arithmetic function f : Z-y — C we can associate the Dirichlet

L-function Ly defined as
— f(n)
0=y
n=1

If |f(n)] < Cn, then the series converges absolutely on Re(s) > o9 + 1 and
defines an holomorphic function there. If f is multiplicative, we have the product

decomposition
L= 1] ( D
Also, if f = g * h then one checks that

La() =3 3 A0 _5h S DO )

n=1 d|n d=1 c=1

This is valid in the domain where both Dirichlet series are absolutely convergent.
When g = consy, defined as const;(n) = 1 for all n, we have Leonst, (s) = ((s). It
is immediate to check that const; * u = 97, for example by looking at power of
primes, and since Lg, (s) = 1 we deduce

C(s)Lu(s) =1
as desired.
Definition 4.1.5. For k > 5 we define the Eisenstein space by
Ex(To(N), V) = (Eqla singular).
Remark 4.1.11. Since the Petersson inner product (f,g) is defined as soon as f

or g is cuspidal it makes sense to speak of Sg(FO(N), Yin) " C M (To(N), V). It
turns out that

Sg (FO(N>7 ﬁth)T = E% (F()(N), 19th)' (78)

In any case we write?®

el,QA <Z> = EQA(Z) + FQA (Z)7
where
Eg,(2) € Eg(FO(N),ﬁth) and Fg,(z) € Sg(FO(N),ﬂth).
If £ > 5 we can decompose

Eg ()= ) @alQa)Ea(2).

a singular

28This makes sense for all k when we use the identification (78). If we want to make use of
the explicit construction of the E,, then we need to assume that k& > 5.
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By construction of E, we obviously have
@a(@a) = ?}EEO[QLQA%(%](Z) =gy q, (0; a)'

In particular one can in principle compute the Eisenstein part Eg,(2) of 619,
rather explicitly.

Example 4.1.12. Let us consider the Q4 = 2? 4 ... + 2. Then we have
01,0.4(2) = 0(2)°,

where
0(z) = Y _e(n’z) € My(To(4), Vi)
neZ
is the standard theta function. (Applying our theorem for the automorphy of
theta functions directly might give level 8 at first, but one can extend the theta

multiplier J¢y, to ['g(4) in this case.) As noted above I'y(4) as 3 cusps:
a | mg Ya singular for vy,
3 4
1] 4 < 4 5) Yes
-1 1
1
5| 1 4 3) No
3

1 1
Zl<165 Yes

P1(Qa) =i %, 91(Qa) = 0 and ¢1(Qa) = 1.
This can be seen as follows. First note that the cusp % is equivalent to co and
0(z) — 1 as z — oo. (This is also obvious from the Fourier expansion at infinity,
since 0 is represented exactly once.) On the other hand % is non-singular and thus
6 has by default no zeroth Fourier coefficient at % It follows that the same is true
for (integral) powers of #. Finally, the value at the cusp 1, which is equivalent to
0, can be computed from the transformation behavior directly.

For s = 2,4, 6,8 the cuspidal part Fy, () turns out to be zero. In particular one
will obtain formulae for the representation numbers 74(n) that closely resembles
Jacobi’s Four Square Theorem. However, as soon as s > 10 the cuspidal part
contributes non—trivially For example one can see that

r10(n Zx4n/dd4 Z)@ d4—i—— Z 2

We obtain

dln d|n z€Z[i],
N - 4 Nr(z)=n
=agg, (n,00) S———

:aFQA (n,oo)

For larger (even) s the formula become even more complicated. Note that the case
of odd s is in general more complicated due to the complications introduced from
half integral weight forms.
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We come to the following incredible fact, which in hindsight might be quite
natural:

Theorem 4.1.13 (Siegel). Let Q4 be a positive definite quadratic from of rank k
(i.e. A€ SPy). Then we have

EQ,(2) = Ogen(q)(2),

where

Ogenta)(2) = 14+ ) r(n, gen(Qa))e(nz) = m(Qa)™ Y 0(Qi) 01.0,(2).
n=1 i
Proof. Using the transformation properties of the theta functions 6 ¢, (where
gen(Q) = | J;[@i]) with respect to SLy(Z) we see that the numbers ¢,(Q;) are
genus invariant. In particular

Eq,(2) = Ogen(qu)(2) € S% (T'o(2Na), Yin)-
We will skip the argument that the difference is actually zero.? s

Remark 4.1.14. This result has vast generalizations usually named Siegel-Weil for-
mulae. Note that most modern proofs will look very different and usually involve
Weil-representations (i.e. oscillatory representations) as a replacement for theta
functions. Siegel’s original formulation is quite different from what we have stated
above: Fir gerades m > 0 lasst sich F(S, 1) homogen linear mit constanten Coef-
ficienten zusammensetzen aus den (45 )-ten Teilwerten der (% — 2)-ten Ableitung

2
der mit den Perioden 1, T gebildeten elliptischen p-Function.™

Recall that by the Minkowski-Siegel-Smith Theorem the genus representation
numbers are given in terms of local densities. Therefore, comparing coefficients
gives

r(n,Qa) = dss(n, A) - [ [ 6,(n, A) + ar, , (n, ).
p
Thus as soon as we can produce strong enough bounds for the Fourier coefficients
of cusp forms we get a good handle on the numbers r(n, Q4). (Of course this also
requires some lower bounds on the local densities.) This motivates the study of
upper bounds for Fourier coefficients of cusp forms.

Exercise 2, Sheet 9:

a) Show that there are A;, Ay € SPyy with det(A4;) = det(As) = 1 and
c1,c9 € C so that 0 # clel,QAl + 62917QA2 eC-A.

290ne way to see this is a nice trick using Hecke operators.
30T our notation 7 = z € H, m =k, § = A is an integral positive definite symmetric matrix,
S = det(6) and F(6,7) = Ogen(0 ) (7).
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b) Show that for any k € N the space My, (SLy(Z),¥,) can be spanned by
theta functions 0; o, with A € SPg;, and det(A) = 1.
Solution. Recall the quadratic form of Remark 3.0.16. This was defined as

Qs(r) = Zx + = (Zmr) — X1T9 — Tolsg.

We observe that A € SPg and det(A) = 1 (this can be computed directly, or
else can be constructed as in Serre A course in Arithmetic page 51). Therefore,
610, € M4(SLy(Z),9y,) = CE4, and comparing the constant coefficient we get

bho, = Es (79)
Consider now the direct sum B := A® A ® A. We observe that 6, o, = 6}, €
Mi5(SLo(Z), ¥yy). Therefore, we can write
EZ) = Hl,QB = CLE12 + bA

for unique a,b € C. By comparing the constant coefficient, it follows that a = 1.
Recall that

- 24 - 2730
E4(Z) =1 + 240203(n)qn and Elg(Z) =1 -+ W Z 011(n)q"-

n=1
Comparing the coefficient of ¢, we calculate b = 720 — 245%7130, in particular b # 0.
Note that since a = 1, for the Eisenstein part of 6 o, we have Eg, = Eq2. From

theorem 4.1.10, we obtam Eq, = Ogen(qa), where

Qgen (@B) — (QB) ZO(Qi)_lel,Qi

)

is an average of theta functions over the genus of B. Since this average equals
E\5, which is different from 6, g, (since b # 0) we deduce that the genus of B is
composed not only of B, and that there is C' in the genus of B with 0; o # 01.0,-
Since C'is locally isomorphic to B, one can deduce that C' € SPyy with det(C) = 1.
Indeed, det(C') > 0 since B and C' are equivalent over R, and if det(C) > 1 we
would have p | det(C) for some prime, but then B and C would not be equiva-
lent over Z,, a contradiction. Looking at the constant coefficient, we deduce that
0105 — 01.0. = cA for some c # 0, which is what we wanted.

For part b), recall that 6, ¢,., = 01,0, - 01,0,- Consider the direct sum £ :=
@r>0Lar of vector spaces Ly, where Ly, C My (SLo(Z),Vy,) is the subspace
spanned by theta functions 6 o, with A € SPg;, and det(A) = 1. Then this di-
rect sum is closed under multiplication, and is thus a subring of M = @, ., Mus.
We know that 61, = E4, 67,, = Es and ¢ ' (1,9, — b1.0.) = A. Therefore,
Ly, = My, for 0 <r < 3. Recall that

Myrq12 = CEyrir2 @ AMy,.
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Considering any A € Sgi124 with det(A) = 1, we have
01,0, = Earg12 + cAfyr

for some ¢ € C and fy, € My,.. By induction we can assume My, = Ly, and
since A € Ly and L is closed under multiplication and linear combinations, we
deduce Fy112 € Lyky12. By the direct sum decomposition above, this shows that
Lygy10 = Myg112, and we finish by induction. oo

Remark 4.1.15. A direct way of proving part a) follows from Serre A course in
Arithmetic, page 51. We will assume that the reader already has had a look at
that page. For each k > 1, Serre constructs a free abelian group of rank 8k,
denoted by sk, together with a certain positive definite symmetric bilinear form
() : sk X T'si, — Z such that v - v € 27Z for all v € I'y;, and such that the map

gy, : g, = Homy (T'gr, Z) v = Pgi(v) := (w — Pgi(v)(w) = v - w)

is an isomorphism. This is the coordinate free version of the following statement:
whenever we choose a Z-basis v; of I'sy, then the matrix Asy, with (Ask)i; = v;-vj,
satisfies | det(Asg)| = 1. Since Agy is positive definite, it must be det(Asx) = 1.
Therefore, we have Ag, € Sgi and det(Agx) = 1, so that letting Qsi(x) = %xtAx,
we have 0y g, € My(SLa(Z),9y,). In particular, for £ = 1 we have 0, o, = E4
as in part a), and for k = 2 we have 6, g, = Es = 67 ,,. We will prove that
61.q,, # E3. For this, it is enough to calculate the coefficient of ¢ in the expansion
at infinity. Equivalently, we need to calculate the representation number of 2 for
I'y4, that is, the number of v € I'g;, such that v - v = 2. Serre describes I'g;, as the
abelian group of vectors v = (z;) € Q% such that

8k
2x; € 7, {L‘Z'—LL']‘EZ, ZQIZGQZ

i=1

and the bilinear product is just the restriction of the usual euclidean product.
Suppose v-v = 2. We have v = (%) where y; € Z and all have the same parity. If
they were all odd we would have v-v > 24/4 = 6 > 2, a contradiction. Therefore,
we can write v = ). a;e; where e; is the canonical basis and a; € Z. Since
S~ a? = 2, we see that the only possibility is that |a;] = 1 for two indices, and

a; = 0 otherwise. Therefore, the solutions to v - v in I'y;, are
v=*e; te;(i#]))

which gives a total of 4(224) = 22423 choices. Since the g coefficient of E} equals
720, we deduce that

01,0, = Ei +(2-24-23 —3-240)A = E; + 24 - 16A

In particular, 61 o,, # E} = 63 ., as desired.
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Bonus Exercise: Prove the following formula

r6(m) == t{(n1,...,n6) € Z° i ni+.. . 4ng =m} = 162)(,4 <%> d2—4ZX,4(d)d2.
dl

dlm

Solution. As before, introduce Ag := diag(2,2,2,2,2,2) and

eL%pa::EIG(%Agnp>::Ejrdnoqnm)

neZzb m2>0

and observe that 6; g, = 0°. This time the multiplier ¥9, is not trivial on T'g(4).
Recall that

9 a b de\ _ b 1, ifd=1 mod 4;
= — | € winere [
thi\4e d d) I i, ifd=3mod4

Therefore, 9%, is the multiplier y_4, defined as

a b - (d) = 1, if d =1 mod 4;
Xt\\de d) ) T 7921 ifd=3mod 4
Therefore, 64 g, € M5(I'o(4), x—4). To apply our usual strategy we need to find a
basis of this finite dimensional vector space. First, we claim that dim M3(T(4), x_4) =
2. For the upper bound, we apply an identical argument to that of the proof of
Lemma 4.0.1. For the sake of contradiction, suppose that dim Ms(I'y(4), x_4) >
3. Then, by forming a linear combination we can find a non-zero 0 # f €
M;3(To(4), x_4) with a zero of order at least 2 at co. Then 0 # f? € Mg(To(4), b;,)
has a zero of order at least 4 at infinity. Therefore, the product

9= H [f?67] € Ma6(SLa(Z), Vy,) (80)
~€T0(4)\SL2(Z)

is a modular form of weight 36 for SLo(Z) with a zero of order at least 4 at
infinity. Applying the formula of Theorem 2.4.1, we deduce that g is identically
zero, a contradiction. Therefore, dim M3(I'9(4), x—4) < 2. On the other hand,
['p(4) has three cusps. In the notation of Example 4.1.8, they are represented by
1,1/2 and 1/4. The cusps represented by 1 and 1/4 are singular for ¥y, therefore
also singular for y_4 = ¥2,. On the other hand, the stabilizer of the cusp 1/2 is

generated by
(-1 1
7T \-4 03

pa (@) = x-4(3) = -1 (81)

Therefore, the cusp 1/2 is nonsingular for x_4. We arrive at the conclusion that for
the multiplier x_4 the group I'y(4) has two inequivalent singular cusps. Therefore,

so that
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the space E(I'g(4), x_4) of Definition 4.1.5 has dimension 2, and after noting that
the cusp 1/4 is equivalent to co and the cusp 1 is equivalent to 0, we deduce that

M;5(I'o(4), x-4) = CEx & CEp (82)

where F, is the generalized Eisenstein series associated to a singular cusp as in
(73). The Fourier expansion of these series at oo is given in (74), so that

Eo(z)=1+ Z Neooo(n)e(nz) and  Ey(z) = Zno,oo(n)e(nz)

where

21\ n? _
and 1g o (n) = (7> 5 Zc S oa(0,m;¢).
c>0

We have modified the notation for the Kloosterman sums slightly, to avoid con-
fusion with the classical Kloosterman sums. We start by analysing SX; 2 (0,7;c).
These are nonzero only for ¢ = 2"¢q, where r > 2 and (cg,2) = 1, and in that case
they are defined by

Stam = Y e ().

de(Z/c) %

Suppose that ¢ = ¢jco with 4 | ¢; and (¢1,c2) = 1. Let ¢, & be integers rep-
resenting the inverse of ¢; modulo ¢, and of ¢ modulo ¢; respectively. We can
write any d € (Z/cZ)* uniquely as d = dy¢zcy + docicy, where dy, ds range over
representatives of (Z/c1Z)* and (Z/coZ)* respectively. Since 4 | ¢; and x_4(d)
only depends on d modulo 4, we see that

e £ ()3 v (4)(2)

de(Z,/cZ)* d1€(Z)c1Z)*
da€(Z)caZ)*
ndy nds
=y aldye [ 221 o2
x-4(e2) Z x4l 1)6(61) Z 6(02)

d1E(Z/Clz)X
= X-4(c2)9% 2.(0,75 ¢1) 800,00 (0,15 C2)

where S 00(0,7;¢) is the Ramanujan sum as in (75). In particular, writing ¢ =
2"¢qy for (cg,2) = 1, we have

S5 4(0,m;27c0) = x-a(c0)SS A (0,m;27) Y <C_O) Y-
| ’ y
yl(co,n)

dQE(Z/CQZ)X
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Write n = 2°ny where (ng,2) = 1. Observe that we can write d € (Z/2"Z)*
d=1+4x or d = 3+ 4z for a unique x € Z/2" 7. Therefore,

_ S Lory _ o Nox 3ng nox
Sg(ovéO(O’Q no; 2 ) - Z € <2r75> € (21”7572) o Z ¢ (Qrs) € <2r7572>

z mod 272 z mod 272

(G2 () Z @)

x mod 272

By character orthogonality, the sum vanishes unless r < s + 2, in which case it
equals 2772, On the other hand, if r < s + 1 the first factor vanishes. The only
remaining case is r = s + 2, where it is easily checked that

5X%4,(0,2°ny; 2572) = 25Ty _4(ng)i.

