TOPICS IN AUTOMORPHIC FORMS
EDGAR ASSING

ABSTRACT. Does the space of cusp forms Si(V,x) feature a basis of theta
series? We will work through Eichlers solution to this question for £ > 2 and
N square free. This will involve studying orders in quaternion algebras, theta
series and traces of Hecke operators.

1. INTRODUCTION

Historically, the main motivation for studying modular forms came from their
connnection to representation numbers of quadratic forms. Let us make this a
little more precise. Given a positive definite quadratic form in 2k variables and
integer coefficients. One is interested in understanding the numbers

a(n; Q) = t{x € Z* [n = Q(x)}.

These can be studied by forming the series’

0(z Q) = a(n; Q)e(nz).
=0
It can be shown, that there is N = N(Q) € N and a character x = x(Q) such that
0(-; Q) € Mi(N, x) is a modular form of weight k, level N and nebentypus €. The
upshot is, that the space My (N, x) is finite dimensional and one can choose a clever
basis in terms of Eisenstein series and cusp forms. Expanding (+; Q) in this basis
and comparing coefficients of the Fourier expanisons leads interesting asymptotic
and sometimes explicit formulae for the numbers a(n; Q). (See Exercise 1 for an
explicit example.) On the level of Dirichlet series this can be seen as decomposing
L(5;Q) = > ,enya(n; Q)n™° into a sum of eulerian Dirichlet series.

It is well known that the graded algebra @,., Mi(1,1d) is generated by the
Eisenstein series Fy and Es. Here -

3

—~

Bi) = 14 oS0 (n)etns)

z) = —————— % op_1(n)e(nz).

‘ #C(RO(R)

Furthermore the dimensions of the spaces M (1,1d) as well as Si(1,1d) are in
general well understood. To illustrate this let us just recall the probably most

Date: 15¢ April 2020.
'We use the common notation e(z) = €27,
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famous example Sy5(1,1d) = CA for

_ Eu(2)° — Eg(2)?
1728

A(z) = 7(n)e(nz) = e(z) — 24e(2z) + 252¢(32) + . ...

n>0

On the other hand Hecke [4, Satz 46] showed that there is a harmonic polynomial
Py of degree 8, such that

0(z; Ps,Qs) = A(z). (1)

Here

1o (< ’
@8=§;x3+§(;@) s

and 0(z; Py, Qg) is a generalised theta series associated to Qg with weights Ps. We
will discuss such theta series in more details in Section 3 below.

This still begs the question if any other modular form of given weight, level and
nebentypus can be decomposed into theta series and if so, which class of theta
series needs to be considered. More precisely one can ask which spaces Si(IV, x)
have a basis of generalised theta series and how such a basis can be parametrised.
If Si(N,x) does not feature a basis in terms of theta series, one can further ask
which parts of the space fail to be spanned by theta series and how they can be
broken down into pieces that are better understood.

This circle of ideas is sometimes referred to as the basis problem and can be
viewed as a predecessor of the Jacquet-Langlands correspondence. Our objective in
this course is to reproduce Eichler’s solution to the basis problem in case of square
free level. Let us conclude this introduction by giving a brief historic overview.

e In [4] Hecke made the following 2 conjectures, which can be viewed as the
beginning of the basis saga.

(1) There is an explicit basis for Ss(p, Id) obtained from theta series. More
precisely quaternionic theta series attached to a maximal order in the
quaternion algebra with discriminant p.

(2) The action of the Hecke-operators T,, for (n,p) = 1 on the space of
theta series is given by a matrix which can be arithmetically defined
given the maximal order.

e In [1] Brandt constructs certain matrices, the so called Brandt matrices,
associated to maximal orders in quaternion algebras. It will turn out that
these are the matrices foreseen by Hecke in the second point above.

e In [2] Eichler proves the (slightly modified) first part of Hecke’s conjecture.

e In [3] Eichler used generalised theta series and Brandt matrices associated
to so called Eichler orders (these are not necessarily maximal) to solve
the basis problem for Si(N,Id) where N is square-free. (Note that Hecke
already used these generalised theta series to represent A as described
above. Further Hecke tested his conjecture for Sg(p) with p+ 1 | 24.)



TOPICS IN AUTOMORPHIC FORMS 3

e For non square-free level or non-trivial nebentypus the story becomes more
complicated. A complete solution to the basis problem in full generality
has been achieved in [5].

Remark 1.1. The fact that a space of modular forms can be spanned by theta
functions is a nice insight but not the core of the matter. It is the second part
of Hecke’s conjecture that is essential. This is because it provides a way of con-
structing Hecke eigenfunctions on the level of quadratic forms. Exercise 2 should
illustrate this.

Exercise 1. Let Q(x) = @7 + 23 + 23 + 2] and set o4(n) = 3, d°. Show the
identity

a(n; Q) =8 <01(n) — d4pndoy (%)) ,

originally due to Jacobi, and deduce a(n;Q) > 1 for all n > 1, which is La-
grange’s celebrated four square theorem. Here one can use 6(-; Q) € M(4,1d) and
My(4,1d) = (P —4P(4-),P — 2P(2"))c, for

P(z) =1-24) o1(n)e(nz).

Proof. Set Py = P —2P(2-) and P, = P — 4P(4-). It is easy to compute the
following table:

[ a(n;Q) [ap,(n) [ar,(n)]
o 1 | -1 | -3
S | —24 | —u

| =

Next we make the ansatz 0(z; Q) = aP, + bPy, getting the two linear equations

a—l—b——% and a + 3b = —1.

The solution is a =0, b = —%, so that
- 1 = n
Z a(n; Q)e(nz) = 0(z;Q) = —§P4 =1+8 Z[al (n) — 4(54‘710'1(1)]6(712).
n=0 n=1
Comparing coefficients completes this exercise. O

Remark 1.2. Let @) be the sum of four squares. Then the result in the previous
exercise implies

L(s;Q) =Y a(n;Qn™ =8 [on(n) - 454‘,101(%)]71*8

= 8(1 —47)¢(s)¢(1 — 5).

Exercise 2. Show that the space My (1,1d) can be spanned by theta series 6(-, Q)
for positive definite quadratic forms @ 4 in 81 variables such that det(A) = 1.
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Proof. We start by noting that, for two quadratic forms )7 and ()5, we have

0(2;Q1)0(2; Q2) = 0(2; Q1 D Q2).
The upshot is that it is enough to represent the generators of the algebra | J,.; My/(1,1d)
by theta series. In the case at hand this implies that we need to generate F, and

A.
Let Qg be as above. Then
0 7é 9(2’, Qg) € M4(1, Id) = (CE4

In particular By = C40(z; Qg).
Now note that the first Fourier coefficient of Ej5(z) is not an integer. Thus, we
must have

(9<Z; Qs D Qg P Qg) = 012E12(2> + CAA with Ca 75 0.

It is now a theorem due to Siegel, that F19(2) = gen(@sa0s@0s) (2), Where Ggen(sa0sas) (2)
is the genus theta series, which itself is a linear combination of theta series. In
particular, we can write

0(z; Qs ® Qs ® Q) — Crabgen(0s00s00Qs) (2)
Ca
and we are done. O

A:

2Even more, up to equivalence there is only one positive definite quadratic form with deter-
minant 1 in 8 variables and one can show that a(n;Qg) = 240 - o3(n). In 16 variables there
is more than one equivalence class of positive definite quadratic forms of determinant 1. How-
ever, the space of modular forms of weight 8 and level 1 is still one dimensional. In particular
0(z; Qs & Qg) = CsEs, more precisely a(n; Qs ® Qs) = 480 - o7(n).
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2. A CRASH COURSE IN MODULAR FORMS

2.1. Some basic hyperbolic geometry. The group GLy(R) acts on C U {o0}
via Mobius transformations

az+b
cz+d

sz = forzGCandg-oo:g.
c

Here g = (CCL Z) € GLy(R). One checks, that Im(g-2) = %. In particular,

we observe that SLy(R) and more generally GLJ (R) preserve the upper half plane
H={:=z+iyecCly >0}
and its closure H = HUR U {oo}. Given f: H — C we define
[flk0)(2) = det(a)t " (cz + &) * f(az).

We distinguish four types of matrices in PSLy(R). These are

e The identity 1.

e Parabolic matrices u. These are matrices with [tr(u)] = 2 and u # 1.
They are distinguished by having exactly one fixed point on R U {oo}.
Furthermore, they can be conjugated to a matrix acting by z + z + ¢ for
some ¢ € R.

e Elliptic matrices k. These are matrices satisfying |tr(k)| < 2. They have
exactly one fixed point in H and can be conjugated to an element in SOs.

e Hyperbolic matrices a. These are matrices satisfying [tra| > 2. They
have exactly two fixed points on R U {oco} and are conjugate to a matrix
acting by z — cz for some ¢ € Ry \ {1}.

These types are preserved under conjugation, so that we use the same classification
for conjugacy classes.
We say a subgroup I' C SLy(R) acts discretely on H, if

tHy el [v(A)NB# 0} < oo

for all compact sets A, B C H.

A fundamental domain F C H for I' is a set such that I'F = H and for z;, zo € F°
we have I'z; N T'zy = (). The fundamental domains we encounter can and will be
chosen such that they are connected, simply connected and measurable.

A fixed point @ € RU {00} of a parabolic element v € T'. Is called a cusp of T'.
Two cusps are considered to be equivalent if they lie in the same I'-orbit. Often
two equivalent cusps are not further distinguished. (Convention: If we speak about
a € RU {oo} being a cusp of I' we mean exactly the point a. However when we
use a to denote a cusp of I we are talking about a full equivalence class of cusps.)
A scaling matrix o € SLy(R) for a cusp x is a matrix satisfying oz = oc.
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Important examples for such subgroups are

To(N) = {(‘Z g) € SLy(Z) ’ N | c}.

These are finite index subgroups of SLy(Z). Indeed the index is given by

[SLa(Z): To(N)] = N [ J(1 + 219).
pIN

Furthermore a set of inequivalent cusps is given by

N
C(N) = {E: v | N, (u,v) =1, v mod (v,—)}.
v v
Given a cusp z and a corresponding scaling matrix o € SLy(Z) there is h = h(z) €
N, called the width of the cusp z, such that

oTo(N)po " = {j: (é h1”> ne Z} |

Note that the width ~ depends only on the equivalence class of x and is independent
of the choice of the scaling matrix. One can check that for x = * € C'(N) one has
h = (UQN—N) In particular, if N is square-free we have h = %

Further, let 7y = {z € H: |z| > 1, [Re(z)| < 3} be the standard fundamental
domain of SLy(Z). We can choose a fundamental domain Fy for I'y(N) by taking

a union of N [ (1 + %) suitably chosen translates of F;.

We equip H with the measure du(z) = %, which is SLy(R) invariant. Note
that -
Vol(Fy, p) = 3

So far we have introduced the hyperbolic plane via the upper half plane model.
However, sometimes it is useful to work in the Poincare disc. We set D = {w =
x+iy € C: |w| < 1}. We have a conformal equivalence given by H — D, z — p.z,

for
(1 i
P=\1 i)
The hyperbolic volume on I is given by dv(w) = —22%_ and the automorphism

(I [w]?)
group of D is given by SU(1,1)/{£1} = pSLy(R)/{£1}p L.