Therefore, when calculating 7. o(n) where n = 2°ng, we restrict to ¢ = 2512¢,
and employ the above formulas, we obtain

21\ ® n? (i) 3o ‘ ‘
floooo(11) = (7) o 2 2 2 I a(no)ix-aleo) Y m (30) y
co odd

yl(co,n)
m _ Y_a(d)pu(d
= Ty oalng) Pyl Y D

8
y|no d odd
Recall that L(s, x—ap)L(s, x-4) = 1, where
= f(d
Bs £y =3 10

i

In particular, the inner sum above equals L(3, x_4)~* and we have

3

y|no d|n
= S8y 2 D@ = —4) Pxad)
3 X= 4 dn dln

where we use that x_4(d) is 0 for even d and that L(3, x_4) is an special value of

an L-function that can be calculated explicitly as L(3, x_4) = g—; We have done
half the work, and now we need to calculate the coefficients 1y «(n), which involve
the Kloosterman sums Sy 2 (0,7;c¢). According to equation (46), these are given

by
— (nd
SX—4 . — —_
0.00 (0,15 €) Z fooo()e ( c ) (83)
a 1
7:< )eU(Z)\UO To(4)/U(2Z)
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In our case, since the weight is integral, one can check that the factor €y« (7)
reduces to x_4(0¢7y). Also, in the definition above oy is a scalling matrix for the

_1
cusp 0, and we can choose o0y = <(2) 02> We calculate

()= (5 8) (5 0)= (5 ") -

Since x is odd, we see that S(’)f;;* (0,m; ¢) is nonzero only for ¢ = 2¢y, where (co,2) =
1. Also, y is determined modulo x above, and if 7 is as above, x_4(0¢7y) = x_a(w).

Since zw — 4yz = 1, we have w = T = x mod 4. Therefore, writing ¢y = —x we
get x_4(00y) = —x_4(co). Putting these considerations together, we arrive at
nd ¢
S&;(O, n; 2C0) = —X?4(C0) Z e (c—) = —X,4<Co> Z 7] <—0) Y.
de@feonys NP vieom) Y

Inserting this into the definition of 1y - (n) we have

= () 4 5 i £ ()

¢o odd yl(co,n)
(do)x—a(dp)
__W_ZX —QZ,U 0X4o
y|no dop odd
2
n
- DY =-160y (—) 2
B () S
We now have all we need to finish the exercise. Let 0) ¢, = aFs + bEy for

unique a,b € C. Looking at the constant coefficient we deduce a = 1, and from
12 = 76(1) = Noo.oo(1) + b1o.0o(1) = —4 — 16ib we deduce® b = i. Therefore,

—1GZX 4< >d —42)( a(
djn djn

i

Remark 4.1.16. The argument above actually gives the value of L(3,x_4). Note
that by our reasoning we have

Noo,00(N) = — 3X 3 ZX 4 and  1p(n) = — 3X " ZX 4( ) P2

din

310bserve that, in the notation of Example 4.1.12, for s = 6, we have a = ¢1,4(Q4,) = 1 and
b= 1(Qa,) =1, as expected.
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Looking at the constant coefficient of the equation ©, ¢, = aF« + bEy we deduce
a =1 as before. Using r¢(1) = 12 and 74(2) = 4(5) = 60 we obtain

3 3 3 273
— —1 b and 60=-— —1 b
8L(37X—4) 2L(37X—4) 8L(3aX—4) L(37X—4>

where we have used >, X4 (2) d® = 4. These two equations imply b = ¢ and

12 =

L(3,x-4) = g—;, as desired.

4.2. Kloosterman sums and bounds for Fourier coefficients of cusp forms.
In this section we will establish basic upper bounds for the Fourier coefficients of
cusp forms using the Petersson formula Theorem 2.5.10. An essential ingredient
will be a good understanding of the Kloosterman sums Sy (m, n; ¢) defined in (46).
Directly from the definition we obtain the bound

Z ¢ HSap(m,n;c)| < Z c 't {d mod c: (Z 2) € aalfab} < i (84)

Ca,b
0<c<X 0<c<X

In the last step we have applied Lemma 2.5.3. Putting X = c yields the weak
bound

2
|Sap(m,n;c)| < —.
Ca,b

Note that another crucial ingredient will be a satisfying bound for the J-Bessel
function. This is a classical well studied function and it is easy to locate the
estimate

Jp(z) < Cf - min(z*, 272), (85)

where C > 0 is some constant depending on k.

Remark 4.2.1. Applying Petersson’s formula (Theorem 2.5.10) with a = b and
m = n yields

am)k1 ™m
> lag(m;a)]’ = % (1 + 27Tz'_kZc‘lSmb(m,m;c)Jk_l(él ; )) :

feo c>0

Applying (85) and (84) allows us to estimate®
> lag(m;a)]” < Copem* (86)
feo

for any € > 0 (where Cy . > 0 is a constant depending on a, k and €). This implies

lag(m;a)] < Capem2™e, for f € S,(I',9). We consider this to be the trivial bound.
(There are different ways to see this.)

32For example one can do so by splitting the c-sum at 47wm, apply a dyadic dissection to the
infinite part and use partial summation.
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While in general the Kloosterman sums S, (m, n;c) can be very complicated
the situation gets a bit better when we are dealing with the Hecke congruence
subgroups. With our application to quadratic forms in mind we need to consider
Kloosterman sums for I'g(2/V) attached to the theta multiplier ¥,. One finds that
in this case

k .k _

T C
x mod c,

(z,0)=1

(Recall that T denotes the inverse of x modulo c.)
For Kloosterman sums with theta multiplier we have the following improvement
over the trivial bound (86):

Theorem 4.2.2. For f € Sg(F0(2N),79th) with k > 5 we have

lag(m; 00)| < Cpomi—ite, (87)

For all e > 0 and some positive constant Cy . possibly depending on f (in particular
onk and N) and €.

Proof. We start by proving a little auxiliary estimate:

% Y [Sou(am am;r)]* < 4(m,r)rog(r). (88)

a mod r

We can of course assume that 2N | r, since otherwise the statement is trivial.
Compute

1
- Z Sy, (am, am; r)|?
r

a mod r

1 Z Z e (det(A)2kck) (det(A)chk) y (am(x1 — 9) + am(Ty —x—g))

a mod r x1,r2 mod 7,
(z122,r)=1

(89)
Executing the a sum detects the condition
m(zy + T1) = m(xe + T2) mod 7.
Thus we get
% Z Sy, (am, am;r)?

a mod r

< {1, 2o mod r: (x129,7) = 1 and m(x; — x1) (2122 — 1) = 0 mod r}.

The claim follows by counting solutions.
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Starting from (88) we can derive some useful estimates. Define

AQ.R) =) > S, (@m,am;r)P,
q<Q r<R,

(rg)=1
B(Q, R) = Z Z |S7~9th(m7 m; qr),

q<Q r<R,
(r,g)=1

C(Q,R) = Z Z |Sy,, (M, m; qr)| and

q<Qr<R

D(Qv R) = Z Z(qr)_1|sﬁth(m> m; qr)|.

q<Qr<R

We first estimate

AQ R <Y (@4 1) Y 10, am, am: )P

<> 3(Q +r)(m,r)rog(r) < 4og(m)R*(Q + R) log(4R).

Next we observe that
|9, (m, m; qr)| = |Sy,, (qm, gm; 7)Sy,, (Fm, m; q)|

as long as (q,r) = 1. Here Sy is a Kloosterman sum with slightly modified
multiplier.”® Note however that the argument arriving at (88) was insensitive to
the exact form of the multiplier. Thus we can use Cauchy-Schwarz to estimate

B(Q,R) < A(Q, R)ZA(Q, R)? < 409(m)QR(Q + R)log(4QR).
Further we have
C(Q.R) <) ) B(Q/a,R/b) < 4ay(m)QR(Q + R)log(4QR)”.
a<@ b<R
Finally using partial summation we arrive at
D(Q, R) < 7(m)(Q + R)log(4QR)". (90)

We can now proceed with the main part of the proof. First, without loss of gener-
ality we assume that f € Sg (T'o(2N), ¥4 ) has Petersson norm one (i.e. (f, f) =1).

Then for each ¢ with 2N | ¢ we have
Sg(FOQN),ﬁth) C S§<FO(Q)aﬁth)-

Thus f is also an element in the (potentially) bigger space of cusp forms for I'y(q)
(with respect to the theta multiplier). Note however that the Petersson norm

33We leave it as an exercise to work out the precise factorization properties. This requires
quadratic reciprocity and the Chinese remainder theorem.



ADVANCED ALGEBRA 1: MODULAR FORMS 128

rescales when we change underlying group. Thus in the new space the norm of f
is now [[o(2N): To(q)]2. Applying Petersson’s formula (i.e. Theorem 2.5.10) we
obtain

F(E - 1) lay(m; o) [? _k 1 4mm
<1+2mi 2 c Sy, (m,m,c)Jr_ .
(47rm) L[To(2N): To(q)] CE(%‘:dq i ) 2 il c )

Put m(Q) = > g<¢<20, [['0(2N): I'y(g)]. Summing both sides over @ < ¢ < @
q=0 mod 2N
with ¢ = 2 mod N we get

| 2

<@+ S S )

Q<q<2Q r=1

m(Q)m ™2 az(m; 00)

4
S, (M, m rq)Jk 1 ( :;H)D :

We break the r-sum up into dyadic pieces R < r < 2R. Using the estimate (85)

we get
4 3
Z Z rq) " | Sy, (m,m rq)Jk 1 ( Wm)‘ < (Q+min <(RQl) mR> D(Q, R).
Q<q<2Q r=1 rq m: Q

This can be effectively bounded using our Kloosterman sum estimate (90) above.
The worst case for the resulting inequality appears to be R = mQ~!. Thus we get
the bound

m(Q)m ™2+ ay(m; 00)|? < Cr (@ + mQ ™Y )m

Choosing ) = m? and observing that m(Q)) is bounded from below yields the
desired result. it

Remark 4.2.3. The theorem above is only half of the truth. Indeed it is conjectured
that the better bound

[ag(m; 00)| < Cpe-m?=37 (91)
holds for all f € S (T'o(2N), ¥¢n) with & > 1 that are not contained in a certain

subspace of theta functions.** If k is even, then this actually follows from a deep
result due to Deligne resolving the Ramanujan Petersson conjecture for integral
weight modular forms.

4.3. Representation numbers and equidistribution. We are now ready to
apply the theory that was developed in this section to quadratic forms. The first
application concerns representation numbers of quadratic forms:

34For these theta functions the bound is known to be false, but they can only exist for odd &

(ie. k/2€ 7).
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Theorem 4.3.1. Let Q4 be a positive definite integral quadratic form in k > 5
variables (i.e. A € SPy). Then we have

r(n.@a) = T(k/2), /det

Proof. We consider the theta series 91?QA(Z) € Mg(FO(QNA), Un) write it as

01,04 () = EQA(Z) + Fo, (2)-
According to Siegel’s Theorem (i.e. Theorem 4.1.13) we have Eg, (2) = Ogen(04)(2)-
Thus, by comparing Fourier coefficients at infinity we have
r(n, Qa) = r(n,gen(Qa)) + ar, , (n; 00).
Since Fp,(2) € €Sk (I'o(2N4), V) and k > 5 we can use the bound (87) to obtain

r(n,Qa) = r(n.gen(Qa)) + On o (nt=1%).
We conclude by applying Theorem 4.1.6 to write

r(n,gen(Qa)) = doo(n, A) - Hép(n, A).

k

Recall that according to (69) we have d(n, A) = F(;/’;))i/"% s

Some comments are in order. First, note that the same result can be obtained
using the circle method. Second, if k is even, then a better error term can be
achieved using the stronger bound (91) for the Fourier coefficients of cusp forms.
Finally, the result is only meaningful if the local densities d,(n, A) are sufficiently
well understood. In the setting of the theorem above this is no problem. Indeed,
it can be shown that for £ > 5 one has

Ca < [[65(n, A) < C for Ca,Cly >0 (92)

as long there is x € Z* such that
Qa(x) =n mod 27 det(A)*.
Before moving on we will briefly comment on quadratic forms in few variables:

e If £ = 2, then the approach above would naturally lead to the study of
modular forms of weight one. However, the product of local densities does
not converge absolutely in this case. More classically this case can be
approached using the connection between positive definite binary quadratic
forms and class numbers of imaginary quadratic fields.
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e The case k = 3 is very interesting but also very complicated. On the
algebraic side it becomes necessary to introduce the so called spinor genus.
Similarly the analytic theory has its complications. A detailed discussion
would ge beyond the scope of these notes.

o If £ = 4 everything works essentially as above. The only difference is that
we can not apply (87) directly. Instead, since 4 is obviously even, one can
use the Ramanujan type bound (91). (For weight 2 = % this estimate was
actually established before Deligne by Eichler precisely for this purpose.)
Finally, also the treatment of d5(n, A) is slightly more complicated.

We come to our second application. The goal is to show that the integral
solutions to Q4(x) = n are distributed in the ellipsoid

Ea(n) = {x € RF: Qa(x) =n}.

We abbreviate £4(1) = £4. Given a (sufficiently nice) domain §2 C €4 we consider

ra(n,Qa) = #{x € ZF: Q(x) = n and % € Q}.

If n runs through a sequence of integers n with r(n, Q)) # 0, then one expects that
ra(n, Qa) ~ Vol(Q) - r(n, Q).
In this situation we say that the integral points on Q(x) = n are equidistributed

with respect to the invariant measure on £4.

Theorem 4.3.2. Let Q4 be a positive definite integral quadratic form in k > 5
variables (i.e. A € SPy). Let n — oo run through a sequence of integers such that
the congruence

Qa(x) =n mod 2" det(A)? (93)
has a solution x € Z*. Then the integral points on Q(x) = n are equidistributed
with respect to the invariant measure on £4. We even have the quantitative state-
ment

ra(n, Qa) = Vol(Q) - 7(n, Q) + Og, 0.(n"+ *) (94)
where the error term is significantly smaller than the main term.

Proof. We start by observing that it suffices to consider

re(n,Qa) = Z f ) for f € C™(Ea)
Qal(x

instead of rq(n,Q4). This is a standard approximation argument. Furthermore,
since the functions

{x +— P)(Ax): P, harmonic polynomial of degree [} (95)

form a complete orthogonal system in L*(£4) it suffices to consider 7¢(n, Q) for
such f.
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We first treat the case when f is the constant function (i.e. f(x) = 1). In this
case we obviously have

Tf(na QA) = r(n, QA)
and there is nothing to do.

Second, if f(x) = P(Ax) for [ > 1, then nérf(n, () 4) is the Fourier coefficient
of O0p.0,(2) € SgH(FO(QNA), Ysn). In particular, applying (87) gives

k_ 1
r1(n, Qa) = Ofgue(ni™17°)

in this case.
The two cases considered above give (94). To see that the main term is really a
main term we recall that

r(n,Qa) = dua(n, A) - [] 6,(n, A) + Og, (ni757).

p

According to our assumption (93) the product of local densities is bounded from

below by Cly - n3~1. Since k > 5 the latter is significantly bigger than the error
term. yif

The assumption £ > 5 can be easily relaxed to include the case & = 4. The
case k = 3 on the other hand is way more complicated. Here a version of the
equidistribution statement remains true, but it is a deep theorem due to Duke.

5. SATZ I11: HECKE OPERATORS

In many ways Hecke operators are the bridge between arithmetic and (com-
plex) analysis. A modern theory of modular forms without Hecke operators is
unthinkable.

Part of Hecke’s motivation to introduce these operators comes from the general
question which we will explain now.” Given a sequence (a,)nen of interesting
numbers (for example a, = r(n,Q4) with A € SP},) we can do two natural®
things. First, we can associate the Dirichlet series

an

D(s) = —.

ns
neN

Under some mild growth conditions on the numbers a,, this will converge in some
right half plane and define a holomorphic function there. Second, we can associate

flz) = Z ane(nz).

35This is of course my own interpretation of what Hecke wrote. Unfortunately I do not really
know what Hecke was thinking.
36At least from the point of view of an analytic number theorist such as Hecke.
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Again this defines a function on H as soon as the numbers a,, are well behaved.*”
Formally, ignoring convergence issues for now, we can relate these two objects by
taking the Mellin transform

[Mf](s) = /OOO f(iy)ys% =Y a, /OOO e My dy = (2m) T (s) D(s).

Thus morally f(z) and D(s) are two sides of the same coin. In particular, proper-
ties of f should be reflected by corresponding properties of D and vice versa.
Of special interest are Dirichlet series with Euler product:

D(s) = Z Zapkp_ks.

p prime k=1

Such a product representations holds (in the region of absolute convergence) pre-
cisely when a,,, = a,a,, for (n,m) = 1 (i.e. when the coefficients a,, are multi-
plicative). Examples are given by

e If a, =1 for all n € N, then the corresponding Dirichlet series is precisely
the Riemann zeta function D(s) = ((s) with the product representation

C(s) = H N —1p_5 for Re(s) > 1,

p prime

which is the mother of all Euler products.
e If a, = gr4(n), then

D(s) = % S et =3 o= — 3 ou(n) (4n)~

1+ 215

= (1—4")((s)¢(1 = 5) = T 9=

[T a-a+pp+pp )"

p odd prime

for Re(s) > 2

where we used Jacobi’s Four Square Theorem.
e For arbitrary A € SPy and a, = r(n,Q4) there is no reason to expect
that D(s) has an Euler Product.

In general we would like to decompose a Dirichlet series D(s) into pieces with
Euler product:

D(S) = b1D1 (8) + ...+ b'rDr<S)7 (96)

where D;(s) are associated to multiplicative sequences (ag))neN. Even more, we
would like to do this by decomposing f(z) in a purely function theoretic way. This

3"Note that for general a, there is no reason to expect that this is actually (related to) a
modular form. But in our example a,, = 7(n, Q) we have f(z) = 61 o(z) — 1.
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goal is achieved by the theory of Hecke Operators as soon as the sequence a,, can
be described via Fourier coefficients of modular forms.**

We now give a basic example where the decomposition (96) of D(s) is classically
well known. Re-interpreting this decomposition on the function theoretic side (i.e.
for f(z)) will lead us to some very suggestive operators.

Let D < —4 be a fundamental discriminant (i.e. D = 1 mod 4 square-free or
D = 4D’ with D’ = 2,3 mod 4 square-free). Then D is the discriminant of the
imaginary quadratic number field K = Q(\/ﬁ) Let Ok be the ring of integers in
K. Since we are assuming D < —4 we have {0 = {£1}. We denote the ideal
class group of K by Cg. This is a finite abelian group and we define the class
number of K by hx = §Cx. Given an integral ideal a C Ok we write [a] for the
corresponding class in Ck.

The Dedekind zeta function of K is defined as

Ge(s) = 3 [80xc/a)™* =D t{a € Oxc: 10k fa=njn™.

aQOK

=ar(n)

It makes sense to consider the partial zeta functions

C(s,[0]) = ) [#Ok/a]* = #{a C Ok: 10Ox/a=n, [a] = [b]} n".

9% =axc (o)

Of course we have (x(s) = > e, Cx (s, [b]). All these zeta functions are holo-
morphic in some right half plane and posses a meromorphic continuation to the
complex plane. While (x(s) has an Euler Product similar to the one of the Rie-
mann Zeta Function, the partial zeta functions are not eulerian in general.

To each ideal class [a] € Cx we can associate a integral positive definite binary
quadratic form

Nr ax
Qa(SU, y) = K?((QK/j ﬁy)

of discriminant D. Similarly we can take an integral positive definite binary qua-
dratic form Q(z,y) = ax® + bxy + cy® of discriminant D and associate the ideal
class [ag| € Ck given by

where a = Za + Z

b++vD
Y= 7.

2a
This gives us a bijection between the ideal class group Cx of K and the set of equiv-
alence classes of positive definite integral binary quadratic forms of discriminant
D. Under this correspondence we have

r(n,Q) =2-akg(n,ag)).

380f course such sequences a, form only a small sample of all interesting sequences, but a
sufficiently interesting one.

aQ:Z+
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In particular, if Dg(s) denotes the Dirichlet series associated to the sequence
(37(n, Q))nen, then we have

Dq(s) = Cx (s, [ag]).
On the other hand, we have

folz) = % + % Zr(n, Q)e(nz) = % -010(2) € Mi(To(D), xp)-

neN

On the level of Dirichlet series it is well known how to expand the partial zeta
functions into Dirichlet Series with Euler Product. To do so we take a character
X € Ck (i.e. a homomorphism x: Cx — S') and associate

Dy(s) = Y x([a) (1O /a)™".
aCOgk

(One could also write D,(s) = (x(s,x), but non of this is standard notation!)
Using elementary facts on the splitting behavior of primes in the extension K|Q
one obtains the Euler Product

Dy(s)= ] @ =N@p +xo@p )"

with
X([p) +x(p) if (Pox =p -9,
A(p)=<%0 if (p)o, =p and
x(p) if (p)o, = p*.

Note that the functions D, (s) also have a meromorphic continuation and satisfy
a functional equation. In particular, if y = 1 is the trivial character, then we have
Di(s) = Cx(s)-

Using character orthogonality we write

This achieves our goal to decompose D¢ into eulerian Dirichlet Series. But the
procedure is somehow unsatisfying because in general there will be no (abelian)
group like Cg in the background that allows us to play this trick. Thus we will
take a closer look at what happens on the modular side. We define the functions

1) = aba + 3 x(la)e(tOx/a - 2).
aCOg

These are of course precisely the functions on H that correspond to the Dirichlet
series D, with Euler Product! Then we have f,(z) € M;(I'o(D), xp). Indeed we
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can compute
f) = > x()k(s, b)) = D x(lag])fal2)-
[b]eCk [agleCxk

This shows that f,(z) is a linear combination of the classical theta functions
fa(z) = 3610(2). Of course we also have

fa(2) =2 3= xaa) " fi(2).

N
For a (rational) prime p with (p)o, = p - p’ we make the following ad-hoc™
observation:

Y (0k/a)t = Y (H0k/a) T+ Y ((0k/a) = Y (#0k/a) "

aCOg, aCOy, aCOy, aCOy,
(a]=[6] [a]=[b] [a]=[6] [a]=[b]
§Ox /a=0 mod p pla p'la (P)ogla

- p_SCK(S7 [bp]) + p_SCK(Sv [bp/]) - p_QSCK(Sa [b])
Rewriting this (and treating the cases (p)o, = p and (p)o, = p? similarly) yields

o Ck(s,[0) +p° Y (20k/a)”

aCOg,
[a]=[b]
10k /a=0 mod p

Ci (s, [bp]) + Cx (s, [bp'])  if (P)ox = PP,
=40 if (p)o, =p and (97)
<K(57 [bp]) if (p)OK = p2~
Write b = ag. Note that the left hand side of (97) consists only of data that is

known by fg. Thus we would like to interpret it as the Fourier coefficient of a
function associated to fo. To do se we first write

Xop (s, ) +p° Y (t0k/a)”*

aCOk,
[a]=[b]
#Ox /a=0 mod p
=3 (x0(P)omax (n/p. [0a)) + ax (pn, lag))) ™
n=1

1

> el "0, Q) (/)

1 p—
Zép‘nr n Q 2_p ?
=0 n=1

39Recall that we are trying do decompose the Dirichlet series ((s, [b]) into pieces with Euler
product. Thus it makes sense to test how this function changes when a divisibility condition is
introduced.
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The coefficients of the Dirichlet series in the last line are easily recognized as the
Fourier coefficients of

[T 10l(2) = xp(p) fo(pz) + Zf(ZH)

If we now also set bp = ag, and bp’ = ag,, then (97) translates into

fQ1 (Z) + fQQ(Z) if (p) - pp ;
[Tpfol(z) =10 if (p)o, = p and
fa.(2) if (p)ox

In particular the operator 7, acts on the space
T(D) = (fo: @ with discriminant D)c C M (I'o(D), xp)-

It turns out that the functions {f,: x € 5;(} form a basis of (D). Even more the
functions f, are eigenfunctions of all the operators 7},:

[To£x)(2) = A(p) - f(2)-

Therefore, we recover the functions f,, which correspond to the eulerian Dirich-
let series D,, by simultaneously diagonalizing the family {7},: p prime} of linear
operators on 7'(D). Note that the operators 7, are ultimately defined without
any reference to binary quadratic forms (or ideal classes). Thus they are purely
function theoretic objects. In particular they provide us with a more satisfying
ezplanation of the decomposition (96) for Dy, which might generalize beyond the
example of binary quadratic forms.
In general we guess that the operators 7}, for (p, N) = 1 defined by

T,71(2) = 9y pi (=) (98)

define a nice family of (linear) operators on Sk(FO(N ),Xx). Here k, N € N and x is
a Dirichlet character modulo N. We will now develop a general theory of Hecke
operators to make this more precise.

5.1. Double co-sets and Hecke algebras. We start with some general defini-
tions and observations. Throughout this section G is a general group (but we can

keep G = GLj (R) = {g € GLy(R): det(g) > 0} in the back of our head).

Definition 5.1.1. Let G be a group with two subgroups I';,I's C G. Then I'y
and I'y are said to be commensurable if

[Pll Iy ﬂFQ] < oo and [PQ: Flﬂrg] < o0
We write Fl ~ FQ.

It can be seen that the relation I'y ~ I'y defines an equivalence relation on
subgroups of G.
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Definition 5.1.2. For a subgroup I' C G of a group G we define the commensu-
rator I' of [ in G by

I'={geG:glg~" is commensurable with T'}.

The commensurator T of a subgroup I' turns out to be a subgroup of G. Note
that I' heavily depends on the ambient group G. One can also see that I'y ~ I'y
implies I'y = I's.

Example 5.1.1. If T' C SIy(Z) is a congruence subgroup and a € GL3 (Q), then
I' and o 'T'a are commensurable.

Proof. Since T" is a congruence subgroup there is ¢ such that
I'(q) = ker(SLy(Z) — SLa(Z/qZ)) C T

It suffices to show that there is ¢’ such that I'(¢’) C a 'T'a. Indeed this implies
that T'(¢¢') C T Na 'Ta and I'(¢q’) has finite index in T and o™ 'Ta.

To see the claim we can take ¢’ such that ¢a~'Ta € Matyyo(qZ) for all 7 €
Matgy2(Z). Then al'(¢)a! C T'(¢) C T so that I'(¢') C a 'Ta. i

Exercise 3, Sheet 9: Let G be a group. For two subgroups I'y, 'y recall what
it means for I'y and I'y to be commensurable. Further, recall the definition of the
commensurator I'y of I'; in G.

a) Show that being commensurable defines an equivalence relation on sub-
groups of G.

b) Let I' C G be a subgroup. Show that T, the commensurator of I' in G, is
a subgroup of G.

¢) Let G = GL3 (R) and let I' = SLy(Z). Compute the commensurator of T’
in G.

Solution. For a), the only nontrivial part is transitivity. That is, if I'; ~ 'y and
[’y ~ I's then we need to show that I'; ~ I'3. The assumptions are that 'y NT'9\I'y,

[y N\, Ty N3\’ and Ty N T'3\I'3 are finite sets. We claim that the natural
inclusion I'y NI’y < I'y induces an injection

Fl N FQ N Fg\rl N FQ — FQ N Fg\rg.

Indeed, if 71,7, € T'1 N Ty satisfy 47,1 € Ty N T3, then automatically, v19, ' €
I''NTyNTI'g from which 'y NIy N T3y, = i NTa N3y, We also need the observa-
tion that, if K C H is finite index and H C G is also finite index, then K C G is
finite index. This follows by considering H = | | K'h; and G = | | Hg; and noticing
that G = | | Kh;g;, so that in fact [K : G] = [K : H|[H : G]. Putting together the
two observations, we get that I'y N I'y NI’ is of finite index in I'; as well as in I's,
which means that I'y ~ I's, as desired.
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For part b), we employ the following observation: if H is finite index in G and
6 : G — 0(G) is an isomorphism, then 0(H) is finite index in #(G). As a con-
sequence, if I'y ~ I'y and € is an automorphism of G, then 6(I';) ~ 6(I'y). Let
g € T. Then ¢gT'¢g ' NT is a subgroup of finite index in both I and ¢glg~!. Ap-
plying the automorphism z + g~'zg, we obtain that I' N g~ 'T'g is of finite index
in both ¢~'T'g and I, showing that g € I iff g7! € T. Also, if g1, 9> € T, then
I' ~glg;t and I' ~ goI'g; . Applying = +— gizg; ' to this last equivalence, we
obtain ¢:T'g;* ~ g1g2I'g; 'g; !, By transitivity, we arrive at I' ~ g,goI'g5 *g; ', that
iS7 9192 € f‘

For part c), we show that I' = Z(G)GLJ(Q), where Z(G) is the subgroup
of real valued scalar matrices. It is shown in example 5.1.1 of the lectures that
GL; (Q) c T, and it is clear that Z(G) C I' as well, since conjugating by a scalar

matrix leaves every matrix fixed. For the opposite direction, assume that g € T'.
We will show that gM(Q)g~! = M(Q).

We need the following observation: if H C I' = SLy(Z) is of finite index, then
Q[H] = Q[I'| = M3(Q), where we write Q[H] for the subalgebra of M(C) gener-
ated by the elements of H over Q. Indeed, suppose H C I is of finite index and let
g € I'. We have an induced action on cosets Hy — H~g, and since the set of cosets
is finite, there is a power of g that acts like the identity, say ¢". In particular,
HgN = H, so that ¢V € H. Letting g = (é 1
that there are positive integers N, M such that

TN:<(1) ]DeH and UM:(]\Z ?)GH

and G (1) respectively, we see

Considering TV — UM = Nejo — Mey, and also ™ — UM = Nejo+ Mey;, we
deduce that e 9,21 € Q[H]. Also, we have

v (1 N\ (1 0\ _(1+NM N
TU—(01 M)~ o 1)

and therefore diag(1 + NM, 1) € Q[H]. Similarly, diag(1,1 + NM) € Q[H], from
which it follows that e; 1, e20 € Q[H]. Putting all together, we have proved that
Q[H] = Q[I'] = M2(Q).

Now, consider g € I'. We know that ¢gT'g~' N T is a finite index subgroup of T’
and of g'g~!. From the first fact, we deduce that Q[¢gTg™! NT| = My(Q). After
applying = — g~ 'zg, since g7! (gT'g~* NT) g is of finite index in T as well, we have
Qg7 (gTg™'NT) g] = My(Q). But since g7 'Q[H]g = Q[g~' Hg] for any subgroup
H C G, we deduce that g7 M5(Q)g = M5(Q), as desired.
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Finally, using that ge; 197", ge1297", gea 197" and geaog™! are all in My (Q), we

obtain x;z;/ det(g) € Q, for any choice z;, z; € {a,b,c,d}, the entries of g. After
dividing each entry by the square root of the determinant we can assume that
det(g) € Q, so z;z; € Q for any choice z;, x; € {a,b,c,d}. Suppose, for example,
that @ # 0. Then after multiplying g by a we arrive at a matrix with rational
entries, as desired. id

Lemma 5.1.2. Let I'1,I'y C G be two commensurable subgroup of a group, let
a €Ty (i.e. T and o 'Ta are commensurable). Then we can write

FlOéFQ = |i| FQCM’%’ = |:| 5jOéP2,
1=1 j=1

where (Vi)i=1,.r (resp. (0;)j=1....s) s a full set of representatives for (TaNa ™ Ta)\I'y
(resp. T1/(T1 Na'Tya)).

Proof. This is elementary. One first notes that each right coset of I'; in I'yal's can
be written as

['ay CTal'y for v € Ts.
Now I'iay = 'y’ if and only if 4y~ € I'; N a—1T' . One concludes by noting
that since o 'T'ya ~ '} ~ 'y the index [['y: Ty Na™!T'1a] is finite. it

We now fix a semigroup A C G. By C(A) we denote the collection of mutually
commensurable subgroups I' C GG such that

FrCACT.

Further let R be a commutative ring with identity. (For concreteness we could take
R = Z, but there is no harm in working more generally for now.) For I';,T'y € C(A)
we put

HR(Fl, FQ, A) = <F10{F2: o€ A)R

This is the free R-module generated by the double co-sets I'yal'y with o € A. In
particular, elements are formal sums of the form

n= Z Co - T1al's,
acA

where ¢, € R is zero for all but finitely many «.
The degree of a double co-set I'yal's is defined to be the number of right I'y
co-sets contained in it:

deg(T1al'y) = [Ty: Ty Na 'Tal.
We extend the degree to a map deg: Hgr(I'1,I'9; A) — R by setting

deg(n) = Z Co - deg(I'1aly).