2.2. Fast track to Modular forms. A Dirichlet character y modulo N can be

a b
Ne d) € [h(N).

A function f: H — C is called a modular form of weight k, level N and neben-
typus ¥, if f is holomorphic on H* = H U {cusps of I'o(N)} and satisfies

P2 = x(0)(es + ) foratly = (&) € Tal).

extended to a character of I'((NV) via x(v) = x(d), for v = (
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We write My(N,x) for the set of all modular forms of weight k, level N and

nebentypus y. If f further vanishes at all cusps, then we call f a cusp form. We

write Si(N, x) for the set of all cusp forms of weight k, level N and nebentypus x.
Since ['g(/V) contains the subgroup

N(Z) = {n(:c) = <(1) ”f) :er},

we have f(z 4+ 1) = f(z). Therefore, we can expand f € My(N,x) in a Fourier
expansion at oo:
1(2) = Y agln)e(na).
n>0

Note that, if f € Si(IV, x) then af(0) = 0. Similarly, f has Fourier expansions at
any other cusp of I'y(N) and f € Sg(NV, x) if and only if the 0th Fourier coefficient
vanishes at every cusp.

There is an important family of commuting operators on the space Si(V, x).
These are the Hecke operators, which we define in an ad-hoc manner by

mAE =7 3 wed X f(),

ad=n, b mod d
(a,N)=1

As mentioned above these operators commute and satisfy the interesting relation

k—
ToTy= Y x(d)d" 'Tuy.
d|(m,n),
(d,N)=1
Furthermore, for (n, N) = 1, these operators are essentially self adjoint (with
respect to the Petersson inner product). More precisely,

(Tnf,9) = x(n)(f, Thg).

Thus we can find a basis of Si(N) consisting of joint eigenfunctions of all Hecke-
operators T,, with (n, N) = 1. Such a basis will be called Hecke eigenbasis and its
elements are referred to as Hecke eigenforms. We deonte the n-th Hecke eigenvalue
of a Hecke eigenform f by A¢(n).

We define the unramified Hecke-algebra T(N) = T, (N) to be the Z algebra
generated by {7,: (p, N) = 1}. For y = 1 we can view this as a subring of operators
acting on (holomorphic) functions I'o(N)\H — C. We can similarly consider the
Q-algebra T(N)®zQ. So far we have seen that T(/N) is a commutative semisimple
algebra and Si(N, x) is a finite dimensional T'(N)-module.

We now wish to enlarge the algebra T(N) by the ramified Hecke operators T,
for p | N. To get a satisfying theory for this larger algebra we need to take care of
some technical issues. Define the space of oldforms by

SHN,X) = ({z — f(dz): f € S(N',x) for Q| N' | NN’ # N and d | % ),
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where () is the conductor of y. In particular we can view x as a Dirichet character
modulo N’ as long as Q | N’. Further we define S%(N, x) = (S2(N, x))*. We call
elements of the latter space newforms. It is easy to check, that the Hecke-operators
respect the just defined spaces. Thus, we can choose a Hecke eigenbasis for the
space of newforms. Elements of this basis will be called Hecke newforms in all
what follows. These Hecke newforms have some remarkable properties which more
than justifies the construction made above.

Each Hecke newform satisfies a;(1) # 0, so that we usually normalise them
by requiring ay(1) = 1. Further, if two Hecke newforms f,g € S,E(N ,X) satisfy
Ar(n) = Ag(n) for all (but finitely many) (n, N) = 1, then f = g¢g. Thus, in
particular a Hecke newform f is automatically an eigenfunction of all the Hecke
operators. Including those with (n, N) # 1. Even more, we have

f(z) = M(n)e(n2).

neN

Example 2.1. Let us have a look at the space Si(37,1d). Note that, since
S5(1,1d) = {0} and 37 is a prime number we have S;(37,1d) = S(37,1d). With the
help of the LMFDB we can have a closer look. We find that dim¢ Sk(37,1d) = 2.
The normalised newforms are given by

f37.2.0.0(2) = q — 2q2 — 3q3 + 2q4 — 2q5 + 6q6 + ...,
far2.a0(2) = q+ q3 — 2q4 — q7 — 2q9 + 3q11 + ...,
where we use the standard notation ¢ = e(z). Furthermore there is exactly one

(up to normalisation) Eisenstein series of level 37, weight 2 and trivial nebentypus.
Thus one has dim¢ M»(37,1d) = 3.

Exercise 3. Compute the Fourier coefficients (at co) of the (suitably normalised)
Eisenstein series in M5(37,1d).

Proof. We start by observing that the function
P(z)=1-24 Z o1(n)e(nz) (2)
neN

is well defined for z € H and the sum converges nicely. This resembles the Fourier-
expansion of the weight k& Eisenstein series. However in the weight 2 case the
standard argument that produces modularity does not work since the sum

1 -2
5 Z (cz+d)

c,d€eZ,
(c,d)=1

is not absolutely convergent. By arguing carefully one can still show that
67 c

[Ply)(z) = P(a) = -
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b
d
modular group. However, a simple computation shows that

P37(z) = P(z) — 37- P(37z) € M(37,1d).
It is known that dim¢ M3(37,1d) = 3 and the example above shows two linearly
independent cusp forms. Thus, P3; must be the missing element. It is an Eisenstein
series because it obviously has non-vanishing constant term at oo. The Fourier
coefficients are given by

Prr(z) = =36 —24)_ |o1(n) = 37801 (52 )| en).

for all v = (Z ) € SLy(Z). Thus it does not define a modular form for the full
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3. THETA SERIES RELOADED

The goal of this section is to proof the modularity of certain generalised theta
series. The content is fairly standard. We mainly follow the exposition in [6] and
skip over several details.

Let

SPar = {A € Matogxor(Z) | A > 0, symmetric
and the diagonal entries of A are even}.
Given A € 8Py, we can write A = S'S for a real matrix S. Note that one always
has (—1)*det(A) = 0,1 mod 4. Furthermore, there is a minimal Ny € N such

that NyA~! € SPy,. This integer is called the level of A. To A € SPy, we can
associate the quadratic form

Qa(x) = %xtAx.

Let P(x) = P(x1,...,x9) be a homogeneous polynomial of degree [. We call
P, harmonic, if
AP =0.
To z € H and a solution r of the congruence
Ar=0 mod Ny

we associate the (generalised) theta series

Op.g.(z,1T) = Z P (S(n+N7'r))e (%(n + N7'r) A(n + N_lr)z) :

nezmc

We are now going to study the transformation behaviour under the action of I'y(1)
on z. Note, that this group is generated by

11 , (0 1
T_(O 1) andS—(_l O>'

(041 [TTeer) () = Ga1°Ar) B o0),

Lemma 3.1.

Proof. This follows directly form the definition of 0p, o, and the observation

(9P17QA(U r)HT]k-H) (Z) = 9P17QA (Z +1, I‘).
]

We now prove a kind of functional equation which is crucial for our further
analysis.
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Lemma 3.2.

S R(S(m +x))e (%(m+x>tA<m+x)z)

mecZ2k

ik o~k tA—1
—m‘A "'m
=3 A e (T 4 )
\/ |det iyt 2z
For | = 0 the proof is a straight forward application of Poisson summation and
the direct evaluation of the Gaussian integral. In most modern expositions one

deduces the general case by applying suitable integral operators. However, we will
follow the exposition of [3] here.

Proof. We set
P = 3 A(Sm -+ x)e (Gm o+ A0m 4 x):).

meZ2k

Since the sum converges absolute and uniformly (for fixed z € H) f determines a
continuous function with period 1 in each argument. Thus we obtain the Fourier

expansion
f(x)= ) cme(m'x) (3)

meZ2k

with coefficients

Cm = / / F(x)e(—m'x)dz; . .. dzay

_ Z/ /pl (m + x))e <%(m—|—x)tA(m+x)z—mtx)dml...dxgk

mcZ2k

:/ /Pl (Sx)e ( tsz—mX)dxl...d:pgk.

Since the integrand is holomorphic we can make the change of variables x —
27! A7'm s x and shift the contour back to the real line. Thus we obtain

= ( m'A ' mz~ / /Pl (Sx+ 2z 'S 'm)e ( tsz) dxy .. .dzoy.

By holomorphlclty in z it is enough to compute the integral for z = iy with y > 0.
We make the change of variables ,/ySx +— x, which yields

e(—im'A~ 1mz_l
Cm = T dot(S / /Pl Vyx —iS” 'me | =x'x ) dx, ... dwy.

Using the spectral theory of the Laplacian on the unit sphere we can expand

P(y/yx —iS™'m) = (=)' P(S7'm) + ) beQ(x

deg(Q)>0
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in harmonic polynomials (), which are orthogonal with respect to integration over
the unit sphere. We now switch to polar coordinates. Note that by orthogonality
we have

Q(x)dx =0
S2k
for all @ with deg(Q) > 0. We arrive at

k—h-l 1 o
Cm = VOI(S%)Z(i;w@(—émtA_lmz_l)B(S_tm)/O e ™ 2,

Inserting this formula for the Fourier coefficients in (3) completes the proof. O

Corollary 3.3. We have

-k k—+l1
Op o (—ztp)= LA r, 1) ),
PL,QA( < ) |det(A) Alo%;d NA¢( ) PuQA(’Z )

for(r,1) =ce¢ (51%‘”) )

Proof. There is a one to one correspondence between m € Z? and n € Z?* such
that An = 0 mod N4, which is explicitely given by n = NyA~'m. We find

ik (—z)kH n‘An  n'Ar
Op.g (—27 1) = ——— P(SnNje ( z+ ) .
o V| det A AnzO%d Na 2N} N3
The result follows directly from rearranging te n-sum. O

Remark 3.4. The functions 1+ (1, r) are actually characters of the finite abelian

group
{Imod N4: A1=0 mod Nu}.

This group has order det(A), so that we have the important identity
> W(1,r) = b= det(A).

1 mod Ny,
Al=0 mod N4

With this sort of functional equation at hand the modularity proof succeeds as
usual. For completeness we recall the details.
Let d be odd and (¢,d) = 1. Then we define

Gled)= Y e(cxt;x).

r mod d

We will need the following lemma, which we recall without providing a proof.