«
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Given an R-module M and suppose that A C G acts on M from the right:
MxA>(m,a)—m-a¢€ M.
(This action should of course satisfy m-1 =m and m- (cyaz) = (m-ay) - ay.) For
I' € C(A), we can define the submodule
MY ={me& M:m-vy=mforall yeTI}

On this space we can define the action of a double co-set as follows. Take I'yal's =
| |2, Te; and define

d
m|al'y = E m- .
i=1

We extend this linearly to an action m|n for n € Hr(I'1,Ty; A).

Lemma 5.1.3. Let m € M™ and n € Hgr(T'1,Tq; A). Then operation m|n is well
defined and we have m|n € M"2.

Proof. Clear. it
Given I'1,I'5,I's € C(A) and ny € Hgr(I'1,T9;A) and ny € Hgr(T'e,I'5; A) we
want to define the product 7y - ny € Hgr(I'1,'5; A). Of course it suffices to define

the product on double co-sets I'yal's and I';5I's with «, 8 € A and then extend it
linearly. We put

(Fl()érg)(rgﬁrg) = Z CWI‘ng,
vEA
where
¢y = H{(i,4): Thafj = Tiyks (99)
Remark 5.1.4. Let M = R(I';\A) be the free R-module generated by right I'y
co-sets ['ya with a € A. The semigroup A acts on M in the obvious way by right
multiplication. Furthermore, we can embed

HR(Fl, FQ, A) — R(FI\A), FlOéFQ = |_|F1al- — Z Flai.
Using this embedding we have the identification

Hr(T1,Ty; A) = R(T\A)™.

We compute

(T1al,)[(TofTs) = Y Trau|(T5fTs)
=1

= Z Z I, 85

i=1 j=1

= Z Cy - Fl’}/ € R(Fl\A)FS

Y
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Now, for each v € A we write
deg(Fl'ng)

'l = |_| Ik
=1

and we note that c¢,, = c,. Thus we can write
deg(T'17T'3)

(T1aly)[(T2BTs) = > ¢, Z L1y = ZCWFWPSGHR(PMFQ;A).

INT7 I}

In the last equality we have reversed the 1dent1ﬁcat1on between Hr(I'1,'y; A) and
R(T;A)Fs. Thus we find

(Floérg) . (Fgﬂrg) = (Floérg)’(rgﬁrg)
Thus we have defined a bilinear pairing
Hr(T1, Ty A) X Hp(T2, T35 A) = He(T1, T A), (01,m2) =m0 2
and under the identification Hg(Ty,T;; A) = R(T;\A)Y (with i = 2,3) we get

M - M2 = M.
We directly obtain that (1; - 12) - m3 = m1 - (12 - 13).

Lemma 5.1.5. Given I'val's and I's51'3 as above. Then we have
cy - deg(I'1I'3) = #{(4,7) : T1;B;I's = 17T}

Proof. Suppose T'179Ts = | [,_, 1. In particular, deg(y) = t. Then we have
Flaiﬁjf4 = Fl’}/Fg if and only if Floﬁﬁj = Fl’)/k for exactly one 1 S k S t. We
conclude by observing that

8{(6,5): Thaupil's = T'iyT'st = Z 8(4,7): Ty = T}
k=1
=1- ﬂ{(l,]) FlOéiﬂj = Fl"}/} =1- Cr.

Lemma 5.1.6. Ifn; € Hr(['1,T;A) and ny € Hr(T2,T's; A), then

det(n; - n2) = deg(m) - deg(n2).

Proof. 1t is sufficient to check this for generators I'yal's and I'y 8173 of the respective
algebras. We compute

deg(T'jaly - T9BTs) = Y _ ¢, deg(T'17Ts)
Y

= #{(i,j): T1up;Ts = T14T's}

= H{(l,j)} = deg(f‘lafg) : deg(Fgal"g).



ADVANCED ALGEBRA 1: MODULAR FORMS 142

Definition 5.1.3. We call
H(T;A) = Hy (D, T A)
the Hecke algebra of T' (over Z) with respect to A.
Remark 5.1.7. If A C A" and I € C(A'), then H(I', A) is a subalgebra of H(I'; A").

Proposition 5.1.8. Let a € T and suppose that™

d d
Tol' = | |Ta; =| |BT.
j=1

=1

Then we can find representatives 0; that simultaneously work for left and right

co-sets: . .
Tol'=| |6 =] |aT.
i=1 i=1

Proof. We claim that T'a; N B, # @ for all tuples (i,7). Indeed assuming the
contrary we find indices ¢ and j such that

Taq € || Bl
-y
This implies
Tol' =Ta,T = | | BT,
oy
which is a contradiction.
With the claim established we can simply replace a; and [; by some 9; € I'a;; N

Bl # 0. i
For us an involution on A is a map (-)": A — A such that
(af)t = f'a* and o' = a.

Theorem 5.1.9 (Gelfand’s Trick). Suppose there is an involution t: A — A such
that
I'"=T and T'a'l’ =Tal for all a € A.

Then Hr(I'; A) is commutative.

Proof. Let a, B € A. We first write
d
Fol' = | [Ty
i=1

40The point in this assumption is that in both expansions we need the same number of
representatives.



ADVANCED ALGEBRA 1: MODULAR FORMS 143

and we observe that by assumption on ¢ we have
d
Fol' =TT = (Tal)" = | |a/T.

%
i=1

Thus the assumption of the previous proposition is satisfied and we can pick «;

such that
d d
Pol' = | |Ta; = |aT.
i=1 i=1
Similarly we can write

d d
rer = |rs = |sr.
1=1 =1

Recall that
Tol' -TAT = ¢, IT.

.
Now we compute

¢y = #{(i,5): Ty 3; = T}

1 . Y . P—

= Wﬁ{(%])o P 0T = T}
1 N e

= wﬁ{(ld)- [fjoil" = Iy}

= 8{(4,7): IBja; =y} =: ¢} (100)
Combining everything we get
Tal -TAT = ¢, -TyT'=)» ¢ Ty =TBT -Ta'T =TC-Tal.
Y Y

This completes the proof. i
Example 5.1.10. Let I' = SL,(Z), G = GL,}(Q) and
A = {a € Mat,x,(Z): det(a) > 0}.

Then we have the involution a +— a!. This obviously leaves I' invariant. Further-
more, by the elementary divisor theorem we can write

I'al' = T'ayl

for some diagonal matrix ay = diag(ds, ..., d,) with d; € N so that d; | d;.1. We
check

[a'T = (Fal')! = (Taul)! = Ta/,l’ = T'ayl’ = Tal.
Thus we can apply Gelfand’s Trick to show that H(I', A) is commutative.
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Exercise 1, Sheet 10: Let ',y C SLy(R) be two discrete subgroups of finite
co-volume. Let k£ € R and let ¥; be a multiplier system for I'; of weight k (with
i =1,2). On the intersection A = T'; N T’y the product

E(v) = 91(7)02()

defines a character and we assume that the kernel F = ker(§) C A has finite index
in FQ.

a) Let f € M(I'1,7;). Show that

= 3" 0(a)[f Ik al(2)

a€F\Il'y

is well-defined and that we have g € M (I'y, ¥s).
b) Show that if [A : E] > 1, then g = 0.

Solution. To see that ¢ is well-defined, let 8 = ea, where ¢ € FE. Observe
that [f|rea] = [[f|r€]|xa]wi (€, ), where wy, is the factor system of weight k; see
Definition 2.2.1. Also, by definition of multiplier system of weight k& we have
Uo(ea) = Vq(€)Va(a)wy(e, ). Since f € Mi(T'1,91) we have [f|re] = J1(€) f, and
from the definition of E, 0;(e) = 15(¢). These observations justify the following
calculation:

Therefore, g is well-defined. To show that g € M (T, 95), observe that multiplying
on the right by v € I'y permutes the right cosets F\I'y. We get

= Y Daan) fhenl(z2) = D da(a )2 (a) M f k] [ey]wi (@, )
acE\T'y a€E\T'y
= 95(7) " [glk]

as desired (we have used that Vs(ay) = va(a)da(7)wk(a, ), valid since ¥, is a
multiplier system of weight k for I'y).
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For part b), let v € A =T’y NT'y. we calculate

gl = > V() [fleadlin] = D Dala a,7) 7 [flran]

a€F\I'y a€F\I'y

= > Oa(@) w(a, )y v a)[[f )l ]

a€FE\I'y

=01(7) Y V() wile, ) wi(y, v ) [l e

a€E\TI'2

Now, observe that  — 7y~ 127 is an automorphism of I'y, and since v € A = I')N[y,
this conjugation normalizes E. Therefore, a — v '~y induces a bijection of E\T's.
Also, we have the identities

Do(ay) = Do(@)Va(V)wi(a,y) and  Fo(ay) = 9o(7)02(y 'ay)wi (v, v )
which imply
Vo () rwi(on, ) " wr(y, v ay)da (v T ary) = 1.

Therefore, we arrive at

gl7] = 01(7) > Va(a ) wk(y, v ) [f ey ]
aGE\Fg
> (v ay) T ey e
a€F\I'y
=11(7)g.

Finally, if [A : E] > 1, we can choose 7 € A such that 9;(y) # ¥2(7), and then

h(7)g = [9lk] = V2(7)g
which implies g = 0. i

Exercise 3, Sheet 10: Let GG be a finite group and let H C G be a subgroup.
Let 7 be an irreducible representation of G on some (finite dimensional) C-vector
space V. In particular, we have the action

v-g:=n(g " )vforge GandveV.

Thus we have an action of Hc(H,G) on VH given by v|p, where v € V and
n € He(H,G). (See Lemma 5.1.3.)
a) Realize the Hecke algebra as Endg(C[H\G]).
b) Prove that the following are equivalent:
i) The Hecke algebra H¢(H,G) is commutative.
ii) Every irreducible representation contains up to scalars at most one
H-fixed vector.
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Solution. Recall Frobenius Reciprocity: If (U, o) and (V,7) are representations of
H and G respectively, then

Homg (V, Ind$(U)) ~ Hompy (V |, U).
By Inde(U ) we mean a induced representation, with underlying space
IndS(U) == {f: G = U | f(hg) = o(h)f(g) for all h € H, g € G}.
The action of G on Ind$(U) is by right translation. That is, we have

(g- f)(@) = f(xg) for f € md$(U),z,9 € G.

The bijection in Frobenius reciprocity is defined as follows. To ® € Homg(V, Ind$(U))
we associate ¢ € Hompg(V|y,U) such that ¢(v) := ®(v)(1). In the other di-
rection, to ¢ € Hompy(V|y,U) we associate ® € Homg(V,Ind%(U)) such that
®(v)(g) := ¢(gv). It is a simple computation (although a bit tedious) to check
that the two maps above are inverse to each other and have the desired transfor-
mation behaviour. We will be concerned with C[H\G] := Ind$ (1), where 1 is the
trivial one-dimensional representation of H. Therefore,

CIH\G|={f:G—C| f(hg) = f(g) for all h € H,g € G}.
By Frobenius reciprocity we have a bijection
Homg (W, C[H\G]) ~ Hompy (Wg, 1) (101)

for any G-representation W. We want to see that Endg(C[H\G]) ~ C(H,G).
There is a canonical basis of C[H\G], consisting of the characteristic functions
drg.- The action of G' on this basis is described as = - 6y = 0pgy—1. Also, ® €
Endg(C[H\G)]) is uniquely determined by ®(dy), since ®(dp,) = P(g'0y) =
g ®(6). Write
CI)((SH) = Z aHgéHg.
geH\G
Since H fixes &y, we must have
Z CLHgéHg = (I)(éH) = (I)(h,éH) = Z CLth'(SHg = Z aHgéth_1 = Z CLth(SHg.
geH\G geH\G geH\G geH\G
It follows that ap, = apg, for any h € H, and thus we can write
(I)((SH) = Z aHgH5HgH-
geH\G/H

Reciprocally, any such expression corresponds to a well-defined endomorphism of
C[H\G]. Indeed, we only need to check that the expression ®(dp,) :== g~ ®(dp)
is well-defined. To see this, note that Hg = Hx implies zg~! € H, which stabilizes
O (). We check that

gt ®(y) =27t (-(a:g_l) . <I>(6H)) =27 '®(0y).
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Therefore, we have established a bijection of H¢(H, G) with C[H\G], which sends
the double coset HgH to ®, € C[H\G]| defined by ®,(dps) = dpgn.. To see
that this bijection respects multiplication, let g,z € G arbitrary and consider the
endomorphisms ®,, &, € End(C[H\G]) such that ®,(0y) = dggn = D 0ng; and
®,(0r) = > Ona;, where the sums are over the cosets Hg; C HgH and the cosets
Hz; C HxH respectively. Composing the endomorphisms,

= ZéHa:jgi = Z dy5HyH
,J

yeH\G/H

where d, = #{(i,j) : Hr;g; = Hy}. This is the same coefficient as ¢, in the
definition of the multiplication of the Hecke algebra (see (99)). This shows that
H(H,G) ~ End(C[H\G)), as desired.

For part b), we need several basic facts from the representation theory of finite
groups. Recall that representations of finite groups over a field of characteristic 0
are completely reducible. That is, given a representation (V, o) of G we can write

V ~ EBI/VZ-di where (W, 7;) is irreducible and the decomposition is unique. Recall
also Schur’s lemma, which says that, for two irreducible G-representations W; and

W5, we have
C, it Wy ~ Wy,
0, otherwise.

HOIIlg(Wl, Wg) ~ {

From Schur’s lemma, we see that
V = @ VVidi — El’ldg(V) >~ Mdixdi (C)

In particular, the Hecke algebra Hc(H,G) ~ Endg(C[H\G]) is commutative if
and only if each G-irreducible representation appears with multiplicity at most 1
in Endg(C[H\G]). By Frobenius reciprocity,

Homg (W, C[H\G]) ~ Hompy (Wy, 1) (102)

for any G representation W. If C[H\G] = W@ (@W") where W % W, it
follows from Schur’s lemma that

dim¢c Homg(W, C[H\G]) = d (103)

By the previous reasoning, Hc(H,G) is commutative if and only if for any ir-
reducible W the vector space on the left (102) has dimension at most 1. For
any G-representation on a finite dimensional vector space V', we can define the
contragredient representation on the dual V* as

(g-N(w):=Agtw), forAeV* weV,ged.
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One checks immediately that the natural isomorphism V =~ V** respects the G
action defined on this way. Therefore, associating to a finite dimensional G-
representation its contragredient gives a permutation of finite dimensional G-
representations. Also, it can be checked that V is irreducible if and only if V*
is irreducible.

For the punchline, observe that an element A € Hompy(Wy, 1) is a functional
such that A\(hw) = A(w) for every h € H. Therefore, Homy (W, 1) is the space
of fixed H-fixed vectors of the contragredient representation W*. Since mapping
a representation to its contragredient is a permutation of the finite dimensional
representations of G that preserves irreducible ones, we deduce that H(H,G) is
commutative if and only if dimc V# < 1 for every irreducible G-representation V,
as desired. pif

5.2. Hecke operators for integral weight. We now restrict to the special sit-
uation where G = GL3(Q) and ' = T'y(N) C SLy(Z) is a Hecke congruence
subgroup.

Let £ € N be even and let x be a Dirichlet character modulo N. Recall that we
can lift x to a multiplier system on I'g(NV) via

x(v) = x(d) for v = (Z Z) € I'o(N).

Note that we can assume y(—1) = (—1)*, so that the so obtained multiplier system
1s consistent.

We define

Ay = {a = (CCL Z) € Matoyo(Z): N | ¢, (a, N) =1 and det(a) > 0}.

Note that we have I'o(N) € Ay C G. Furthermore, for a = <Z g) € Ay we

define
X"(@) = x(a)~".
Note that x*|r,(v) = X, thus we have extended our multiplier system to Ax.
If M is the module of holomorphic functions f: H — C of polynomial growth
(in the sense of Lemma 2.3.2), then we can let Ay act on M by*!

£ -al(e) = (@) O (20 < (o) det(a) [Tl )

In particular we observe that
M) = My (To(N), x).

4INote that we slightly diverge from standard notation and use [f|za](z) = jo(2) % f(az) also

for o € GL3 (R). Sometimes the slash operator is defined by including the factor det(«)z.

[SIE
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Thus the abstract theory from the previous section allows us to define an action
of the Hecke algebra H(Io(N), Apr) on Mg(T'o(N), x). The action is given by

[fITo(N)alo(N))(z) = D [f - ail(z) = det(a ZX “Hflrail(2),

where I'o(N)al'o(N) = |, To(N)ay
Remark 5.2.1. If we define the submodule
My={feM: Im(z)gf(z) is bounded},

then M, ™) = S, (D(N), x). Since the action of Ay preserves My we see that the
action of the Hecke algebra H(I'o(N), Ay) preserves the subspace of cusp forms.

Remark 5.2.2. Let dy = diag(N, 1), then
o' = dyaldy
defines an involution on Ay and we have I'((N)" = I'g(N). One further checks
that also
F()(N)Oébro(N) = Fo(N)OéF()(N)
for all @ € Ay. Thus H(I'o(NV), Ay) is commutative.

While each double co-set I'g(N)al'o(NV) gives rise to a Hecke operator we are
interested in special combinations of them. We define

An(n) ={a € Ay: det(a) = n}.
Lemma 5.2.3. We have

ad=n, ad=n,
ald, (a,N)=1,
(a,N)=1 b mod d

Proof. The first identity follows (essentially) from the smith normal form. To see

the second we consider the right co-sets I'o(IV) for ad = n, (a,N) =1

a b
0 d
and b mod d. It is easy to see that they are contained in Ay(n) and that they
are disjoint. Now pick (CCL Z) € An(n). We chose co-prime integers g, h so that

ga + he = 0. Note that necessarily N | g. Thus there is a matrix v = (; *) €

h
['o(N). And we have
fa b\ _ [d
T \e d) " \o @)

It is clear that a’d’ = n must hold. Note that (a, N) = (a/, N) = 1. Finally we
can further multiply by £77 to make the diagonal positive and to force the upper
right entry to lie between 0 and d — 1. &
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Thus we define the element

a 0
M= »_ To(N) (0 d> [o(N) € H(To(N), Ap).

.

(a,N)=1
This element is used to define the operator T,,: Mi(I'o(NV), x) = Mr(Fo(N), x)
given by

E_
T.f =n2 L. Lf17]

Note that we have included a normalizing factor, which will turn out to be con-

venient.”” The operator T, is what is usually refereed to as nth Hecke Operator.
Unravelling the definition gives

LiG) =+ Y @ Y f(‘”d*b).

ad=n, b mod d
(a,N)=1

Note that for p = n with (p, N) = 1 this reduces to (98). Note that T; is the
identity operator.

Remark 5.2.4. Recall the classical Eisenstein Series Fj(z) = %(k)ek(l, z). We can

write the action of T}, (for all p) on Ej(z) as follows:

T,Ey(2) = %(k)% (e(%,z) + ;e (1, Z:’)) . (104)

Now we write L, = Z + Zz C C for the lattice in C generated by 1 and z. Since
(at least for k > 4) the function e (1, z) depends only on the lattice and not on
our choice of basis we can write ex(L.) = ex(1, z). Staring at (104) long enough
makes us realize that the lattices

1 1
z. vz 002 pyz. il
p p p

are precisely those lattices L O L, with [L: L,] = p. Therefore, we can rewrite

TpEk(z):%(k)% L;ZLz, en(L).

[L: L]=p

This is a general phenomena. Indeed, when viewing elements of My (SLy(Z), V)
as functions on lattices we can interpret all the Hecke Operators T,, as averages
over neighbouring lattices.

We will study finer properties of these operators. First we compute how they
act on the Fourier expansion of a form:

42 Attention: Normalizations of Hecke-Operators differ in the literature!
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Lemma 5.2.5. Suppose f € My(Lo(N), x) is given by f(z) =D, ar(m; 00)e(mz).

Then we have
mn
3T (o).

m=0 a|(n,m)
(a,N):l
Proof. Inserting the Fourier expansion of f into the definition of the nth Hecke
operator yields
1 & E az+0b
[Tfl(z) = — Y ap(mice) D x(a)d" Y e(m- )

m=0 ad=n, b mod d
(a,N)=1

:Zaf(m;oo) Z X(a)akle(rjj—gnz)é Z e(m~g).

m=0 ad=n, b mod d
(a,N)=1

The b-sum vanishes unless m = 0 mod d. Thus we get

=YY alsoy(at M)

m'’=0 ad=n,

(a,N)=1
= Z Z ay(m'n/a;00)x(a)a" ‘e(am'z) (105)
(a,(;lfr;:l
The result follows by simply rewriting the summation accordingly. it

Remark 5.2.6. Recall that the Eisenstein Series Ei(z) € My (SLy(Z), 0¢,) is given
by

2%
Ex(2) —1—1——2%1 mz).
m=1

Thus applying the nth Hecke Operator T,, yields

kzk .
[TnEk](Z) = Of— 1 Z Z CZ Ok—1 mn/a) ( )

m=1 a|(n,m)
We compute
Z ak_lok_l(mn/a Z Z ad = o_1(n)ok_1(m).
al(n,m) al(n,m d|
Thus we see that

We have found that the Eisenstein series Ej is an eigenfunction of all Hecke oper-
ators with multiplicative eigenvalues given by divisor functions.
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Exercise 3, Sheet 11: Let f : H — C be holomorphic and suppose that f|zy =
f for all v € SLy(Z) and a fixed even integer k > 2. Show that, if f is an
eigenfunction of all Hecke operators 7,, with n € N, then f € M (SLa(Z), ;).
(Even though we have not assumed that f is holomorphic at infinity, the Hecke
operators act on it in the usual way.)

Solution. Denote the annulus of radii ro and Ry by
A(ro, Ro) :={2 € C:ry < |z| < Ro},

where we allow ro = 0 or Ry = oo. Recall that if h is an holomorphic function
defined on A(rg, Rp), then it admits an expansion

h(z) = i a,z" + i bz "
n=1

n=0

where the first series converges absolutely for |z| < Ry and the second converges
absolutely for |z| > 9. We will briefly explain why. Denote by C, the circumfer-
ence of radius r traversed once counter clockwise. Define

L(h)(2) :—i/cmdw (12] # 1),

21 wW— 2

for some 1y < 7 < Ry. Then, for |z] < r we can expand (1 —z/w)~! as a geometric
series and obtain

1 1 h(w) /1 h(w)
I.(h = — ———dw = — —d "
(M) 27rz'/crw1—§ v nZ:O(QM/CTw"H vz
where the power series expansion is valid for |z| < r since the coefficients are
bounded by
1 h
—/ de < |(sup |h(z)])r™"
21 Jo, wntt 2eC,

Similarly, for |z| > r we can expand (1 —w/z)~! as a geometric series and obtain

L)) = ——— [ 1P i (L /C h(w)w"™! dw) L

21 Jo 21— 2 2mi
r z n=1

where the power series is absolutely convergent for |z| > r since the coefficients
are bounded by

o [t ] < (sup o) o (106

211 zeCy

Now, for rg < r < R < Ry we have
h(z) = Ig(h)(2) — I.(h)(z) on 7 < |2] < R
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by Cauchy’s theorem, since for every point outside A(rg, Ro) the winding number
with respect to the cycle Cr — C,. is 0, while the winding number of every point
r < |z| < R is one. Therefore, we get the expansion into power series

h(z) = Zanz —|—sz "

n=0

where
1 h 1
ap, = — (w) dv and b,=-— [ h(w)w" tdw
211 o, wntl 21 Je,

for arbitrary rq < r < Rj.

Coming back to our exercise, note that since f : H — C is holomorphic and
1-periodic, it induces a well-defined holomorphic map on A(0,1) = {g € C: 0 <
lg| < 1} by h(q) = f(2), where ¢ = e(z). Expanding h into its power series we get

Fz) = ang"+ > bug™"
n=0 n=1

where for any 0 < 7 < 1 there exists A, := sup,_, |h(g)| < oo such that |a,| <
Apr~" for all n > 0, and |b,| < A.r" for all n > 1. In particular, both series
converge absolutely for z € H. Recall that the Hecke operators for N = 1 and
trivial multiplier act as

me =5 S 5 ()

ad=n b mod d

from which it follows that if f(2) = ., cme(mz), with an absolutely convergent
series for z € H, then (we reprove Lemma 5.2.5 with a general Laurent series
expansion)

10 =3 Teon S Y e(m®)

mezZ ad=n b mod d

=S e () ¥ e (mg)
meZ ad=n b mod d

= Z Cm Z a"le <?z>

MEZ ad=n
dlm

T2 2 e =) ) ead
re€Z meZ,ad=n €Z al(n,
d|m, mn=d>r

To justify the last step, note that ad = n implies that mn = d*r is equivalent to

g = r, so necessarily a | (n,r), and for any such a we solve m = 4 = 2 In
a a
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particular we observe that writing [T, f](2) = >, ., dre(rz) then
dog = op_1(n)co, di=c¢,, and d_j=c_,.

Now suppose that f is an eigenfunction of all the Hecke operators T,,, with eigen-
value \,,. Then it follows that

AnCo = 0p—1(N)co, Apc1 =c¢n, and  Aycog =c_yp. (107)

If ¢ # 0, we deduce that A\, = o4_1(n). If in addition ¢_; # 0, then c_, =
or_1(n)c_y. Since k > 2, letting n — oo we obtain a contradiction to the bound

lc_n] = |bn| < Apr”

for any 0 < r < 1 and A, depending on r. Therefore, if ¢y # 0 we have seen that
f is holomorphic at infinity, therefore f € My(SLy(Z),Vy,). In fact, we deduce the
stronger statement that ¢, = o_1(n)cy, so that f is of the form f = ¢+ dEj, and
since k > 2 it must be ¢ = 0 and k > 4 (since My(SLy(Z), ¥;,) = 0).

On the other hand, if ¢g = 0 we have two cases. If c_; = 0 then we are finished,
since using (107) we deduce that ¢_,, = 0 for all n > 1, arriving at the conclusion
that f € Sg(SLa(Z), V). If c_1 # 0, then from (107) we see that

Cn=—tc , foralln>1 implying that |c,| < B, for all n € Z
C_1
where 0 < r < 1 is arbitrary and the constant B, depends on f and r. From this
bound, the function
f(z) =) cne(nz) (108)
ne”Z
initially defined only for z € H, admits an holomorphic extension to the entire
complex plane C (since the power series on the right hand side converges abso-
lutely for any z € C).

To get a contradiction, we recall Lemma 2.3.2; which asserted that if f is holo-
morphic in H and satisfies f|ra = f for all @ € SLy(Z), then f € Si(SLa(Z), V4r)
if and only if the function g(2) := |[Im(2)¥/2f(2)| is bounded on H. Observing that
g(az) = g(z) for any a € SLy(Z), we deduce that g is bounded on H if and only
if it is bounded on a fundamental domain D. We can choose D to have the cusp
at a point of R (not at infinity),* and then D is a bounded subset with compact
closure in C. Since f extends continuously to C, we see that g is bounded on D
and we conclude that f € Si(SLa(Z), ). Since we assumed that ¢_; # 0, we
have found the contradiction we were looking for. it

43For example, let S € SLy(Z) be such that S(z) = —1/z and consider D := S(F), where F is
the usual fundamental domain for SLy(Z) with the cusp at co. Then D is a fundamental domain
for SLo(Z) with the cusp at 0.
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The next result gives us valuable relations between the different Hecke Opera-
tors:

Proposition 5.2.7. Let n,m € N. Then

TTw= Y X(d)d* ' Tuy.
d|(m.n),
(d,N)=1

Proof. We directly compute

n-LTaflz) = > xXlma)(ma)* D f (ala?z +arby + b1d2) ‘

didy
ardi=m, b1 mod dj,
agdo=n, b mod da
(a1a2,N)=1

We write 0 = (ay,d2) and note that necessarily d | (n,m). Put a] = a1/6 and
dy = dy /0. Then we get

n- (T Tnfl(z) = > x( > x(ala)(dias)"

8|(n,m), ajdi=m/é,
(0,N)=1 azdhb=n/$,
(afaz2,N)=1,
(a7,d5)=1
Z f (a’lagz + allbz + bldé
d,d: '
by mod di, 1%2
by mod i3

Note that since f is one periodic we find

alazz + a1b2 + b1 alagz +b
2 f( 0rd >—5 > f( i)

by mod dy, b mod did
b2 mod db6

Finally we can write a = ajay and d = did,. Then ad = nm/é? and (a, N) = 1.
Note that we have a bijection
{(d},a2,dy,d}): aydy = m/d, aady = n/d, (ajas, N) =1 and (a},ds) = 1}
& {(a,d): ad = nm/6* and (a, N) = 1}.
Indeed the inverse assignment is given by

,__mfo

, a n/d
a; = W’ dl = (m/5, d), d and as =

d
27 (m/d,d) Ca dy

41 particular we obtain a direct proof that the Hecke operators are commutative.
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Thus we see that

- LT, = 5 @00 5 s ¥ ()

6| (n,m), ad=nm/§2, b mod d
(&N):l (a,N)Zl
_ k+1  mn
= 5(23) X(6)0% - 52 Lmn/s
(5,N)=1
This completes the proof. if

This has two direct implications, which we will frequently use in what follows:
e The Hecke operators are multiplicative: T,,T,, = T, if (m,n) = 1;
e For a prime p and [ € N we have
Ty = T, T — x(p)p" T (109)

Theorem 5.2.8. Let (n,N) = 1. The operator T,, acting on Sk(Lo(N),x) is
normal and satisfies

(Tnf,9) = x(n)(f, Thg) for f,g € Sk(T'o(N),x).

Proof. By using (109) (inductively) and the multiplicative nature of the Hecke
operators we observe that it is sufficient to check the desired property for 7, with
P prime.

By definition we have

(Tf.9) =01 Y X)) {flea,g).

a€lo(N)\AN (p)

As we have seen above we can take o = (g 2) . Put

o =p-al.

We claim that
(flra, g) = (f, glrc) (110)

From here we can finish the proof as follows. For 71,79 € T'o(N) we compute

X“(@)Hf gllal) = x(0)(f, x* (o) glra’)
= X(P){f, X" (ma' ) glna’yz ')
We can now choose 7; and 7, such that v,a/y, ' = a. (To guess the right matrices
is an exercise.) Inserting this above gives the desired result.

However, we still have to show (110). This is essentially a change of variables.
Let F be a fundamental domain for I'(pN) C I'y(N). Then, for o as above, f|ia
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is I'(pN) invariant. Recall Im(az) = ﬁ“(i‘;“)z Im(z). We compute
det(e)" (Tl le) = (pN)l / F(a2)g(az) Im(az) du(2)
- T / 7(2)9(2) (=) dp2)

= <f,9>-

We are done since
1
g=glla ];Oé] = p"[glr] |,

so that
(fleer, g) = P*(flecv, [glaNlea) = (f, glic).

We make two observations that follow directly:

o If (n,N)=1and T,,f = Af(n)f then Af(n) = x(n)As(n); and
o If fi and fy are two eigenfunctions of 7, (for (n, N) = 1) with different
eigenvalues then (f1, fo) = 0.

Corollary 5.2.9. The space Si.(I'o(N), x) has an orthogonal basis of simultaneous
eigenfunctions of all Hecke operators T, with (n,N) = 1.

Lemma 5.2.10. Assume that f(z) =Y ~_ ag(m;o0)e(mz) € Sp(Lo(N), x) is an
eigenfunction of T,, with eigenvalue A;(n). Then

Af(n)ag(1;00) = af(n; o0).

=

Proof. Write T,,f = Af(n)f and compare Fourier coeflicients using Lemma 5.2.5.
it

So far we have seen that the theory of the Hecke operators T), is very nice as
soon as (n, N) = 1. Our next goal is to study the remaining operators.