Lemma 3.5. Let (g) be the Jacobi-Symbol and put

(—1)5 1 ifd=1 mod 4,
d 1 ifd=3 mod 4.
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Then, if A € SP,,, we have
Gle,d) = (det(A>) [ed (f) \/8]".

d d

Lemma 3.6. Let 7 = (CCZ Z) € SLy(Z) with d = 1 mod 2, d > 0 and ¢ = 0
mod N4. Then
—1)*det(A abr! Ar
Opqu(raim) = (L QMDY (BAN (L a)etig g, (25 ar).
d 2N3
Proof. We set v = 7w and see
1
d-vz=10b-— .
e dz —c

For v we can compute

o bg' Ag . dn'An  —1
Op,a(72T) = Z e <m) Z P(N~"Sn)e 2d2N3 o —

g mod dN 4, n=g mod dN4
g=r mod N4 ~ ~~

:dlePldeA (= dzlfc i8)

i*(—dz + ¢)ktld! Z <bgtAg>
= € 3 Z w(gJ)eP,Q A(dz ) 1)
v/ |det(dA)] g mod dNa, 2dN dA1=0 mod dN 5 o

g=r mod N4
i*(—dz + ) *dl bg'Ag + 2g' Al — ' Al
_ > Opouldzl) D e ( >
V/|det(dA)] dA1=0 mod dN 4 o g mod dN 4, 24N}

g=r mod N4

J/

Here we applied the previously proven functional equation as well as the observa-
tion that cn’An = cl* Al mod 2dN% as ¢ = 0 mod N4. Some elementary manipu-
lations show that

bgtAg + 2gt Al — clt Al art Al bg' Ag
g e 5 =e 5 E e 5 |- (4)
g mod dN 4,

g mod dN g4,
g=r mod N4y g=r mod Ny

In particular, this sum only depends on 1 mod N,4. Thus, we obtain

i*(dz=t + )kt -1
0 TZT) = 0 —,1
Pl,QA( ) dk ]det(A)] Alozm;d . PhQA( > )

Z bg'Ag + 2g' Al — cl' Al
¢ 2dN? '

g mod dN 4,
g=r mod N4
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Applying the functional equation again we find
(—=1)Y(cz + d)*+

0 ir) = 0 h
nealTE) = e, 2, OB
=0 mod Ny
¢ 2dN?
Al=0 mod Ny g mod dNy,
g=r mod N4y

The l-sum can be evaluated using (4) and contributes |det(A)|dh=—ar mod n,- Thus
we have

—1)!(cz + d)*! bt A
HPl’QA(TZ; I’) - ( ) ( ) QPZyQA(Z7ar) ) Z ¢ ( 3 g) .

d* 2dN3
g mod dN4,
g=r mod N4
The evaluation of the g-sum can be reduced to Lemma 3.5. U

Given ¢ = 0,1 mod 4 we define a completely multiplicative character y. as
follows. For positive, odd d we set x.(d) = (£). Further put x.(—1) = sgn(c) and

1 if c=1 mod 8,
Xe(2) =¢ -1 if c=5mod 8,
0 if(c,2) > 1.

Proposition 3.7. We have 0Pz»QA<' ,0) S Mk+l(NA7X(—1)kdet(A)>- [fl > 0, then
0p.0.(,0) is cuspidal.

Proof. 1t is an easy exercise to check the required transformation behaviour of
0p.04(-,0) is easily deduced from Lemma 3.6. In order to check holomorphicity
and vanishing at the cusps it is enough to consider the functions 6p, o, (-, 1) at co.
We leave the details to the reader. U

Exercise 4. Find the harmonic polynomial Py such that (1) holds.

Proof. For now take P to be some harmonic polynomial. If deg(P) = 0, in other
words P = ¢, then

0(z; P; Qs) = cE4(z) (5)
On the other hand if deg(P) > 0, then 6(z; P;Qs) is cuspidal. In particular,
if 0 < deg(P) < 8, then 6(z; P;Qs) = 0 since there are no cusp forms of the
corresponding weight and level. Furthermore, if deg(P) = 8 then 0(z; P;Qg) €
CA. Thus it suffices to find P for which 6(z; P; Qg) # 0.
Next let us note the following triviality

0(z; P,Qs) = ZBP ) for By(n) = Z P(x).

n>0 x€7Z8,
QRs(x)=n
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This of course implies
0(z; P+ P,Qs) = 0(z; P; Qs) + 0(2; P; Qs)
On the other hand, our discussion above implies

(n) = {240 cc-o3(n) if P=c,

B :
0 if 1 < deg(P) < 8.

p

We make the ansatz

P(x) = Pu()[@s(a0) - Qs(ox)]* for u = - X' Ags

vV Qs(x)Qs()

and some « € Z8 to be specified soon. Here Py is a certain even Polynomial of
degree 8. We can write

7
Py(u) =u® + ) ¢, Hpy(u) — ws,
p=1

for Legendre-like-Polynomials H, of degree p.* Since F is orthogonal to the con-
stant function one determines wg = 277.
Using our remarks above we compute

Br(n) = (@s(a) )t 3 (= w)
Qs(x)=n
=28 Z [x'Agsal® — 277240 - a3(n)(Qs(a) - n)®.
Qs(x)=n

To see that our generalised theta function does not vanish we only need to look at
the first Fourier coefficient. We now choose « such that Qg(a) = 1. Thus we get

PBs(1)= Y [x'Aga]’—2°15>2° — 2715 =2°(16 — 15) = 2° > 0.
Qs(x)=1

>2.(2Q5(c))®

J/

In the first step we used that the x sum includes x = «, —« and we drop all the rest
by positivity. Thus we have seen that Bs(1) > £ which implies non-vanishing." [

3If we were working in 3 variables these would really be just Legendre polynomials. However,
in our case they are determined (up to constant) by their property of being polynomials of degree
p and by the differential equation

(1—u?)H) — TuH, + p(6 + p)H, = 0.

4Working more precisely one can get Bg(1) = % on the nose.
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4. THE EICHLER TRACE FORMULA

In order to establish a ready to use Eichler trace formula of quite some gener-
ality we follow the master’s thesis of Fabian Vélz, who in turn follows [8]. For
background on the Bergman kernel and complex analysis in multiple variables we
refer to the book [7]. Throughout this section k > 2 is a fixed even integer. At
some point we will further assume k& > 2 to avoid complications.

4.1. A quick tour through reproducing kernel Hilbert spaces. Let X be a
set and (H, (-,-)) be a Hilbert space of complex valued functions on X.

Definition 4.1. A function K: X x X — C is called a reproducing kernel of H
if K(-,z) € Hforallz € X and f(z) = (f, K(-,x)) forallz € X and all f € H. If
H admits a reproducing kernel it is called a reproducing kernel Hilbert space.

Example 4.1. A toy example of a reproducing kernel Hilbert space is as follows.
Let X ={1,...,n} and H = {f: X — C} = C" with the standard inner product

()= [ F@igids = 13 1050

A reproducing kernel for H is given by

K (i, j) = nd; (i) with (i) = {1 =,

0 else.
Indeed K (-,j) =nd; € H and (f, K(-,j)) = n(f,0;) = f(j).

Lemma 4.2. Let H be a reproducing kernel Hilbert space. Then the reproducing
kernel K s unique and satisfies

K(z,y) = K(y,z).
Furthermore K(x,x) = 0 if and only if f(x) =0 for all f € H.
Proof. The first claim follows since
The second claim follows from the inequality

K(w.x) = (K(,2), K(z)) > WECOE_V@F

- IR 1711?
which holds for every f € H. O

Proposition 4.3. H is a reproducing kernel Hilbert space if and only if E,: H —
C, f— f(x) is continuous for all x € X.
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Proof. Suppose H is a reproducing kernel Hilbert space. Then

|Eo(N)] = [ KCa)| < IKCa)[Fl = v E @, 2)l[ £

On the other hand, if E, is continuous, by the Riesz representation theorem there
is g, € H such that E, = (-, g,). The reproducing kernel is now obviously given

by K(y,z) = g2(y). .

Proposition 4.4. Let H be a reproducing kernel Hilbert space. If By is an or-
thonormal basis of H, then

K(z,y) = ) ¢(x)(y)
pEBY

1s the reproducing kernel of H. If H C J, where J is a larger Hilbert space. Then
T J — H7 (ﬂ-Kf)(w) = <fa K(vm»

15 a well defined projection operator.

Proof. We first expand
¢EBYH

where the convergence is understood with respect to the norm of H. Recall that
the evaluation maps F, are continuous, so that

K(z,y) = Z (gbK— Z o(y
$EBH PEBH

The fact that 7 is well defined is obvious. Further, from (6) we see that the
image of 7 is indeed H. However, by the reproducing property we have

[T @) ((f B ), K (v, 2)) = (f, K (- 2)) = [mc f](2).
Thus 7 is an idempotent and we are done. U

We now continue our discussion on reproducing kernels but restrict ourselves to
a very specific case connected to modular forms. For integrable f,g: H — C we
define

(frgh = / f(z m(2)*dpu(z).
Further we define the Hilbert space
Ly(H) = {f: H— C: (f, f)x < 00}/ ~.
This space contains the subspace of H?(H) of holomorphic functions.

Proposition 4.5. The space HZ(H) is a reproducing kernel Hilbert space.
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Proof. We start by proving the following inequality:
sup [f(2)] < Coollf - Tyl (7)

z€Be(z0)

Indeed this follows from the Taylor expansion f(z) =Y b,(z — 29)" around z
as follows. Observe that

2
/ f(2) Im(2)2du(2) / / Z b e™drdd = we?by = wel f(2).
Bs(zl) =0

With this at hand we are almost done. Indeed

1
e B3e(20)
k
SUD e Bs, ( [Tm(2)272| .
< €Bs( 0)2 |f(2) Im(z)2|du(z)
e (o)
E_g .
SupZeB3€(ZO)|Im(z) 2 | / !
= 1d A
< 2 o w(z) ) Nf - Igllen

This implies the continuity of the evaluations E,. Thus, if H7(H) is a Hilbert
space, then it is automatically reproducing. We are left with showing completeness
of H2(H). To do so we take a Cauchy sequence (f,,)nen. Since L2 (H) is complete,
this converges to some f € L2(H). However, due to our inequality above, this
convergence is uniform on compacta, so that f is holomorphic. (This follows from
Morera’s theorem and some analytic contiuation argument.) g

Remark 4.6. In a similar way we can introduce the spaces H, C L} (H). It turns
out these are Banach spaces for 1 < p < oo.

We denote the reproducing kernel of HZ(H) by Kj. Our next goal is to compute
K. explicitly. We do so in several steps.

Lemma 4.7. For f € H?(H) and o € GLy(R)™ we have
| Flsllos = det(a) | s
In particular, flyo € HE(H).

Proof. This follows from the simple computation

det Qk_zlm k
Il = [ Ikl (e dute) = [ 1) = due)

= det(e)** [ |f(a)| Tm(az)du:) = det(a)“ﬂfué,k.
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Lemma 4.8. For a € GLy(R)" we have

Ki(az, aw) = det(a)™%j(a, 2)*j(a, w)kKk(z, w).

Proof. We define
K,ia)(z, w) = det(a)*j(a, 2)7Fj(a, w)kak(ozZ, aw).

The idea is to check, that K ,ﬁ“) is a reproducing kernel for HZ(H), since then the
claimed equality follows by uniqueness.
Thus we compute:

(f, K (-, w)) = det(a) " j(a, w) ™ flra™, Ki(-, aw))
= det(a)" (e, w) *[flra ] (aw) = f(w).

Here we simply used the definition of the inner product (as integral) and the
reproducing property of K}, (justified by the previous lemma). Observing that, due

to the previous lemma, K ,ga)(-, w) is an element of HZ(H) finishes the proof. O

Proposition 4.9. There is a constant C such that

Ku(z,w) = Cy (Z _ @>_k.

21

Proof. We define
Q={(z,w)€C* z€H, z—w € H} = {(z,w) € C*: ITm(w) > Im(y)}

and set
h: Q—C, (z,w) — Ki(z,z —w).

Note that A is holomorphic in w, since we can write it as h(z,w) = Ky(Z — w, 2)
and K} is holomorphic in the first argument. We now argue that A is holomorphic
in z. To do so we look at H(z1,2) = Kg(z1,22 —w). It is clear that H is
holomorphic in each variable (thus weakly holomorphic as a function H: C* — C).
Thus (by Hartog’s theorem) H: C*> — C is holomorphic (in any definition one
likes). By composing H with z + (z,2) we see that h(-,w) is holomorphic for
each admissible w. To summarise, we have seen that h is holomorphic in both
arguments.

Our next goal is to show that h(z,w) = h(z/,w) for all (z,w), (z/,w) € Q. To
do so we consider

O(7) =h(z+ 17,w) — h(z,w),

for fixed (z,w) and 7 with Im(7) < Im(w) — Im(2). Note that by the previous

lemma applied with o = we have ®(b) = 0 for b € R. Furthermore, ®

1 b
01
is holomorphic in a neighbourhood of the real line. We conclude that ® is the
constant zero function (where it is defined), so that h(-,w) is also constant.
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Thus we can define
l(w) = h(zy, w) = Ki(zw, 20 — w)

for any z,, € H such that (z,,w) € Q. Note that [ is holomorphic and I(z — W) =

K(z,w). Using the previous lemma with oo = <8 2) we find

1(2aw) = l(aw — a(—w)) = K (aw, a(—0)) = a " Kj(w, =) = a *1(2w),
for a € Ry. Thus, by taking w = % we find
(iy) = y~"1(3).

Thus, [ agrees on the imaginary axis, and thus everywhere, with the function %.
This concludes the proof with the constant Cy = 27%1(3). 4

Theorem 4.10. We have

E—1/(z—w\ "
Ky (zw) = =2 ( 2 ) !

for k > 2.

Proof. We do so by explicitly computing (fo, Ki(-,w)), for fo(z) = (2 +4)7*
However, we first have to show that f, € HZ(H) for k > 2. We compute

[ foll2s = / |z +i(y 4+ 1)| 2y " 2dyda
R JR,

— [ [ @t 1)y
RJ1

S// ($2+y2)_kyk_2dyd$
/ / (rsin(0))*2drdo

:/ sin(9)F~ 2d49/ " ldr < oo.
0 1

(20)™F = fo(i) = (fo, Ki(,i))n = Ck(2z')k/(z+z’) B — )% Im(2)dp(2)

H

Now we have
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One computes that (z +1i)(i —z) = —(2? + (1 + y)?) and finds

Gl =4 // (2% + (y +1)*) "y Pdyda
R JR,

i yk—2 T 2 —k
=4 A +1| dad
/R+ (y+1)2’“/ua (y+1) o

:4’f/ Ldy/(s2+1)—’“ds.
g, (y+1)%-1 R

Looking up the Beta-function reveals

/ Ldy:B(;{;_Lk):w‘

(y + 1)1 2k —1)
Furthermore, one can see (in many different ways) that
. T2k —1)
1) Mds =dn———2 8
JIGERRE Tt ®)

Combining these evaluations we get
Cil=dn(k—1)"
and we are done. O
Lemma 4.11. Let k > 2, then Ky(-,w) € HY(H) for each p € [1, c0].
Proof. With our explicit formula for Kj(-,w) the L'-norm can be computed to be
Il = 2D Gy S8 - 1) [ smoy-2as

This is a nice exercise in integration. (Note that B(0,x) = I'(0) = oo, which makes
the assumption & > 2 necessary.)

Furthermore, ||Kg(-, w)|cor = uIm(w)*g. The rest follows by interpolation.

4
O
Now, for k > 2, we can use the Holder inequality to make sense of the operator
me: Ly (H) — Ly(H), f = [w = (f, Ki(-, w))].

With a little more work one obtains the following theorem which we state without
a proof.

Theorem 4.12. For k > 2 and any p € [1,00] the operator m,: LY (H) — H, (H)
1s a well defined projection.

After having established the necessary theory for globally symmetric space H we
have to move on to situations closer to the real world. We adjust our definitions
slightly. Let I" C SLy(R) be a discrete subgroup. We define

LyIM\H) = {f: H— C: flxy = f¥Vy € I'and || fp < oo},
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for
- Im(z)51Pd
1 £15.x /F\H!f(Z) (2)2|Pdu(2)

with the usual modification for p = oo. Note that this is well defined by the
transformation behaviour of f and we can replace I'\H by any fundamental domain
F. Further note that for p = 2 the norm is defined by the Petersson inner product.
As before we let Hy (I'\H) C LY (I'\H) be the subspace of holomorphic functions.

Lemma 4.13. The spaces Hy (I'\H) are Banach spaces forp € [1, 00] and Hi(T'\H)
15 a reproducing kernel Hilbert space.

The proof is very similar to the one showing that HZ(H) is a reproducing kernel
Hilbert space. The only technical difference being that one has to argue using a
suitably chosen fundamental domain. We leave the details as an exercise.

Theorem 4.14. We have Si(N) = HX(Do(N)\H) = H(To(N)\H).
Proof. The inclusions Si(To(N)\H) C HP(To(N)\H) C HZ(To(N)\H) are ob-

vious since I'¢(N) has finite co-volume and it is an easy exercise to show that

y® f(x+iy) is bounded on H for f € S;(IN). Thus it remains to show the inclusion
HZ(To(N)\H) C Sg(N). This is done using the Laurent expansion at infinity,
which exists for each f € HZ(Io(N)\H). Suppose f(z) = > _ane(nz). Then we
compute, for [ large enough

o0 > || fllar > /ﬁSRe(z)gl,lf(z) Im(z)§|2dﬂ(z)

I<Im(z)<oco

0 1
- / / Z e Ve ((m — n)z)y*2dady
1 Jo

m,ne”z

Z ’%’2/ 674wynyk72dy.
l

However, if £ > 2, then the final integral diverges for all n < 0. Thus the Laurent
expansion at oo reads f(z) = > _yane(nz). The same exercise can be repeated
for all the other cusps and we are done. O

Finally we will construct the reproducing kernel K}, y for Si(N) explicitly. From
now on we take k > 2 once and for all. Indeed we set

Kuv(zw) =5 Y [Kilow)lal(2).
y€lo(N)

Lemma 4.15. For k > 2 the series defining Ky, n ts uniformly convergent on any
compact subset of H x H.

Note that for £k = 2 one has to be careful. Similar issues occur for the Eisenstein
series Fs.
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Proof. Let g, € SLs(R) be such that w = g,i. Then we have

k
2

MIE

|Ki(z,w)| Im(2)2 = |Ky(g5'2,4) Tm (g5, 2) 2 Im(w)

With this at hand we can continue by a standard computation involving the un-
folding trick.

/f Y Ifa w)| Tm(92) 4 du(z)

YETH(N

Y / Kz, w)| Tm(2) Fdu2)

’YGFO (N)
- / K (2 w0) | Tm(2) $dja(z) = | K () 1 Im(w) 5

Interchanging sums is justified by the monotone convergence theorem. We con-
clude that

1B ()l < K ) e T () 72

In particular we have seen absolute convergence for fixed w. One can further show
that this convergence is locally uniform, so that Ky n(-,w) is holomorph for fixed
w. We skip the details here.

For fixed zy € H we observe, compare to (7), that

sup |Kin(z,w)| < Cul|Krn (s w) |1k

z€Bc(20)
We combine this with our estimate above to establish

k .
sup |Kin(z,w)| <Oy sup [Im(w) 2 ][[ K (- 4) |1k,
ZEBG(ZO), wEBg(’wo)
w€Bs(wo)

for €,0 > 0 small enough and zy, wg € H fixed. Thus the sum is locally uniformly
convergent and the statement follows from a standard covering argument. U

Theorem 4.16. For k > 2 the reproducing kernel of Si(N) is given by Ky y.

Proof. The first step of the proof is to show Ky y(-,w) € Si(N) for all w € H. To
do so it is enough to show Kj y(-,w) € L°(H). this is because we already know
that Ky y(-,w) € H}(To(N)\H). By somehow enumerating ['o(/N) we can express
Kin (-, w) = lim, o f,, for partial sums f,, of length n. Since Kj(-,w) € L°(H)
we have f,, € Ly°(H).

We now identify L{°(H) = (Li(H))" as usual. Now (f,)nen corresponds to a
sequence of functionals (z,),en defined by
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Our next goal is to show that the sequence x,, is weak-x-convergent. To do so we
fix g € Li(H) and compute

n

ral9) = e = | (% Z[Kk<-,w>|m<z>> 9() Im(2)du(2)

=1

=—Z / Kl ) ) (2)902) T (=) dp(2)

= —ZJ Jw) (K (75 w), g

We now recall the statement of Theorem 4.12, so that we can write

lim z,(g9) = % Z [(mrg) k7] (w).

7€l (N)

Note that the right hand side is nicely behaved for all w. This follows from a
thorough treatment of Poincare-treatment series which we omit. Now the Banach-
Steinhaus-Theorem tells us that there is z € (Lj(H)) with lim, . 2,(9) = =
for all g € Li(H). Using our identification backwards we find f € L°(H) with

2(g) = (f, g)x for all g € L;(H).
If we show that f = Kjn(-,w) almost everywhere in H, then Kj n(-,w) €
L°(H) and the first step is complete. Let us assume the contrary. Then there is

a compact set K C H such that
N={ze K: f(z) # Kin(z,w)}

satisfies 0 < p(N) < u(K) < oo. Recall that the partial sums f, are continuous,
thus measurable, and converge pointwise to K n(-,w). According to Egorov’s
theorem there is a closed set A such that u(N\ A) > u(N)/2 and the convergence
of f, is uniform on A. We conclude that for g € L} (H) with support in A we have

(fs gk = (K n (W), 9
We define
G(z) = sgn(f(2) — Kin(z,w))1a(2).
With this choice we find

J156) ~ K o) 1 (2) = (F — K00, G =0

In particular f = Kj n(-,w) almost everywhere in A. This is a contradiction to
w(A) > u(N)/2 >0 and A C N. This completes the first step.
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For f € Si(N) we compute, skipping some of the by now familiar details,

(f Ko (w)) = | f(2)Kn(w, 2) Im(z) dpu(2)

/; Z F(2)Kp(yw, 2)j (v, w) ™ Im(2)*du(z)

~v€l(N)
/f VI (2, w) (=) dp2)
— (. Ky w0)) = (muf)(w).

Since f € Si(N) we have 7,(f) = f, so that we have shown
(f; K (- w)) = f(w).