Exercise 1, Sheet 11: Let A € Si5(SLa(Z),Vy,) be the Ramanujan function.
Show that A(z) + A(6z) € S12(To(6), ) is not an eigenfunction of all Hecke
operators.

Solution. Recall the definition of the Hecke operator T,, for I'g(N), weight k& and
multiplier . In our particular case N = 6, k = 12 and y = ¥, we have

1 Z 19 Z az+b
ad=n, b mod d
(a,6)=1
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In particular, when n = 6 the only option for a is @ = 1, and this gives

Tof(z Z f(z+b)

b mod 6
The result is that, if f has an expansion at infinity f(z) = >~ ase(nz) then

Tof (o Zan <n2> Z . <%b) — i a,e <%> = game(nz)

b mod 6 n=0 mod 6

(which is the formula of Lemma 5.2.5, since there we can only take a = 1). Writing

A(z) =377 7(n)e(nz) we obtain TgA(z) = > _, 7(6n)e(nz). On the other hand

A(62) = Y 71(k)e(6kz) Z%W’ n/6)e(nz)
k=1
and therefore,
(TsA(6)(2) = Y _7(n)e(nz) = A(2).

If A(-) + A(6-) was an eigenfunction for Tg, then for some A € C it would hold
that

A(i e(nz) +Z 6nz> = Ts(A()+A iT 6n)e(nz) —1—27'

n=1

After equating coefﬁments, this is equivalent to
T(n) + 7(671,) = AT(”) + >\56\n7— <%> fOI' n c Zzl‘

Putting n = 1, using 7(1) = 1 we get 7(6) = A — 1, and putting n = 2 we get
7(12) = (A — 1) (2) = 7(6)7(2). By looking at a table of values we can see that
this identity does not hold (7(2) = —24, 7(6) = —6048 and 7(12) = —370944). C7

Definition 5.2.1. We define the conductor of a Dirichlet character y modulo N
to be the smallest (positive integer) ¢ = cond(x) such that x(n + gm) = x(n) for
all n,m € Z with (n, N) = (n+gm, N) = 1. Of course this implies ¢q | N. We call
the character xo(n) = d(n,n)=1 the principal character modulo N. Further we call
X a primitive character modulo N if cond(x) = N. (Note that for us the principle
character yo counts as a primitive character modulo 1. This is not standard!)

The idea behind this definition is the following. If M | N, then we have the
canonical (surjective) map
pnom: (Z/NZ) — (Z/MZ)*
This can be used to lift a character x of (Z/MZ)* to a character x’ on (Z/NZ)*
by setting
X'(n) = x(pn—m(n)).
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Recall that Dirichlet characters modulo N are nothing but characters of (Z/NZ)*
that are extended to Z in the obvious way. One finds that y is primitive if and
only if y is not obtained from a character of (Z/MZ)* when M is a proper divisor
of N.

A similar (but slightly more complicated) phenomenon occurs for modular forms.
A taste of what follows can be explicitly observed when taking a closer look at the
Eisenstein space:

Remark 5.2.11. Recall that M(To(N),x) = Ex(To(N), x) @ Sk(To(N), x). It is
desirable to also find a convenient basis for the (non cuspidal) part of the space
that is spanned by Eisenstein series. For N = 1 this is no problem, since we have
seen by Remark 5.2.6 that E} is an eigenfunction of all Hecke operators. In general
one has to work a little harder.

Let us assume k& > 3 to avoid convergence problems. Then a basis of Ex(I'o(N), x)
is given by the Eisenstein series F, associated to singular cusps a. This basis usu-
ally does not diagonalize the Hecke operators.

Instead we will consider the following Eisenstein series:

1 x1(c)xz(d)
E S ANHAZE
ae(2) 2 (0%21 (cNayz + d)F’

(e,N1)=(d,N2)=1

attached to two primitive Dirichlet characters y; modulo NV; (with ¢ = 1,2). One
checks that E,, ,,(2) € M(To(N1Ny), x1x5 ). The Fourier expansion reads

EXl,Xz(Z) = 0ny=1 + Ck(Xla XQ) ) Z O'X17X27k*1<m>e(mz>7

m=1
where
(—i2m)"7(x2)
C = d
k<X1>X2> Nécl—‘(k)L(k,XlXQ) an
O-X17X2J€—1(m) - Z X1 (a)XQ(b)_lbk_l.
ab=m,

(a,N1)=(b,N2)=1

Note that the Fourier coefficient o,, y, x—1(m) is a generalized divisor sum. Fur-

thermore
e = X e ()

is a (generalized) Gauf} sum and

L(s, x1x2) = Z [Xixz2](n)n™*
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is a Dirichlet L-function. We have omitted the proofs for the properties summa-
rized above, since they are routine modification of the arguments in Section 2.5.
Repeating the computation from Remark 5.2.6 shows that

TnEXI:XQ (Z) - Ux1,x2,k—1(n) ’ EX1,X2 (Z)

for all n. We call B, ,,(2) € My(To(N1N2), x1X5 ) (holomorphic) newform Eisen-
stein series (of weight k). Keep in mind that we have only considered primitive
characters y; and ys so far.

To generate the space Ei(Io(V), x) we first recall that a full set of non-equivalent
cusps for I'g(V) is given by ¥ with v | N, (u,v) = 1 and « mod (v, N/v). One can
explicitly compute a scaling matrix and observe that * is singular with respect to
x if and only if y is (UTN/v)—periodiC. In particular, if x has conductor ¢, then there
are

#{singular cusps} = Z o((v, N/v)).
v|N,
(0,N /)|
For k > 3 this is precisely the dimension of Ey(T'o(V), x) because
Er(To(N), x) = (E4(2): a singular cusp).

We claim that one also has

Ex(To(N), x) = (E

e (M 2z): x; primitive character modulo NV;

and MN;Ny | N and ¥ = x1X5 ).

To prove this one could proceed as follows. First, it is easy to see that the Eisen-
stein series E, y,(Mz) appearing on the right hand side are linearly independent.
Second, one checks that they are orthogonal to cusp-forms. Finally one can match
up the dimension. Let us remark that one can actually compute an explicit change
of basis between the two sets of Eisenstein series considered above.

Motivated by these observations we make the following definition. Let x be a
Dirichlet character modulo N with conductor g. For ¢ | N’ | N and M | & we
define

ULN' M- Sk(FO(N,)v X) — Sk(FO(N)’X)a f = f|kaMa
where a, = diag(M,1). The images of these maps (with N’ # N) make up the
those modular forms (of level N, weight k& and nebentypus x) that come from

smaller levels. These play the same role as non-primitive Dirichlet characters. We
define

ST (N),x) = ez a | N'| N, N N, M | 35 and £ € STo(N'), )

Elements of this space are called oldforms. We denote the orthogonal complement
by
SETo(N), x) = [SE(To(N), )1



ADVANCED ALGEBRA 1: MODULAR FORMS 161

Lemma 5.2.12. The spaces SL(To(N), x) and S3(To(N),x) are stable under the
Hecke Operators T, with (n, N) = 1.

Proof. This follows from the diagram

Si(To(N'), X)) ——— S(To(N), X))

lLN’,]M le’,M

Sk(To(N), x)) ——2— Sp(To(N), X))

which is easily seen to be commutative. it

Exercise 2, Sheet 11: Let N > 1 be an integer and let M | N be a divisor of
N. Let f € Sg(T'o(N), 0y). Show that the following two properties are equivalent:
i) f is orthogonal to (in/n1(g) @ g € Sk(Lo(N/M),Vr));
ii) f satisfies

1
[To(N/M) : To(N)] > flree = 0.

a€lo(N)\L'o(N/M)
Solution. Recall the following fact from functional analysis.

Proposition 5.2.13. Let Hi, Hy be Hilbert spaces, T : Hy — Hy a continuous
linear map and let T* : Hy — Hy be its adjoint, which is automatically continuous,
and is defined as the unique linear map that satisfies

(Tv,w)g, = (v, T*w)y, for allv € Hy,w € Hy

Then the kernel of T™ is equal to the orthogonal complement of the image of T'. In
symbols, we have T(H,)* = ker(T™).

Proof. Let w € Hy. Then
w € ker(T*) iff (v, T*w)y, = 0 for all v € Hy iff (Tv,w)y, =0 for all v € Hy iff w € T(H,)" .
i
We now show that the maps in/nr1 @ Se(Do(N/M),¥y) = Sp(Fo(N), V) and
pnnm  Sk(To(N), O4) — Se(Lo(N/M), Oy) given by

1
pynm(f) = [Co(N/M) : T'o(N)] aero(N)\ZFo(N/M)f’k@

are adjoint with respect to the following normalization of the Petersson inner
product. For a congruence subgroup I' C SLy(Z), define the inner product on the
space Si(I',9) by

1 —— pdxdy

f(2)g(2)y

o @ 7
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where Fr is a fundamental domain for I'. In our case, let Fy s be a fundamental
domain for I'o(N/M) and note that a fundamental domain for Fy is given by

J—"N = |_| afN/M
a€Tlo(N)\T'o(N/M)
Then

(tn/n,1(9), Fivevy = [SLQ(Z) o ]/ 9T )ykda:dy

B 1 dx dy
- [SLa(Z) : To(N)] 2 Y’

@€l (N)\To(N/M) afN/M
1

- [SLa(Z) : To(N)] | 5 v

1 1
~ [SLa(Z) : To(N/M)] [To(N/M) = To(N)]

pdx dy
/ bl Tl

—— dxdy
| sl
a€To(N)\Lo(N/M) ¥ FN/M Yy
1 pdx dy

= BT T/ /IN/M 9(z) pnnm (f)(2)y i (9, PN/ (f))ro(vyan)-

Therefore, iy/1,1 and py n/ar are adjoint and the exercise follows by the proposition

above. &
Example 5.2.14. It turns out that S%(I(2),7) = {0}. In particular, we find
that

S12(T0(2), Vi) = (t1,1(A), 12(A)).

Note that these are eigenfunctions of all Hecke operators T, with 2 f n. Let us

compute the action of
Tfe) =y {f (5)+7 (z . 1)}

on these functions. It is easy to see that Tht1 2(A) = ¢11(A). To compute its action
on ¢11(A) we recall the Fourier expansions

t11(A)(2) =1-e(z) —24-e(22) +252 - e(3z) — 1472 - e(42) + ... and
t12(A)(2) =0-e(z)+1-e(22) +0-e(32) — 24 - e(4z2) +

We compute

Tona(A)(2) = 216C) + ACED] = 3 r(an)em2)

= —2de(z) — 1472¢(22) — 6048e(3z) + 84480 - e(42) + .. ..
By comparing (the first two) Fourier coefficients we find that
T2L171(A) (Z) = —24L171(A) (Z) — 2048 - LLQ(A) (Z)
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In summary, the action of Ty on S12(T'g(2), ¥4, ) (with respect to the basis {t11(A), t12(A)}
is given by the matrix
—24 1
—2048 0)°

This turns out to be diagonalizable (over C).

Our hope is that the space SIE(FO(N ), X) has a convenient basis. Furthermore,
it is reasonable to expect that the spaces S%(T'o(N'),x) can be used to study
S»(To(N), x). The following theorem is the technical key input.

Theorem 5.2.15 (Atkin-Lehner 1970). Let f(z) = > >_, af(m;o00)e(mz) € Sp(To(N), x)

m=1

such that af(m;o0) = 0 whenever (m, N) = 1, then f € S;(To(N), x).

Proof. Long and technical, but essentially elementary. We sketch the steps, but
leave out several technical details.

Let p1,...,p, be the prime divisors of N. We say that f is of length s, if
ap(m;o00) = 0 unless p; | m for some 1 < i < s. We will show the following
statement, which allows one to complete the argument via induction. Suppose
f € Si(To(N),x) is of length < s, then there is h € Si(To(N/ps), x) such that
= tn/pyp.his of length < s — 1.

We define the two operators

Vof(z) = f(pz) and U, f(2) = Z ag(m; oo)e(%z)

m=0 mod p

(Note that in some sense V,, = ty,.) We observe that

VUpfl(z) = Y as(m;o0)e(mz).
m=0 mod p
In particular the condition that f is of length < s can be written as

S

0= L6~ v;0,)s.

i=1

We first look at the situation when y is not defined modulo V, /ps. Then we claim
that V,U,f = 0. Put f = U, f and observe that f|,7 = f. In particular we see

that V,, f(z + Il?) — V,.f(2). We abuse notation and write V,_f(z + ]—1)) =V,.f N

where T% = ((1) 1{]0)' On the other hand

11
By = (N N+1) € To(N).
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Thus V,, f|x By =V, f since x(By) = 1. Set

Ps DPs

Ps

AN(U’U):TPBN”:< N 1+ Xy + N

so that ) ) )
Note that here we select u,v € Z with ps | (u + v + Nuv/ps). The point is that
one can play around with u and v to cook up a combination with x(Ax(u,v)) # 1,

which implies that f must vanish.*> In conclusion, if we suppose that y is not
defined modulo N/p, we find that

s s—1
0 = [J6d - v,0,)f = [ld - v,u,)r.
i=1 i=1
We conclude that f is itself of length < s — 1 and we are done.
The case when p? | N and y is defined modulo N/p, can be treated as follows.
In this case we claim that

Upsf S Sk(FO(N/ps)aX) (111)

With this at hand we can put h = U, f and observe that V,, U, f = tn/p,h. Thus

we have
s s—1

0=[JGd=v,0,)f = [JGd = V,Up)If = ]
i=1 i=1
In particular we see that f — tn/p, p,h has length < s —1 as desired. To see (111)
we (again) observe that

Now put f(z) = f(p;'z). It is easy to check that f € S,(o(N/ps, ps), x) where

¥/ = { (1 0) € Taln): 0.

Now U, f(z) = % P [f1xT?)(2). But we can check that for p, | N/p, one has

p—1

To(N/ps) = || To(N/ps, p)T".
b=0

Thus the claim is now obvious since we average over a system of representatives

for To(N/ps, ps)\Lo(N/ps).

45Finding these combinations of u and v is not to hard and we leave it as an exercise to do
so. This crucially uses that x is not defined modulo N/p;.
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Finally we suppose that p, | N, p?{ N and y is defined modulo N/p,. Without
loss of generality we can assume that all primes pq, ..., ps have these properties.
(Otherwise we simply re-order them and apply one of the earlier cases.) We set

%

PO+ — H(id —V,,Up,)f and g; = U, f9.

j=1
Note that f =7, V,,9p,- One can check that
V,.9i € Sk(To(Npy---pi)) € Sk(To(N?/ps), x) for i < s.

In particular,
s—1

Voeds = f =Y Vp.0i € SeLo(N?/ps), X)-

i=1
This suffices to conclude that g, € Si(To(N?/p?), x). As before we write

1 ps—1

Uy, f1(2) = o Y _[FIT](2) with f(2) = f(=/p,)-

5 b=0

Recall that f(z) € Sp(To(N/ps,ps), x). Since by assumption p, ¥ N/p, we now
have

-1
DsT 1 Ps
To(N/ps) = Lo(N/ps, ps) (N_2y 1) U || To(N/pa, pa) T,
v b=0
:QGSLQ(Z)

for suitable x,y € Z. We can thus write

1 ~ 1 -
U 1) = - > Tkl () = (71 Q)(z)
7% a€lo(N/paps)\Lo(N/p:) S
—h(z)€54(To(N/p) X) 1)
Since g, € Sk(To(N?/p?),x) and Q € T'o(N?/p?) we have
1

1
va;)gs = p_sgs‘kQ = p_sgs

We now compute

h=Up f+Wof = [UpVpgi + W, Vp.0]
=1

s—1

1
=(1+ ]_j)gs + Z[VpiUpsgi + Wp, V93]
i=1
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Finally this allows us to write
1 . 1 » s—1
5 i=1
It turns out that the right hand side is of length s — 1. (This is particularly easy
to see for the case s = 1.) i

Theorem 5.2.16 (Multiplicity One). Let 0 # f(z) € SHTo(N), x) be an eigen-
function of all Hecke-operators T,, with (n, N) = 1. Then we have
(1) af(1;00) # 0.
(2) If g € SLTo(N), x) is another eigenfunction of all Hecke-operators T,, with
(n,N) = 1. Suppose that Af(n) = A\,(n) for all (n,N) =1, then g € Cf.
(Here T,,f = A¢(n)f and T,,g = A\;(n)g.)
(3) [ is automatically an eigenfunction of all Hecke eigenvalues. (Also of those
with (n, N) > 1/)
(4) We can normalize f so that ay(1,00) = 1, then we have ay(m,00) = As(m)
for all m € N. In particular, the Fourier coefficents of f at infinity are
multiplicative.