This completes the proof up to the minor point that we still have to justify the
exchange of limit and integral above. This follows easily from

Z (2) K (yw, 2)j (v, w) " Im(2)"|dp(2)

v€lo (N

Ssuplf(»zl)lm(zl)gl ST KR 2 w) (7 29) 2 dpa(22)
z1€EH ~€ETo(N) FN

1
= I fllecllKr (- w)lly < oo
U

4.2. A rough expansion of traces of Hecke-operators. Let us now consider
the Hecke-operator T),: Sp(N) — Si(IV). Our ultimate goal is to find a useful
expression ot its trace. Recall that since Sy (V) is a finite dimensional inner product
space we can fix an orthonormal basis (f;);=1,..m. We can further assume that the
functions f; are joint eigenfunctions of all Hecke-operators. Note that this requires
newform theory if we want to include (n, N) > 1. Now we can expand the trace

as follows

Z)‘fj Z Tf]7fj>

7j=1
From this we deduce the followmg result.
Proposition 4.17. Letn € N and k > 3. Then

k—1

T(T,) = n2 /FO(N)\ Z Kilaz, 2)j(a, 2) F Im(2) du(z),

H aGAn,N

for
A,y ={y€Mata(Z): N |¢, (a,N) =1, det(y) = n}.
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Proof. Write

Ay = |J To) (8 Z) :QFO(Ng

ad=n,
(a’N):li
b mod d

Thus
[T, £51(2 Zdet (9:)" i (gs, 2) " f(gi2).

We can expand

m d
= Z/F (Z det(g:)* 1 (g;, z)—kf(gzz)> £5(2) Im(2)kdp(2)
/FNZ (ngl f] ) (gm ) kIm(z)kd,u(z)

i=1 7=1
b / ZKk,N@jz,z)j(gj,zrklm(z)’“du(z).
FN =1

The statement follows by using the geometric definition of Kj(N). O

This is not yet a useful expression and needs to be refined. Note that with
respect to v lay = a the integrand satisfies

Ki(v tavyz, 2)i (v tay, 2) F Im(z)"
X _ k., _ _
= K(avz,72)j(v, v tavz) %j(v,2) i(v ay, 2) F Im(z)F

. . k
= K(avz,72)j(,72) " Im(y2)" ( i, yj—(?azzij éz‘i)w Z)>

= K(ayz,72)j(a,v2) F Im(yz)".

Therefore it seems natural to organise the sum y conjugacy classes and arrange the
integrals accordingly. However, we first have to overcome some convergence issues
that arise when interchanging summation and integration. This is the content of
the following section.

Exercise 5. Find an element a € A, 5 such that the obvious orbital integral

/ Ki(az, 2)j(a, 2) * Im(2) du(z).
[(e)\H

diverges.
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4.3. Interchanging summation and integration. Let ¢;,...,g € SLy(Z) be
such that

l
Fn = Ugj}—l-

Jj=1

Further given a cusp £ € QU {oo} we define Ap = {v e Aunint =L} We
fix some neighbourhood Uy, = {z € H: Im(z) > 6} of oo for some § > 1. This
neighbourhood can be transformed into a neighbourhood of an arbitrary cusp via

Ur = 0rUy, for a suitable integer matrix oroo = g. Set
q q q

Fp = FyNUp and F* = Fx \ | Fe.

The following lemma lays the groundwork for exchanging the sum and integral
in the neighbourhood of a cusp.

Lemma 4.18. Let £ be a cusp of I'o(N), then

[ X Kz e )

% CXGAnVN\AQ
q

= Z Ki(az, 2)j(a, 2) * Im(2) du(z).

aeAn,N\AQ F%
q

Proof. We will proof this for § = oo using the following two facts:

Z lc| ™% < o0, for k > 2; (9)
a€loo\(An,N\Aoo)/Too,
C[x %
e o«
1
> (latnP+0)7" < b1+ [b), for 1> . (10)

nez

The case § = oo follows by translating the integrand and adjusting the fundamen-

tal domain.
We set

S(z) = Z | Ki(az, 2)j (o, 2) 7 F Im(2)¥|.

aeAn,N\AOO

We need to show that S(z) converges for all z € F, and that S is integrable on
F.
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We write A, n = |_|a€A lwa and A, v \ As = |_|&€A0 I'wa. We can arrange
these sets such that Ag = \A . We observe that

S(z) =2Im(z Z\ja2| kZ]Kkaz+m 2)|.
aEAy MEZL
By inserting the explicit expression for K} we find that the inner sum is

1
Z\Kk(az—l—m,z)\ = 2k Z|ozz—|—m — 2| 7F < [Im(az — 2)| (14| Im(az — 2)|),

meZ meZ

where we expanded the absolute value and used (10). We use the trivial estimate
Im(az —Z) = Im(az) + Im(z) > Im(2) to find

S(z) <k (14 Im(z Z|jozz

acAp

We now find a subset Aj C Ay such that A, vy \ A = I—IaeAg I'wwal's,. With this
at hand we can use (10) again to estimate

D il )< Y0 D iy, )

OéE.Ao a€A6 ’YEFOO

=2 > ) e(z+m)+dF

acAy, 1€l

< Im(z) *(14+Im(z)) > o™

Thus, according to (9) we find
S(z) < Im(2)7%(1 + Im(2))%

This estimate implies convergence and integrability, so that the proof is complete.
O

Next we deal with the Ar-part of the inner sum, which we excluded above.
q

Lemma 4.19. For oroo = § we have
q

/F Z Ki(az, 2)j(a, 2) 7" Im(2)*du(2)

P
q OAEA%

s—0
acA p

= lim Z Kk, (az, 2)j(a, 2) FIm(2)*5|j(on ", 2) [P du(z).
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Proof. For convenience we focus on § = 00. The general case follows by standard

reduction arguments. -
Fix Ay such that A = Llaeﬁo I'wa. Note that one can arrange that A, =

AN Ay with A as in the previous proof. Further Aj is finite and all its entries
have vanishing lower left entry. Following the proof of the last lemma yields

Si(2) = Ki(az,2)j (e, 2) " Im(2)"~*
< (Im(2) + ) Im(2)* > [(e, 2)| ™ gy (Im(2) + 1) Im(z) ™"
aEZo
Thus, Ss(2) converges for z € F,, and for s > 0 it is integrable on F,,. This yields
to

[ 3 maz i) () dute)

o OLEAOO
= 3 [ Koz =),z Im(2) ().
aEAso Foo

The statement, for § = 00, follows by taking s — 0 through a monotone decreasing
sequence and applying the monotone convergence theorem. (Il

Remark 4.20. In the following we always understand the limit s — 0 through some
monotone decreasing sequence s, — 0 as n — 0o.

Finally, we treat the bulk.
Lemma 4.21. We have
/ S Kilaz, 2)j(a, ) Im(2)*du(2)
FO

aEAn,N
— Z / Ki(az, 2)j(a, 2) * Im(2)Fdu(z).
OLEAn,N Fe

Proof. This follows easily from the fact that F° is compact and the convergence
properties of Kj, y. O

Now we want to combine the three pieces again. To do so we put
Ay =|JAr\Zand Ay = A, 5\ Ay
%
Lemma 4.22. The sets Ay, Ay are stable under conjugation by I'o(N).

Proof. This follows after observing that for v € T'y(NN) we have vy~ 2y = 2 for all
z € Z and
A,y—w = ’y_lAgﬁ/.

We leave the details as an exercise. O
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In particular the sets conjp n)(Ai) of T'o(V)-conjugacy classes make sense. Re-
call the groups

Z(a) = {p € GLI (Q): aB = Ba} and T'(a) = {y € Ty(N): v tay = a}.
With these notions at hand we can formulate the trace formula in its coarse form.

Proposition 4.23. In the notation as above we have

k-1
TW(T) =5 Y Ki(az,2)j(a, )™ Im(z) dp(2)
aEconjFD(N)(Al) [()\H
k-1
+ lim Z Ki(az, 2)j(o, 2) 7 Im(2)F £,(2, @) du(2),
s—0

o€ conjr (ny (A2) P(e\H

for

1> if 2 € Ur and a§ = § for some cusp g,
q

1 else.

fs(z,a) = {Im(z)s|j(0§, 2)

Proof. We first observe that F p = () for all but finitely many cusps. Thus, we can

write Fny = F°U |_|§.:1 Fr; . Splitting the integral and the sum in Proposition 4.17
-

and applying Lemma 4.1é,4.19 and 4.21 yields

k-1

Tlr(Tn)Zn2 £1£I(1) Z ; Ki(az, 2)j(a, 2) FIm(2) £, (2, o)dp(2).
OéEAn,N N

Next we split the a-sum in a sum over a € A; and a sum over a € Ay. One
checks, that it is save to take the limit inside the A;-sum and inside the integral.
Thus, we arrive at

It remains to arrange the sums in conjugacy classes. We start by writing

Ay = L] L] ek

a€conjr () (A1) YEL(a)\T'o(N)
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Now we can compute

Kk(OZZ7 Z)j(&, Z)_k Im(z)kdu(z)
acAq FN

= Z Z Ki(az, 2)j(a, 2) " Im(2) du(z).
a€conjry () (A1) YED(@)\To (N) * 17N
Note that the integrand is I'(«)-invariant, so that we have
Z Ki(az, 2)j(o, 2) FIm(2)*du(z) = / Ki(az, 2)j(a, 2) " Im(2)Fdu(2)
YET(@)\To(N) * 77N I'(a)\H
as desired. Running a similar argument for the As-sum completes the proof. [J

The next step is to consider different conjugacy classes of elements separately
and compute their contribution explicitly. We distinguish the following sets

AS%\, ={a €A, y: elliptic}, Afﬁv ={a € A, y: parabolic},

Aflh]l\z = {a € A, n: hyperbolic with fixed points in R\ Q} and

Aghf\z = {a € A, n: hyperbolic with fixed points in QU {co}}.
Note that A; = (Z N A, x) UAY UATY and Ay = A" uAl).

4.4. The scalar term. Note that a = diag(z,2) € A, y if and only if n = m?

and z = +m. Given the explicit form of the Bergman-kernel the computation is
almost trivial and we obtain the following result.

Lemma 4.24. The contribution of the centre to the trace formula is given by

K k—1

nk—l ‘ B 5
/ Ky(az, 2)j(0, 2) ™ ()4 dp(z) = o S N(N),
I'(«)\H

a€ZNAn N
for p(N) =L n(1+p7h).

4.5. The elliptic contribution. Suppose a € Aff%v is elliptic. Thus there is a
unique fixed point 2y € H and « fixes also the conjugate Z;. Furthermore « is

diagonalisable with eigenvalues A, \. More precisely, for o = (i _?) we have
—Z0

aza_l(A 0)0: 1 (ng—)\z_o ]zo\Q()\—X))'

0 A —Z0\ A=A Az — A%

Lemma 4.25. Let o, 0 and )\ be as above and put w = oz. Then we have

Ki(az, 2)j(a, ) FIm(2)F = n_kk _ 1)\k ( L Jul ) : (11)

— Alapl2
r 3wl
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Proof. We start by noting that

. det(f)(a—b)
P =P =508 )i (B.b)

Put w’ = 0% and note that v’ = 7 and A\ = det(a). Using (11) we compute

w—w'  oz—0zZ  (2—7Z)(az—Z) (12)
%w—w’ Coaz—o0z  (az—7%)(z— %)

Furthermore,
(2 —Z0)j(a, 2) = (2 — Z0)j (07, diag(\, N)oz)j(diag(A, Mo, 2) = Mz — Zo).
With these preliminaries sorted we can check

Ki(az, 2)j(a, 2) FIm(2)* = k4—;1(22 Im 2)*[(az — 2)j(a, 2)] 7"

_k—l{z—? ozz—Eo]k
4 laz—Z Nz — %)

kE—1 ak
_ X—k[w w].

AT %w —uw'
This finishes the proof. O

Next note that I'(a) = ['o(V),,. Furthermore, the stabiliser I'g(N)., in T'o(V)
is a finite group and almost every I'o(N),,-orbit in H as exactly §I'o(NV),,/{£1}
elements. Thus we find

/ Ki(az, 2)j(a, 2)"* Im(2)*du(z)
[(a)\H

_ wk =1 1 1—|0z]2
=T A i00(N)., /{£1} H( _/X\’UZP) dp(z).

The remaining integral can be changed by a change ov variables. Note that the
transformation ¢ identifies the upper half plane model of the hyperbolic plane with
the Poincare disc model. In other words, o H = D. Thus we compute

[ () o= S

We have thus sketched the proof of the following Lemma.
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Lemma 4.26. In the notation as above we have

k—1 1 )\k—l
n / Koz, 2)j(0 ) Im(2) dp(z) =
I'(«)\H

2

B ﬁF0<N)Zo . X_ )\
Proposition 4.27. The elliptic contribution is given by
k—1

”2 Z /( N Ki(az, 2)j(a, 2) ™ Im(2)*du(z)
(e) YT()\H

cxeconjr()(N)ATfN

where A\i(n) and \;(n) are the two solutions of the polynomial X? —tX +n and

1
BO= 2 aay

1S conjFO (N) AS?N,
Tr(a)=t

Proof. First, let a be an elliptic element. Then o/ = a(—1)"'aa(—1) is also an

elliptic element in A,, . Note that they are conjugate with respect to GLy(Z) but
not I'g(N). Thus they represent two different conjugacy classes but have the same
trace (and determinant). By grouping all such o and o together Lemma 4.26
yields

k—1

n Ky(az, 2)jla, 2) " Im(2) du(z
Z(@AWH< Ji(a,2) ™ Im(2) dp(2)

2

aECOHjFO(N)An,N

oy DV
=3 L@ a
a€conjry (A, N

The statement now follows by arranging conjugacy classes according to their
trace. ]

Now we make some more algebraic definitions. Given an integer d = 0,1 mod 4
with d < 0, there is a unique order Sy of discriminant d in the imaginary quadratic
field Q(v/d). Let h(d) = h(S,) denote the (narrow) class number of S;. We also

modify the Kronecker-symbol as follows. Given a fundamental discriminant® d and

A fundamental discriminant are exactly those integers that appear as discriminants of qua-

dratic fields. In other words, d is either square-free and d = 1 mod 4 or % is square free and

satisfies % = 2,3 mod 4.
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(%)= {l(g) . "

Lemma 4.28. Suppose N is square-free and (n, N) =1, then

S (R =))

for all t with t> — 4n < 0.

an integer m we define

Proof. We start by some more general considerations. Let R = R(N) be the ring
of all integer 2 x 2-matrices with lower left entry divisible by N. In particular,
A, n C R. Given any a € R we consider the full GLy(Q)-orbit

C(a) = {6ad: 5 € GLy(Q)}.
One checks that for o € R we have AS)N NC(a) =A, v NC().

If a, 8 € Aff)N have the same trace, then they are conjugate by an element in
GL2(Q) (not necessarily by an element of GLy(Z)). Thus given any o € My(Q)
with determinant n and trace ¢t we can write

1
B= 2 EG)
6€conjF0<N)[An,NﬂC(a)]
Sine « is elliptic we have that Q[a] = Q[X]/(f(X)), for f(X) = X2 —tX +n, is

an imaginary quadratic field of discriminant D, = £=2 where m? is essentially
the square-part of t2 — 4n. In particular D;,, = 0,1 mod 4 and D;,, < 0. In
other words, we have Q[a| = Q(y/D,,). For each f € N there is a unique order

t; C Q[a] of discriminant Dy, f2. We decompose
=| | Cla. f), for Ca, f) = {6as™": Qla] N6 RS =t}
feN

We claim that for 8 € C(a, f) one has §I'(8) = fr} and leave the proof as an

exercise.” Further, if A, v N C(a, f) # 0, then t; D Z[a].” In other words, f | m
and in particular f? | [t* — 4n]. Thus, we can write

B,(t) = Z ﬂlf feonjr, (v )[AmN NC(a, f)]-

f2t2—an

6This follows by observing that
D(8) = { € To(N): 78 = By} = Q8] N B* = 8(Qla] N3~ R*8)5~" = e},

"This follows since o € 6~ R3 N Q[a] = t; for § such that § = dad~! € A, v N C(a,ty).
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We now have to take a leap of faith and believe that the numbers
ﬁCOHjFO(N)(An,N NC(a, f))

can be computed precisely. This can be achieved using a local to global principle,
but going into details would take us to far afield. Furthermore, we will encounter
(essentially) the same problem later on when we are dealing with quaternion alge-
bras and we will say more then. Indeed one can show that
feonjr, () [An.y N Cla, f)]
= 2h(xs) [ [ feomjor {67 "ad € Op: Qpla] N 67 R0 = x4},
pIN

where [vs], and R, are the localisations of R and vy and

a b
Op:{/y: <c d) EMQ(ZP):CGNZp,ang,det(y)%O)}
The cardinality of the local sets can be computed yields precisely the numbers
claimed in the lemma. O

Exercise 6. Find two (elliptic) matrices o, € SLy(Z), which are conjugate in
GL2(Q) but not in SLy(Z).

4.6. The hyperbolic contribution. Let a be a hyperbolic element with distinct
fixed points 1, € RU {oo}. Without loss of generality we assume x5 > x1. We

put
1 —=z
(1 _I;) € SLy(R).
Similar to the elliptic case we find
o — 1 )\1 0 o 1 )\QIQ — A= 1331 .’171.1’2()\1 — )\2)
-7 0 )\2 O-—x2—x1 )\—2—)\1 )\—11’2—)\21’1 ’

for the two distinct (real) eigenvalues A1, Ay of a.
We put w = 0z and w’ = 0z = w. One finds (compare Lemma 4.25)

ol

o= (r]—mx)~

k
) B kE—1_ _ wW—w
Ki(az, 2)j(o2) FIm(=)" = == <A—> |

/\—zw—w

From here we have to distinguish two cases.

4.6.1. Hyperbolic conujugacy classes of type one. As the title suggests we now
assume « to be of type one. In other words x1, 25 € R\ Q. In this case

[(a) = To(N)zy NTo(N )z,
Lemma 4.29. There is u > 1 such that

{£1} - (T ()oY = {i (“(;n uom) m e Z} .
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Proof. If T'(a) ¢ Z, then the statement follows at once since oT'(a)o~! stabilises
oo and 0. It remains to exclude I'(a) ¢ Z. However, if that would be true then
['(a)\H = H. But using elementary computations one can show that

[ Rz )i, e ey = gt [ [

which is a contradiction since the right hand side does not converge. U

'Lgo _ 671’5&

dep,

)\1 eup e~

As a fundamental domain of oT'(a)o '\ H we can choose {w € H: 1 < |w| < u?}.
Turning to the orbital integral we find:

/ Ki(az, 2)j(a, )~ Tm(z2)dp(2)
P(@)\H

O\ k
ele _ o—ip
/ —dr/ sin(p)? (’\16“" e W’) de

k=1 _, [T — eTip)k=2
= —21In(u) Ay /0( ) ~dp.

7 e =)

Lemma 4.30. For 1 # A\ /A > 0 we have

T (Lip _ —ip\k—2
/ (e : ¢ ) dy = 0.
0

(i_;eup _ e—up)k

In particular hyperbolic elements of type one do not contribute to the trace formula.

Proof. We set A = i—; and denote the integrand by fy(¢). Note that A # 0,1, since
A1 # Ag. Since k is even fy(p 4+ m) = fa(¢). Thus we have

1 2 B i (ZZ_l)k—Q
/ f)\ d90—2 ; fA( )dSD ——/ mzdz

If A < 1, then the integrand of the latter contour integral is holomorphic in a
neighbourhood of B;(0). Thus the integral vanishes.
In the case A > 1 we compute the integral via the residual theorem. This yields

z¢—1 dk 1 1
/ Ile dgo-eres e {)\22—_))2} Zd 9+ (EAT2),

(227 )k—2

for g1 (z) = =2 (\[\;1) . Since g+ (—2) = g+(z) and k — 1 is odd we see that the two

residues cancel each other out. O
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4.6.2. Hyperbolic conjugacy classes of type two. Now « is hyperbolic of type two.
In other words 1,29 € QU {oco}. In this case I'(a) = {£1} and I'(a)\H = H. We
now have to compute the integral

/ Ki(az, 2)j(0 2) ™ Imn(2)* fu(z, a)dp(2),
I(@)\H

for

. s .y ,

fi(za) = Im(z) ’](Ug,z)] if z € Ur and of = ¥ for some cusp £,
1 else.

Take o; such that 0,00 = 1 for i = 1,2. Further define U; = 0;U..

Lemma 4.31. For: = 1,2 we have

. Ki(az, 2)j(e, 2) " Tm(2)* Im(2) (07, 2)[**du(z) = 0.

Proof. Let us treat the case i = 1. Note that o100 = o0, so that oo = (8 a:) )

In particular |j((ooy)™ !, w)| = |a| and
oU, = (001)Us = {2z € H: Im(z) > a6}.

We compute

Ki(az, 2)j(e, )" Tm(2)* Im(2) ~*[j(o7 ', 2)[*'du(2)

Uy
k
E—1_ s w—w ) - s
= e k/ Im(w) (M—_> i((00) ™, w)[*dp(w)
m ol Nw—ow
k-1 T (ele — emi0)k2 ~
_ A\ azs/ 4 —sin(p)~* r*drd
T 2 ’ ‘ 0 (i_;ew _ efch)k (@) si%(i) 2

E—1 T (Lip _ —ip\k—2
S )\2_’“(5_5/ (e ) de.
0

ST (:\\—;ew — e Pk
Note that we have seen that the remaining @-integral vanishes.

For ¢ = 2 the situation is similar. The difference being that coy00 = 0, so that

o0y is of the form (b01 i) . we leave the details to the reader. U

It remains to compute the integral over the bulk H' = H \ (U; UUs,). Note that

2 2
bsm(gp)<rrS a*o 3

J - sin(¢p)

oH' = {re':
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The usual steps lead to

Kilaz, 2)j(a, 2) F Im(2)*du(z)

H/
. . a25

—1 ™ ip _ —ip\k—2 )
S Az"“/ <i —¢) / o ldrdy

s 0 (/\_;eup _ e—up)k W
k=1 [T (e =) ad _
BT /O (Reiv — eiv)F In(=-) = In(sin(p)) | d¢
N e N O L
=2 - Ao /0 (i—;eiv’ Ep—y In(sin(p))dep.