Proof. We start by observing that if ay(1,00) = 0, then by Lemma 5.2.10 we
have ay(m,o00) = 0 for all (m,N) = 1. Applying the previous theorem yields
f € S2(To(N),x). This is a contradiction.

Thus from now on we can assume as(1,00) = 1 so that as(m,o0) = A\s(m) for
(m,N) = 1. Let g be as in (2). Without loss of generality we can assume that
ay(1,00) = 1 as well. We observe then that the mth Fourier coefficient of f — g
vanish for (m, N) = 1. Thus we have f — g € S;(I'o(N), x). But this is another
contradiction.

Let T,, be any Hecke operator with n € N. We put g = T,,f € Sk(I'o(N), x).
Our goal is to show that g is a multiple of f (i.e. f is an eigenform of 7},.) Since
the Hecke operators commute we have T,,g = As(m)g for all (m, N) = 1. We write

= gt + ¢ for g* € SLTH(N),x) and ¢ € S2(Io(N), x). We first observe that
T,.g* = A\s(n)g, so that g € Cf. Tt remains to be seen that ¢” = 0. By definition
of the old- space and an inductive argument we can write

Z Z LN M hN’ fOI' hN’M S Sﬁ(ro(N/> )

g|N'|N, M|N/N'
N'#N

The hy ar are eigenfunctions of all 7,,, with (m, N) = 1. Note that they all have
the same Hecke-eigenvalues, namely A;(m) (for (m,N) = 1). Suppose there is
hniar # 0, then we find a # 0 so that hyiy — af € Si(To(N),x). But this
implies

f = —()é_l(hN/7M — Oéf) + Oé_lh € SZ(N, X),
which is a contradiction. &
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Definition 5.2.2. If f € S%(I4(N), x) is an eigenfunction of all Hecke-operators
and af(1,00) = 1, then we call f a newform.

Remark 5.2.17. The newforms form an orthogonal basis of Si(I'o(N),x). Note
that the definition includes the so called arithmetic normalization as(1,00) =
1. Another natural normalization would be (f, f) = 1. This is the analytic
normalization. Passing between the two normalizations is possible using the so
called Rankin-Selberg method and the scaling factor involved turns out to be a
rather interesting number associated to f.

Let us get back to (what we claimed to be) Hecke’s motivation. Given a Dirichlet
character £ modulo M and f € M(T'o(IV), x) we associate the twisted L-function

Zé‘ n)as(n;o0) - n —ios,

If f € Sp(Io(N),x), then this is absolutely convergent for Re(s) > 5/4. Indeed,
recall that by Theorem 4.2.2 we have'®

|L(s, f£|<0ern4 (e te,

(With a bit more care or by using (91) which is known in the case under consid-
eration this can be improved to show absolute convergence for Re(s) > 1.)

Lemma 5.2.18. Suppose f is an eigenfunction of all Hecke operators, then we
have

L(s, £,€) = ag(1;00) - TT (1= €@ o= + X)) ™) B

P
in the region of absolute convergence.
Proof. First, we recall that by Lemma 5.2.10 we have af(n;00) = Af(n)as(1;00).

Since the Hecke—operators are multiplicative the fundamental theorem of arith-
metic implies that

L(s, f,&) = ag(1;00) - [ <Z[§(p)p_s]k/\f(pk)>

p  \k=0
Finally, the result follows by inductively using the recursion T+ = T, T —
X(p)p" ' T-1 given in (109). D

In particular, if f € Sp(I'o(N), x) is a newform, then the associated (twisted)
L-function will have a nice Euler product involving only the Hecke eigenvalues

46Note that the statement of Theorem 4.2.2 does not directly apply to the situation at hand,
but the same argument gives the desired result.
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Ar(p) and the values of the characters { and y on primes. We will see now that
more is true.

Remark 5.2.19. We write L(s, f) = L(s, f, 1), where we wrote 1 for the principal
charter modulo 1. We also define

€ fl(z Zf n)as(n; o).

Thus we can write
L(s, f,§) = L(s,£ @ [).

If f e Sp(Th(N),x) is a newform and & is a primitive character modulo M with
(M,N) =1, then £ ® f is a scalar multiple of a newform in Si(To(M2N), x&?).
This statement is slightly stronger than what will be needed below, so that we
leave the proof as an exercise.

Proposition 5.2.20. Let f € Si(I'g(N),x) and let & be a primitive Dirichlet
character modulo M with (M, N) = 1. Define

k-1 k —
A5, £,6) = (em) 2T (L 4 5)Ls, £,0)
We have

Als. £.6) = Fe O T (v ea (1 = 5.9, 671,

Here g = N§f|kwN with wy = (][3[ _01>

Proof. We first note that f|ywy € Sk(To(N),x '). To see this one notes that
wy normalizes To(N). A direct computation shows the correct transformation
behavior:

flewnley = flrwyvywy vwn = x(7) 7 flrwn-

For notational simplicity we write g = f|rwy.
We start from the identity

me(nz) = LEE S eyt

wana
Thus
o 16 = S5 S ) haante) with s = (4 1)
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This allows us to compute

€ fllawnen(z) = (00 (€ Nl (3 75)]
e = fan (S o) (8 ) (0 )] e

e, 2 o (G ) (03]

where 7 = r(z) and s = s(x) are integers with Ms — rNxz = 1. Note that
E(x)™! = &(=N)E(r). Further we have

gl (_]\]\4,35 _ST) =x(D)g.

Thus we get
E(N)T(6) D r
£ k() = XD J T P ) 0 (0 5)] @
(r,M)=1

_oN—Ear—k _ 7(€) (o1

= N EMDIE-N) T @)

_ 7(£)? -1 5

= (DNl 1)

The triviality [£ @ f] = [(€ @ f)lswmezn]lpwypy vields

‘ e T(€)? . i
€ A1) = Fr D) e 0dl () (1)

We now compute

h ) %“@—m n)as(n; oo Ooenz L — A(s
|t nliny' =Y = 3 cmasimioc) [ etna)y T < A, £9)

n=1
Note that this integral is convergent for all s, because f is a cusp form. Thus, it
defines an analytic function. To see the functional equation we use (112) to get

Mo 1.6) = DM T [T ) (s, ) v 5

N5 M1+k Y
_ sk 2 %stg)Q Z et : %ﬁg@
= D)MW TR [Tle @ gl i)y T

- z”“X(D)g(N)(NM2)5S%§)2A(3, 9:€7"):
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There is much more to the theory of (integral weight) Hecke Operators than
what we can discuss here. Other important results are for example:

e (Strong Multiplicity One) Let f € Sp(I'o(N1), x1) and g € Si(Io(Na), x2)
be newforms. (In particular f and g are eigenfunctions of all Hecke opera-
tors.) Suppose there is M € N such that A¢(n) = A\,(n) for all (n, M) = 1.
Then Ny = Ns, x1 = x2 and f = g.

e We have the decomposition

ST =@ @ v dl e

aAIN'IN fesi (To(N).x),
newform
where y is a Dirichlet character modulo N of conductor q.
e (Weil’'s Converse Theorem 1967) Let R be a set of integers with 1 € R so
that for every (a,c) = 1 there is r € R with » = a mod ¢. Suppose that
(an)nen and (b, )nen are polynomial bounded sequences such that

7_['_8
n=1 n 2

Mo (o), )= (2) 7T ) S S

I AU N e S UL gL

;:A(l—s‘,zbn),gil)

for every primitive Dirichlet character & modulo r with » € R. Further as-
sume that A(s, (a,), &) and A(s, (b,), 1) are entire and bounded in vertical
strips. Then

oo

Z e(nz) € Sg(I'o(N), x) and g(z Zb e(nz) N§f|kwN.

5.3. Hecke Operators for Half Integral weight. We define GG to be the set of

pairs (7, ¢), where v € GL3 (Q) and ¢: H — C is a holomorphic function satisfying

2 __ cz+d
o(z)" = £ )" We turn G into a group by introducing the product

(o, 9)(B,¢) = (af, z = ¢(B2)Y(2)).

It is easy to see that G is really a group and one has the short exact sequence
1= u—G—GLy(Q) =1,
where p4 is the group of fourth roots of unity. For k € N we define the action

[lir2(g, 9))(2) = ()" £ (92)
of (g,¢) € G on functions f: H — C.
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Throughout this section £ € N will be odd, so that k/2 is not an integer. Recall
that the basic theta multiplier 95, for weight 1 can be obtained by

I (V)Vez +d = 0(vz2)/0(2),

where v € Ty(4) and 0(z) = >_
explicitly we have

mez €(m?z) is the standard theta function. More

000 = (§) e o= (& 1) T
Remark 5.3.1. Note that for A € SPy, with odd k we have 2 | det(A), so that in
particular 2 | N4. Furthermore we have seen in Theorem 3.0.13 that
b10,(2) € Mg(FO(QNA),ﬁth).
Here the multiplier system v, depends on A and we have

o) = (S5

We cover these spaces when we consider more generally My (Co(N), x-(92,)F) where
4 | N and x is a Dirichlet character modulo N.

Given a congruence subgroup I' = I'o(N) C I'g(4) we define its lift T to G by
setting

' ={5:=(y,2 = 93(7) - Vez +d): v €T}
The transformation behaviour of f € M 5 (Co(N), x - (93)F) can be rephrased as

[flk27)(2) = X(d) f (2) for all 7 € To(N).

One can now get to work and use this framework to implement an action of the

Hecke Algebra H(To(N)™, Ay) for a suitable semigroup Ay. We will be more
concrete and consider only the necessary double co-sets in what follows.

Lemma 5.3.2. Take £ = (a,¢) € G and put A = a 'TaNT. (Recall that A has
finite index in T'.) There is v, € T so that v = a *yya € A. Then we have

(1) 7 and £714,€ differ by an element (1,t) € G with t = t(y) € 4.

(2) The map v +— t(7y) is a homomorphism from A to py, that does not depend

on ¢.
(3) For (n,N) =1 and a = diag(1,n) we have

() = (5) for = (‘C‘ 2) €A

Proof. See the exercise below. it
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Exercise 2, Sheet 10: We define G to be the set of pairs (v, ¢), where v €
GL$ (Q) and ¢ : H — C is a holomorphic function satisfying ¢(z)? = 42X

Vdet(7)

We turn G into a group by introducing the product
(@, 9)(B,¢) = (af,z = ¢(B2)1(2)) (113)

a) Check that G is a group and show that we have a short exact sequence

1 > Ly » G » GLy (Q) —— 1

Given a congruence subgroup I' = T'o(N) C Ty(4) we define its lift T*" to G by
setting

M= {5 := (v, 2= 9, (V)Vez +d) -y €T}
Take ¢ = (a, ¢) € G and put A := o 'TaNT (recall that A has finite index in T').
For any v € A there is v, € T so that v = a~1va.

b) Show that 7 and 719 differ by an element (1,¢) € G with t = t(7) € ua.
c¢) Show that the map v +— (7) is a homomorphism from I" to p4, that does

not depend on ¢.
d) For (n,N) =1 and a = diag(1,n) we have

1) = (5) for v = (‘CL Z) €T

Solution. Clearly (I, consty) is a unit for the operation. Given («,¢) € G, its
inverse is given by (a™!, ¢(a~!-)7!). This element is in G since

1

12 JalaTiz) Ja=1(2) B
Plaz)” = j:\/det(Oz) = ( det(a—1)>

where we used the cocycle identity jos(2) = jo(82)js(z) for f = a~!. To check
associativity, we compute

(@, 9)(B,9)) (v, €) = (B, 6(B)9 () (7, Q) = (@B, d(By )¢ (7)¢(-))

and similarly

(@, @) ((8,9)(7,€)) = (e, @) (B, (7)¢()) = (@B, d(B7) e (v-)C(-))-

To obtain the exact sequence, note that («, ¢) — « is clearly a group homomor-
phism of G into GL3 (Q). To see surjectivity, let v € GLJ (Q) arbitrary and note
that H is simply connected, so that any non vanishing holomorphic function has a

square root. In particular, this holds for z ’g—(:()), and we can find ¢ holomor-
et(y
phic on H such that ¢(z)? = 1) showing that (7,¢) € G. That the kernel

det(7)
of the map is isomorphic to puy is clear, since the kernel consists of all functions ¢

such that ¢?(z) = £1, equivalently ¢*(z) = 1, and since H is connected, it must
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be that ¢ equals everywhere a fixed fourth root of unity.

After '™ has been introduced, first note that v — 7 is a group homomorphism
from I' to I'™". Indeed, one checks immediately that

/ 1/2)

T1Y2 = (M2, 2 = 95, (1) 950 (12) s (122) 2 (2)
= (M2, 2 — 793h(7172)j71’72<z)1/2)'

The last equality follows from the fact that 93, is a multiplier system of weight
1/2 for Ty(4). To obtain part b), note that the image of ¥ and £'4:€ to GL; (Q)
agree. By the exact sequence above, it must be that 7 = t£~14,£ for some t € juy.
It is very important to observe that uy C Z(G), the centre of G. Indeed, for any
constant ¢ € {1, +i} we have

(127 c)(a, (b) = (Oé, C¢> = (Oé, ¢)(127 C)'
In particular, this shows that it doesn’t matter whether we write ¥ = t£~19,£ or

¥ = &gt

If ¢ is replaced by ¢’ such that both £ = (a, ¢) and £ = (o, ¢') are in G, the
exact sequence above implies that & = t¢£ for some t¢ € py. Since py is central in
G, we deduce that

()7 =Mt = L
Therefore, t(v) does not depend on ¢. Finally, to show that v — t(v) it is a

homomorphism from A to puy, let 7,0 € A, with ~q, 0; defined as above. Note that
(70)1 = 7161, since conjugation is an homomorphism. By definition,

¥ =t(y)¢ € and 5 = t(d)ﬁfl(if-

We have % = 'vvg, and also 7,07 = (7d); and thus also %(i = 7/1\/51 = (7d)1, and
since yu4 is central in G, we arrive at

78 = t)HE)E (1O)€

which proves part ¢). Finally, for part d), since j,(z) = n and /det(a) = \/n, we
can choose & = (a,n'/*). We calculate at once that A := a™'Ty(N)aNTy(N) =
['(N,n), which is defined as

['(N,n) := {(]36 TZlb) | a,b,¢,d € Z and ad — nNbc = 1}.

For v € A, we have

[ a nb B [ a D
v = (Nc d > and then 7, = aya™" = (Nnc d)
We obtain

E9E = (a1, 2 = YR (1) (2)V2) (a0 = (@7 T 2 - 9, (1) s (2)2).
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On the other hand

7= (12 = 05,15y (2)1?).
Since az = z/n, it follows that j, (az) = Nncz/n+d = Ncz +d = j,(2).
Therefore, t(v) = 9, (7)05,(71) 7" Since 95, (7) = (5€) &4 and 95 (11) = (F< )ed,

we deduce that .
1) = (%)

as desired. i
For f € My/2(To(N), x - (93,)%) and (n, N) = 1 we put

() )

The action of the double co-set generated by &, acts on f by
~ k_ -
T f(z) = ni [f|To(N)ETo(N) =ni- ZX ()™ |§ai](2)v

where

( )thgnr() |_| FO th ~z

Theorem 5.3.3. For (n, N) =1 and n not a perfect square, we have Tn =0.

Proof. Put a = diag(1,n), A = o 'To(N)aNTo(N) and let t: A — py be the map
from lemma 5.3.2. Further let K = ker(t) and A = & 1To(N)™E, N To(N)™. We
claim that K™ = A:
e D: Take = £, '41&, € A. Then v = a 'y € A and (1, (7)) = &1
by definition of #(vy). This implies #(y) = 1 as desired.
e C: For v € K C A we clearly have ¥ = £, 'y,§, € A.