Note that the remaining integral is independent of a, b and ¢ as well as s.
Lemma 4.32. We have
T (e —ip\k—2 A2 or |A1] > |Aal,
I= / (e —e™) In(sin(y))dp = T . {AI—M Jor Al > 1A

: : kyl—k
(%ew — ek 2(k—1) —% Jor [M] <Al

Proof. As before we put A = A; /Ay # 0. Since A\j A2 = det(a) > 0 we conclude
that A > 0, as A\; and A\ must have the same sign. First one computes that

(61'30 _ 6—ig0>k—2 B 1 i eigo _ 6—ig0 k-1
(eiv —e=ie)k  2i(k — 1) (A — 1) dp | \ \e® — e~i® '

Integration by parts yields

1)k—2 o .
1= (k —(21))()\ —1) /0 (Ae™? — e ) K sin ()2 cos(p)dy

- i (22 = 1)F2(22 + 1)
T Ak -1 /Sl D2 — 1y 0%

This can now be evaluated using the residual theorem once again. If A < 1, then
the only pole in the unite disc is at z = 0. In this case one simply gets

I T

C2(k—-1)(A—1)
To deal with the remaining case we can avoid computing the extra residues by
making same elementary manipulations in the beginning to switch A ~~ % U

We summarise the our findings in the following proposition.
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Proposition 4.33. The hyperbolic contribution of second type is given by

"2_1 lim Z / w(az, 2)j(e, 2) P Im(2)" fo(z, a)du(z)

a€conjp, (n)(A2) (h2)

_ 1y w0l o)
;Z, INF(t) — M- (2)] Cn(1),

where N (n) and \; (n) are the two solutions of the polynomial X? —tX +n and

Co(t) = > 1.

aEconjFO(N>A( 2>
Tr(a)=t

Proof. The statement follows from the considerations above and arranging conju-

gacy classes according to their trace. U

Lemma 4.34. Suppose N is squarefree and (n, N) =1,
Co(t) = Spp4n2”™ >~ 6(f)

f2t2—4n
for all t with t>—4n > 0. Here ¢(f) = f lef(l —p~1) is the Euler totient function
and w(N) = #{p | N}.

Proof. We start by arguing as in Lemma 4.28. In particular for any o € R with
determinant n and trace t we have

Cu(t) = ﬂconjFO(N)(C(oz) NA,N).

The difference is, that since « is hyperbolic of type 2 we have Qo] = Q x Q. We
want to follow the same strategy as in the elliptic case and arrange the elements
we are counting by orders. Let us collect some facts to do so. The unique maximal
order in Q x Q is vy = Z x Z. Again, given f € N we have one order t; with
index [vy : t;] = f. further, note that since a must have fixed points in Q U {co},
the characteristic polynomlal must have a square discriminant. Thus we conclude
that t* — 4n = m? > 0. Further we conclude that [t : Z[a]] = m.

Borrowing notation (and the argument with the necessary modifications) from
the elliptic case we arrive at

t) = Z ﬁCOHjFO(N)(An,N N C(a,ty)).
flm
This reduces to the local problem (compare to the elliptic case)

() = ¢(f) [ [ feomjp: {6 ad € Op: Qpla] N6 Ryd = [t7],}-

flm p|N
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Note that in this case the class number is replaced by the Euler totient function,
which appears strange but is completely natural from an adelic point of view.
Again giving all the details goes beyond the scope of this lecture.

Computing the cardinality of the remaining sets is a completely local task and
completing it produces the statement of the lemma. O

4.7. The parabolic contribution. Let a € A, y be parabolic and let z € QU
{oo} be its unique fixed point. We write a for the equivalence class of cusps x
belongs to. Note that there is o € SLy(Z) such that coo = x Necessarily we find

4 (X B
orac= |4 |

for some B € Q% and A € Q* such that \> = n. Thus, we observe that we can

only have parabolic contributions if n is a perfect square.
Note that I'(a) = T'g(N), and

(£1} - (0 To(N)so) = {j: ((1) hf") . m e z} |

where h is the width of the cusp a. Thus we can choose the fundamental domain

{w € H: |Re(w)| < g}

for (o7'T'(a)o)\HL.

Lemma 4.35. Let o, B and A\ be as above. We have

Kilaoz,02)j(e,02) FIm(oz)* = k— 1)\_k < Im(2) )k

for u = %.
Proof. Left as an exercise. U
We take the following lemma for granted.

Lemma 4.36. A set of representatives for conjFO(N)(ASgV) is given by

] a,

zeC(N)

for AP = AP\ N A,.
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Write

s—0
a€conjp, vy (A3

lim Z /F( Kip(az, 2)j(o, 2) 7" Im(2)* fo(2, a)dp(2)
= Z lim Z /F Ki(az, 2)j(a, 2) " Im(2)" Im(2)7*|j(0p, 2)[*du(z)

Ki(az, 2)j(a, ) F Im(2)kdu(2)|.
-y /(a)\(H\UZ) (02, 2)j (0, 7)™ (=) du2)

Next we artificially introduce an s-limit in the bulk-term in order to combine
the two integrals.

Lemma 4.37. We have

Z / Ki(az, 2)j(a, 2) " * Im(2) du(z)

aE Ap) \E\)

= lim Z /r Ki(az, 2)j(a, 2) 7" Im(2)" Im(2) 7|5 (0., 2)|*du(2).

VAR CNCITS

Proof. Inserting the limit must be carefully justified. However, to save chalk we
skip the details. O

As a result we find that

lim Z Ki(az, 2)j(o, 2) Im(2)F £, (2, @) dp(2)
a€Econjr (N)(A2)(p)

—k k 2s
liy > / (@2 2)j(a2) " 1m(2)* Tm(2) (0, 2) Pdu2)
z€C(N) a€A<p)

The remaining integral can now be computed.

Lemma 4.38. We have

/F( . Ki(az, 2)j(a, Z)_k Im(z)k Im(z)_SU(Ux,Z)FSd,u(z)

145 e
_ k- h/\kl s+ 1k —s 1).

A pete I'(k)
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Proof. Using our computations at the beginning of the section we compute

/F( )\HKk(aZ7Z)j(a7Z)_klm(z)klm(z) 517(0p, 2) 2 dp(2)

= / Ki(ao,z,0.2)j(a, 0,2) F Im(o,2)" Im(2) " dpu(z)
(05 'T(a)oz)\H

—1
— (Im(2) — ij1a)~* Tm(2)*2dp(2)
A (07 ' T(@)ou)\H

-1 o] k—s—2
4 o (¥ —ipa)

To simplify notation let us call the y-integral .

Z'2+s /Sgn(ua)oo (it)k_s_Q 7;1—&—5 /
I = ———dl = — u® (1 — u)*"2du,
= arir " =,

where v is a path with v(0) = 1 and (1) = 0. Note that since the integrand is
holomorphic for s small enough the integral does not depend on the choice of ~.
Thus we can pick v: r+— 1 —r. We find

jlts s s 1 ey s
I = ,u};rs /yl us(l—u) T4du = lugrs/o 7”3(1—7”) Todr = M};LSB(S—G—L]{—S—D.
The result follows by expressing the beta function as a I'-quotient. O

For fixed x € C(N) of width h, we obtain

lm 3 /F Ki(az, 2)j(a, )~ Tm(2)E Tm ()~ (on, 2) 2 dpu(2)

. 1+s
lim sgn(Aq )" (M—a> .

2 s—0
acAlP

[SIE

_ hyn”

Thus we have obtained the following result.

Proposition 4.39. The parabolic contribution is given by

k-1

n lim az, z azklrn s(z,a)d
d Y[ Km0, ) e o)

a€conjr vy (Az2) )(®)
E_ . 1
n2—1 . Z ihota )
= Op= 11 .
n=t A7 s—0 B

a€conjF0(N)(An7N)(P) @
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We still want to further polish this sum. For the upcoming computations we
always assume n = m?, since otherwise the parabolic contribution vanishes. We
further set

B,
hada
and call the parabolic contribution P. Let us start with the following lemma.

m(a) =

Lemma 4.40. We have
kg

= — 1 n: —1-s
P = n:D}glLI(l) g S Z |m(a) .

aEconjFO(N)(Agﬁzv)

Proof. So far we have seen that

k_q
n2 : . —1-s
P =4,_ lim E (—im(a)) .
41 s—0
ozEconjFO(N)(An,N)(P)

1

-1 O). Take o € Afﬁv and put o = gag™*. These two matrices

0 1
[o(N)-conjugate. Let = be the fixed point of o and z' = gx the fixed point of /.
Further take oz = oo and put ¢’ = gog~!. We have

caoc !t = </\8‘ i‘:) and o’ac’™t = (/\8 _)ia) )

Letg:(

Note that x and 2’ have the same width. In particular, m(a’) = —m(a). The key
observation follows from
1

%(iHS + (=i)'%) = —s + O(s?).

One completes the proof by combining the contributions « and o’. Note that some
care is needed to argue that the higher order terms can be ignored. We skip the

details. 0
Proposition 4.41. For squarefree N and (n, N) = 1 the parabolic contribution is
given by
k—1
n 2z
P = —0pn— 22N,

Proof. Let n = m?. The idea is as essentially as before. Let us start by noting that
over Q the conjugacy class of a parabolic matrix « is determined by the eigenvalue
Ao Since A2 = n we must have A, = +m. Thus we can set o = £mn(=) and
write
kg
n?2 . 1+s
P=— lim s > Im(B)|***.

8 s—0 )
+ Beconjp vy (An,nNC(at))
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The trick is again to arrange the remaining conjugacy classes according to their
orders. Put ¢ = 8 +m and observe ¢ = 0. Further Q[a] = Q[¢] and Z[a] = Z]e].
We parametrise all orders by vy = Z + Z%. In particular Z[a] = r; C ry for all

f € N. Further one can proof that, if § € C(ay, f), then

l
=2—.
m(B)| =2
With this at hand, we can proceed as previously taking the local to global
argument for granted. Note that the analogue of the class number in this case is
simply 1. We arrive at
k_q
nz . s s . _ _
P=— 1 lei%sm1+ Zf ! Hﬂconjog {67'ad € Op: Qla] N 'R, = [t4],}
-

JeN pIN

k
nz

~1
= — Z lim sm! ¢ (1 4 5)2¢M),
m 5—0

4

We can now take the limit without further complications and get the result. [J

4.8. The final trace formula. Without further ado we are now ready to state
the final trace formula.

Theorem 4.42 (Eichler’s trace formula I). Let N be square-free, k > 2 even,
(n, N) =1 and let T,, be the Hecke-operator acting on Si(N, Id). Then

Tr (7)) zénmné—lk_;l]\w(]\[) _ nanTlew(N)
1 D h((t? — 4n)/ f?) (t? — 4n)/ f?
;Z, M) = A5 (1) f%:% A amy e/ D) S (1 * { D _})

_% Z m1n(||)\:§(t) 7|)\§(t)|) ! Z Qb(f)Qw(N).

f2|t2—4n

Here \:(t) are the two (complex) roots of the polynomial X? —tX + n, ¢(d) =
A1, a(1 = p~") the Euler toitent function, ¥(d) = [1,,(1+p~") and w(d) = #{p |

d}. Here {5} denotes the modification of the Kronecker-symbol defined in (13).