From here we observe that K = A if and only if ¢ is trivial if and only if n is a
perfect square. Thus, if n is not a perfect square, then A = K™ has index two in
A" Thus we can write

AP = AUAF for 7 = €76, - (1, —1), and 7 € Ty(N).

Furthermore, if we choose representatives ; for A\I'g(N), then we have
= | Ay 0] A7
J J
so that
FO(N>th€nF0(N)th = |_| ( thgn% U |_| I‘0 §n7'7j
J
1)

Since k is odd we have ka/g(l, —1) =—f. We eonclude the proof by observing

that ~ ~
Tliy26nv = = fliy26n?;-
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Analogously to the integral case it can be seen that the operators fpz for primes
(p, N) = 1 commute and generate the algebra

<fp2: (p,N) =1, prime)c = (Tp2: (n, N) =1, n € N)¢.

As in the integral case we can express the action of 7T)2 on a modular form in
terms of Fourier coefficients:

Proposition 5.3.4. Let f € Mx(To(N), x - (93,)%). Then we have

n

-1z n\ ks _
L) p'7 ap(n; 00)+0,2x (P2)p" 2af(Z§;OO),

a7, 1(n; 00) = ag(p’n; 00)+x(p) <
for (p, N) = 1.

Proof. The argument is more involved than in the integral weight case and we omit
the proof. i

Corollary 5.3.5. Let f € Mk (Co(N), x - (93)F) be an eigenfunction of Tvpz with
eigenvalue \;(p*). Suppose p J( N and p*{t m. Then we have

ko1
- 1-x(p) (—(_1)p2 m) pTX
g ay(mp*;00) X" = ap(m; oa) - 5 e (114)
= 1= X (P*)X + x(p?*)pF2X

Proof. Using the result above we can compare Fourier Coefficients of fpz f =

A (p?)f to deduce

A (pPag(m; 00) = ag(mp?; 00) +p' 7 x(p) (#) ayg(m;oo) and

k—
Ar(PP)ag(mp; 00) = ap(mp* ™V 00) +p' 2 x(p) <(

+ "2 x () ay (mp"Y; 00).

Now the claimed result can be seen easily by multiplying both sides of (114) with
1—X(pH)X + x(p?)p"~2X? and comparing coefficients. i

Remark 5.3.6. It is a remarkable theorem due to G. Shimura (1973) that for f €
S%(FO(N),X - (92,)%) such that szf = A(p?)f for all primes p there is Sf €
M (To(N/2), x?) such that T,Sf = A;(p®)Sf for all primes p. Even more, If
k > 5, then Sf is a cusp form. Note that one can relax the statement to apply to
eigenforms of almost all Hecke Operators.
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As usual Hecke operators that interfere with the level behave slightly different.
It turns out that, if p | NV, then

aTPQf(n; ) = as(p*n).
Furthermore, if 4p | N, then we can define an operator
T My (Do(N), x - (95,)%) = M (To(N), xpx - (95,))
by

~ (e z+]
Tf) =p 'Y f ( ) |
j=0 b
One checks that ag ((n;00) = ay(pn; 00). We also define the shift operator

Vof(2) = f(pz).
This operator maps M (To(N), x - (92,)F) to Mg(FO(Np), XXp - (92,)F), where x,
is the unique quadratic character of conductor p.

It is again an interesting question to see if one can find a basis of eigenfunctions
for all T,» with p f N. For the subspace of cusp forms one can run the same
argument as in the integral weight case using the Petersson inner product. On the
other hand (at least for % > 2) the complement can be understood using Eisenstein
series.

However for weight % there is a particularly nice argument, which we will now
sketch.

Lemma 5.3.7. There is a basis of M%(FO(N), X -9, consisting of eigenforms for
all the T2 with p{ N.

Proof. For weight % it turns out that the Petersson inner product

—_— 3

(f.9) = /F o PIC m(z) Rz

is defined for f, g € M% (To(N), x-93,).*" Since the Hecke operators sz for (p, N) =
1 still satisfy

(T2 f,9) = X0 f, T,eq),

we can diagonalize the full space at once (without considering Eisenstein series
separately). it

Lemma 5.3.8. Let f € M%(FO(N),X -1%,) be non-zero and let p be a prime not
dividing N. Suppose that fpzf = N\ (p?)f. For m € N with p* t m we have

m

(1) af(mp?rz; QQ) = af(m, OO)X(p)” (;>n fOT’ every n > 0.

4TThis was observed by Deligne and is a numerical coincidence.
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(2) We have A (%) = x(p) (2) (1 +p7Y),

Proof. We will use the following two facts:
(1) There is a basis for Mk (To(N), x - (93,)%) of forms with Fourier coefficients
in some number field. -
(2) If f € Mg(FO(N), X - (93,)%) and the Fourier coefficients as(n;oc0) are alge-
braic numbers, then they have bounded denominators.
By the first point we can assume that the Fourier Coefficients of f are algebraic.

Puta::x(p)(%)zf*,ﬂ%—7==kf@9)and/%y==x(pﬂp‘3 Then, by (114) we get

o0

AX) = Zaf(mp2"; 00) X" = as(m; o)

n=0

1—aX
(1-8X)(1—~X)

For p* { m. If aj(m;o0) = 0, then ay(mp®*;00) = 0 for all n. Since f # 0 we
can assume that as(m;o0) # 0. By the first fact above we can view A(T) as
a power series with coefficients in some finite (sufficiently large) extension K, of
Q,. By the second fact the coefficients have bounded denominators, so that A(T)
converges absolutely for X in the unit disc U, of K. In particular A(T"), which
we have seen is a rational function in X can not have a pole in U,. But, since
By = x(p*)p~t € U,, one of the numbers S~ or v~! must lie in U,. Lets say
v~! € U,, then we must have o =~y such that

A(X) = ay(m;o00)(1 — BX) ™" = ay(m;o0) - Y B"X".

By comparing coefficients we find that a;(mp®"; 00) = "ay(m;00). It is easy to
see that 8 = x(p) (%) We conclude that

m

astmgso0) = () astons o). (115)

We deduce that A\¢(p?) = 8+~ =a+ 3 = x(p) (%) (1+p'). Tt is also easy to
see now that if a;(m;00) # 0, then p{m so that A;(p?) # 0. i

The theory of newforms turns out to be difficult and not as satisfying as in the
integral weight case. Nonetheless there are some interesting aspects to it.

Definition 5.3.1. Let f € Mg(FO(N), x - (92,)%) be an eigenfunction of almost all

operators sz. We say that f is an oldform if there exists a prime p | % such that
(exactly) one of the following holds:

e X is defined modulo N/p and f € Mg(FO(N/p),X- (92,)%);

® X - X, is definable modulo N/p and f = V,g with ¢g € Mg(Fo(N/p),xxp :

(05)").
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The space spanned by all oldforms will be denoted by M: (Io(N), x - (95,)F). If
2

f & M, (To(N),x - (92,)F) is an eigenfunction of almost all Hecke Operators sz,

then f is said to be a newform.*

It is not difficult (but technical) to prove the following statements:
o If h € M3 (T'o(N),x - (92,)F) is non-zero, then there is a divisor N’ | N,
2
a character x’ modulo N’ and a newform g € M (To(N"), X" - (93,)%) such

that h and g have the same eigenvalues for all but finitely many fpz.
o Let f e My (FO(N) - (99,)%) be non-zero so that a;(n;o00) = 0 unless

p | n. Then p| X T+ XXp is defined modulo N/p and f = V,g for some
9 € My (To(N/p), xxp - (95)")-
o Let f € Mg(FO(N),x( °)F) such that a;(n; oo) = 0 for all n with (n,m) =
1. Then we can write f as
= Z Vpp

plm,
4p|N

with g, € My (Do(N/p), XXp (95,)F). (This is comparable to Theorem 5.2.15.

In general the theory has its complications. However in the next section we will
focus on the case of weight % and see that there some interesting results can be
proven.

~—

6. FINALE: THE SERRE-STARK THEOREM

The Serre-Stark theorem gives an explicit basis for the space M 1 (Co(4N), x-9¢,)-
Among other things this allows one to explicitly compute these spaces of modular
forms.

Given t € Z we attach a character x; as follows. First, if ¢ is a perfect square,
then y; = 1 is the trivial character. Otherwise put

wm = (2),

where D is the discriminant of Q(v/%) (over Q). In particular y, is quadratic and
has conductor D.
Using Proposition 3.0.7 one can show that

0(z;&,t) Zﬁ e(tn’z) € M1 (Lo (4¢%t), xu& - 92,),

nel

48Recall that in the integral weight case a newform was assumed to be normalized so that the
first Fourier Coeflicient is 1. This is not assumed here.
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where £ is an even primitive character modulo ¢ = ¢(§). The details are left as an
Exercise.
We define the set

QN, x) = {(&,1): 49(§)*t | N and x(n) = &(n)xi(n) for all (n, N) = 1}.

We now have the following result.

Theorem 6.0.1 (Serre-Stark 1976). The theta series 0(z; &, t) with (§,t) € Q(N, x)
form a basis of My(To(N), x - 93,).

Remark 6.0.2. With a bit more work one can find a subset Q.(N, x) C Q(N, x) such
that the theta series 0(z;&,t) with (£,t) € Q.(N, x) form a basis for S%(FO(N), X)-

Even though this has man interesting implications unfortunately we have no time
to discuss this any further.

Before we can prove the theorem we to understand the structure of newforms for
weight % We start with a simple observation concerning the action of the Hecke
Operators:

Proposition 6.0.3. Let 0 # f € M%(FO(N),X -99,) and let N | D. Suppose

that f is an eigenfunction of all Hecke Operators sz with p + D. Then there is
a unique square-free integer t > 1 such that ar(n;o0) = 0 if n/t is not a square.
Furthermore we have

e t| Dy

o \(p?) = x(p) (1%) (1+p™") forpt D; and

e ap(nu?;00) = ag(n;00)x(u) (%) if (u,D) =1 and u > 0.
Proof. Suppose af(m;o00) # 0 and ag(m’oco) # 0. The by (115) we get

x(p) (%) (L+p7) =X (") = x(p) (%) (1+p7),

for all primes p f Dmm/. Thus <%) = <%) for all these primes. It is clear

that this implies that m/m’ is a square. The first part of the statement (i.e. the
existence of t) follows directly. The remaining properties are also easily derived
from the properties of ¢, mentioned below (115). i

A direct consequence of this is the following.

Corollary 6.0.4. If a;(1;00) # 0, then t = 1 and \;(p*) = x(p)(1 +p~') for
p1D.

Now let us consider a newform f € M; (To(V); xU3,)- Let t denote the unique
square-free integer ¢ > 1 such that ay(n;00) = 0 unless n/t is a square.

Lemma 6.0.5. We have ag(1;00) # 0 and t = 1.
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Proof. Suppose af(1; 00) = 0, then an argument from earlier shows that a¢(n; c0) =
0 for all (n, D) = 1. But this implies that f is an oldform, which is a contradiction.
It is clear that if af(1; 00) # 0 we must have ¢ = 1. oo

We are now in the situation to obtain a result that is familiar from the theory
of integral weight:

Lemma 6.0.6. Let g € M%(I’O(N),Xﬁ‘t’h) be an eigenfunction of all Hecke Opera-
tors TVPQ with (p, D) = 1. If \;(p*) = N\,(p?) for all pt D, then g € Cf.
Proof. The proof is left as an Exercise. it

Lemma 6.0.7. The newform f is an eigenform of fpz for every prime p. Further,
we have

- -5 —25\— _92s\—1
= ag(moo)n™ = [T = A7) - [T (- xtp™)
n=1 pIN ptN
Ifdp | N, then \s(p*) = 0.
Proof. That f is an eigenform of all fpz is clear by applying the previous Lemma

to g = sz f.
Next, we note that according to Proposition 6.0.3 we can write

S aglmoon =t [ 3 ag(n? ooy > T (1) (f)p)

n=1 n|D> ptD p

Using that ¢t = 1 as well as (115) gives the desired Euler Product.
If 4p | N we observe that

Zaf np; 0o Zaf e(n’p) = A\j(p*)Vpf(2) € M1 (To(N), xpxVgy)-

If A;(p?) # 0 one deduces f € M%(FO(N/p), xVY5,). This is a contradiction. i

We are now ready to prove the following key result:

Proposition 6.0.8. If f € M% (To(NV), xV3,) is a newform and q is the conductor
of X, then N = 4¢* and f(z) = M9(2;)(, 1).

2

Proof. Without loss of generality we assume that af(1;00) = 1. Note that the
Dirichlet series Dy(s) converges for Re(s) sufficiently large. Similarly we define

= Z ag(n)n”

n=1
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Mimicking the proof of Proposition 5.2.20 we obtain™’

(27)°T(s) Dy (s) =7 - (%ﬂ) R 1

Note that we are using that
T —\ T 1 . 1
n- 703 = [l (wn, Ni(=iz))](2).

We also obtain a meromorphic continuation. However, since f is not assumed to
be a cusp-form we may have a simple pole at % consider

L(2s,x) = Y x(n)n~>.

It is well known that this Dirichlet L-functions satisfies the functional equation

T *(5 s)
(2m)°T'(s)L(2s,x) =7’ (j_q2> F(% —8)L(1 — 2s,x71).

Taking the quotient we obtain

LX)\  L(2s,x) ' 4_q2 37 1— X (p2)p*t
};&( 1= x(p)p~* >  Ds(s) m (N) H (1 _X—l(p)p25—1> :
(116)

Here M is the product of primes where x(p) # Ay (p?).

If x(p) # 0 for p | M, then the left hand side of (116) has infinitely many poles
on the lune Re(s) = 0. But the right hand side can have at most finitely many.
Thus we have x(p) =0 for p | M (i.e. p|q). Since A\s(p) # x(p) = 0 we can write

_ 2\, —2s :Q/ 4_‘12 2 _/\f(p2) 2501 P 2
101;[4(1 A (pP)p>) n(N) p]}( P o ))-

Looking at the zeros on vertical lines one deduces that |A;(p*)|> = p. We get

%I (;?\22)%—8};[4 (-3 = 1.

In particular 4¢> = M?N. Recall that A\;(p?) = 0 for 4p | N. Thus the only
possibility is M = 1 or M = 2. Note that M = 2 can only occur if 84 N and 4 | q.
But this is a contradiction to 8 f N since 4¢> = M?N = 4N. Thus M = 1 so that
N = 4¢°.

The point of this argument was that we now obtain

Dy(s) = L(2s, ).

4INote that here the coefficients are normalized differently, so that the center of the functional
equation is slightly shifted.
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By comparing coefficients we find that f — %H(z; X, 1) is a constant. However it is
still a modular form of weight % We conclude that f — %9(2; X,1) = 0 and the
proof is complete. s

Proof of Theorem 6.0.1. We first show linear independence. Suppose we have a
linear combination

>\10<Z;£17t1) +...F )\ke(’z?gmatm) = 0

with (&,t;) € Q(N, x). Note that t; determines & and each t € Z occurs as the
second entry of at most one (£,t) € Q(N,x). Without loss of generality we can
assume that t; < ... <t, and \; #0forv=1,..., m. Looking at the ¢;th-Fourier
coefficient gives 2\; = 0. (This is because ag(.¢, +,)(t1;00) = 2.)

To see that the theta series 0(z, £, t) with (§,t) € Q(NV, x) generate the full space
is slightly harder, but we have done most of the work. By Lemma 5.3.7 it suffices
to show that every eigenfunction f of all T, with (p, N) = 1 linear combinations
of 0(z,&,t). If fis a newform we are done by Proposition 6.0.8. Thus we can
assume that f is an oldform. Here we have to consider two cases

e If x is defined modulo N/p and f belongs to M%(FO(N/p), X - 9,). In this
case we conclude by induction.
e Otherwise x - x, is defined modulo N/p and

f = Vyg for some g € My (To(N/p), XXy - 95).

By induction we can write g as a linear combination of 8(z; £, t) with (&, t)
Q(N/p, xxp). But this implies that f is a linear combination of 6(z; &, tp).

This completes the proof. if
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