Proof. This follows directly from the discussion of the foregoing subsections. [

Remark 4.43. Note that a similar formula holds for £k = 2. However here some
subtleties concerning the Bergman kernel arise. In [5, Theorem 2.2] the formula is
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given as follows:
Ny(N ns
zﬁé ) - n:D72W(N) + o1(n)

SE B A )

t€Z,  f2t2—4n S(t274n)/f2 p|N

1 min(|\}(#)], [\, (£)]) .
’ teZZ AL () = A5 ()] f2;4n¢(f)2 .

n
t2—4n=0

where as usual N is square-free. This also recovers the dimension formula in [3,
(29)]. Note that one can extend the trace formula to (n, N) # 1, arbitrary N and
arbitrary nebentypi. A complete statement is given in [5, Theorem 2.2].

Exercise 7. Use this formula to establish an explicit and a good asymptotic
formula for the dimension of Si(N,Id) when N is square-free and k > 2 is even.

Proof. The key fact is that T7: Si(N,Id) — Sik(N,Id) is the identity. Thus
dim Sk (N, 1d) = Tr(71).

This trace can be computed using the trace formula.

Elementary computations show that t> — 4 = [J > 0 has no solutions ¢t € Z,
so that the hyperbolic contribution does not contribute. Furthermore > — 4 < 0
holds only for ¢ = 0,£1. Thus the elliptic contribution splits essentially in two
cases.

First, take ¢ = 0. In this case we deal with the imaginary quadratic field
K = Q(i) od discriminant —4 and only the maximal order contributes. It is
well known that this maximal order Ok has class number 1 and Oy = {£1, £i}.
Further A\F(0) = 44 are the roots of X2 + 1 and one checks that

ALOM AT O
AT(0) = A7 (0)
Second, take t = £1. In this case we encounter K = Q(v/—3) and only the

maximal order O contributes. Again we are in a class number 1 situation and
the unit group is O = {41, +(3, £¢3}. For A = re? we have

~k—1

P N 2 sin((k — 1)0)
A=A sin(0)
Applying this to the solutions of X2 + € 4+ 1 which are A = (3, for € € {£1}, we
find

k—1

)\k—l _
= a1 (—1)"H,

A\ —

> >
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where n = k — 1 mod 3. In particular the result does not depend on €. This was
to expect because we combined the conjugacy classes t = 1 and ¢t = —1 to find a
nicer form of the orbital integrals.
Combining everything with the easy scalar and parabolic contribution gives the
answer
k—1 1

dim Sy(N,1d) = === N:(N) — 5d(N)

(e )-

Note that one can check
k

-1)2 k-1 k —1)7 k—1 k
[t

which makes our formula agree with [3, Chapter III, (29)]. O

(_Bmagm_l 11 (1 + (?)) . (14)

p|N

Remark 4.44. Another nice application of the trace formula is the vertical Sato-
Tate law. This is a result about the distribution of the random variables Sk (N, x) 2
f = As(p) as p is fixed and k + N tend to infinity. As long as N is squarefree,
x = Id and k£ > 2 is even a nice limiting behaviour can ve extracted using the trace
formula developed here. Note that one treats all the non-scalar terms essentially
trivial for this purpose.
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5. SOME ARITHMETIC IN QUATERNION ALGEBRAS

Our final goal is to define the Brandt matrices and to compute their trace. We
will recall the necessary background theory mostly following [9].

5.1. The basics. Let F be a field with char(F) # 2.

Definition 5.1. An algebra B over F' is a quaternion algebra if it has a basis
{1p,1,7,k} over F such that

2

i*=a,j?=band k =ij = —ji,

for some a,b € F*. If this is the case we write
a,b
B=|-—%].
(%)
The primary example to keep in mind are the ordinary quaternions
—-1,-1
H = : .
()
Another example is Ms(F) = (14) via the isomorphism
. (1 0 . (0 1
=0 1) 71 o)

Definition 5.2. An algebra is called central if
Z(B)={z€ B:zb=bzforallbe B} = F.

We define the degree of an algebra B to be the minimal m € N such that every
clement b € B satisfies a polynomial f € F[X] (i.e. f(b) = 0) of degree < m.
Further B is called simple if it has no non-trivial two-sided ideals (as a ring).

One has the following well known result.

Theorem 5.1. Let B be an algebra over F. Then the following statements are

equivalent:
e B is a quaternion algebra;
e B is non-commutative and of degree 2;
e B is central and of degree 2;
e B is central, simple with dimp(B) = 4.

Each quaternion algebra B can be equipped with an involution « — @ given by
a+ Bi+ )+ 0k — a— i —v) — dk.
This involution is standard in the sense that bb € F for all b € B. We define
nr(b) = bb and tr(b) = b+ b.
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Example 5.2. If B = (%b) one can compute that

nr(a + Bi+vj +05) = a* — aB* — by* 4 abé? and tr(a+ i +vj + 67)) = 20
It is a nice exercise to check some basic properties of this involution and the

associated (reduced) norm and (reduced) trace. In particular their relation to
det(m;) and Tr(my), where my, € Endp(B) is given by my(z) = b - 2.

Remark 5.3. The norm gives rise to a non-degenerate quadratic form of discrimi-
nant 1 = a?? € F/(F*)2.
Definition 5.3. We call a quaternion algebra B over F split if B = My(F). A
field K is called splitting field for B if B ®p K = My(K).
Example 5.4. Either a € (F*)? and B = (%2) = (&) = My(F) is split. Or
a & (F*)?, then F(y/a) splits B.
Definition 5.4. We define the Hilbert symbol (-, )p: F* x F* — {£1} by
i (%) is split
o1 £ =

—1 else.
Theorem 5.5. We have the alternative description of the Hilbert symbol

1 if ax?® + by? =1 for some x,y € F,
(CL, b)F =
—1  else.

Proof. We omit the proof. However, it is a good exercise to play around with the
Hilbert symbol and establish some elementary properties. (For example what is
<a7 a’)F?) U

Remark 5.6. The theory for F' with even characteristic is similar but slightly more
technical. We will not discuss these issues here. Let us only remark, that one
should require the generators i, j to satisfy

i*+i=a,j*=>bandij=j(i+1).
Furthermore the Hilbert equation should read bz? + bxy + aby? = 1.

So far we have discussed quaternion algebras over a very general set of fields.
Now we will specialise to certain cases important for our goal. These will be R,
Q, and Q.

The theory over R should be well known. One of the central results is that the
only non-split quaternion algebra over R is H. We will now prove that the same
holds true over Q,.

We define the p-adic integers by

L, = lé'I_nZ/p”Z ={z = (zp)nen: Tpy1 = x, mod p" for all n € N}.
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The quotient field is given by Q, = Q(Z,). Another more analytic way of thinking
about Q, is as follows. We equip Q with the metric |z], = p~*® where v,(p®z’) =
a whenever (p,z’) = 1 is the p-adic valuation on Q. Then Q, is the completion
of Q with respect to ||, and Z, = {z € Q,: |z|[, < 1}. Obviously Z is dense in
Z,. Of course v, extends to a discrete valuation on QQ, with values in Z. Let K be
some (quadratic) extension of Q,. Then there is a unique valuation w on K which
extends v,. It is given by

~ 5p(Nrgpg, (2))
wie) = (K Q)

This fact is usually proven in an algebraic number theory course and we take it
for granted.

Lemma 5.7. Suppose B is a quaternion division algebra over Q,. Then there is
a unique (discrete) valuation w: B — R U {oco} extending v,. Furthermore, it is
given by
vp(nr(@))

5 :
Proof. We start by showing that w is indeed a discrete valuation. The property
that is not completely straight forward is the inequality w(a+ ) > min(«, 5). To
see this we can assume that 5 # 0 and compute

wla+ B) =w(ap™ + 1)+ w(B) > min(w(aB™),0) +w(f) = min(w(a), w(s)).

Here we used that K = Q,(af7!) is a quadratic extension of Q, and w|x defines
a valuation. Uniqueness can be reduced to to the uniqueness in the quadratic field
case by considering w|g() for a € B*. Il

w(a) =

Given a quaternion division algebra over QQ, we define
O={aeB:wla) >0} and P={a € B: w(a) > 0}.

Then O is a (non-commutative) local ring with unique two sided ideal P. We
claim that P = Of where [ is an element § € P with minimal valuation. Indeed
given a € P\ {0} we check w(af™) = w(a) —w(B) > 0. Thus af~ € O and
a € Of. Similarly one sees P = 0 = OpB0O.

Theorem 5.8. There is a unique division algebra B over Q,. For p # 2 this is

given by
€D
B=|—
(%)

where e 1s a quadratic non-residue modulo p.

The proof proceeds by classifying anistropic ternary quadratic forms over Q, up
to similarity. This can be done in an elementary manner. We will sketch a proof
using the theory of valuations.
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Proof. By computing the Hilbert symbol we see that (é%:) is non-split and thus

a division algebra. It remains to show uniqueness. Thus, let us take some other
quaternion division algebra B’ over Q,. As argued above this comes with a unique
valuation w, local ring O" and P’ = 0O’. We compute

w(B) < w(p) =vy(p) = 1 < 2w(B) = w(B?).
This yields the inclusions
BO' = P' > p0 > P? = p*0.
Obviously O'/P' = P'/P"? so that
4 = dim(0’'/p0’) < dim(0'/P"*) = 2dim(O'/P").?

We conclude that dim(O’/P’) > 2 with equality if and only if pO’ = P?. We
observe that O’/ P’ is a finite division algebra over I, and therefore must be a field
(Wedderburn’s little theorem). In particular there must be i € O’ such that the
reduction i € O'/P’ satisfies O'/P' = F,(i). Of course B has degree 2 and i is
integral.” We conclude that F, (i) is an extension of degree 2 and get pO’ = bloP"?,
dim(O'/P') = 2 and w(B) = 5. Of course K = Q,(i) = Q,(y/e) must be the
unique unramified quadratic extension of Q,. By changing variables accordingly

we find B’ = <%> for some b € Z,. Note that (with extra care for p = 2) one

sees that v,(b) > 1 and another suitable change of variables yields the desired
equivalence. O

We now turn towards quaternion algebras B over Q. For a prime p we write
B, =B®qQ, and B,, = B®gR. We say B ramifies at v € {p: prime } U{oo}
if the completion B, is a divison algebra. Otherwise, if B, & M(Q,), we call
B unramified at v.'"° Let Ram(B) be the set of places v at which B ramifies."
We call B definite if co € Ram(B) and indefinite otherwise. We define the
discriminant H of B by

discB)=H=[[ »
peRam(B)\{o0}

ab

] ) Without loss of generality we can assume

From now on let us fix B = (
a,b e .

Remark 5.9. Note that B is definite if and only if (a,b)g = —1, which happens
exactly when a,b < 0.

8All dimensions are over F, and we implicitly use the fact that O is a Z-lattice of rank 4.
This is not hard to see but will also be discussed later on when we are dealing with orders.

9Also this fact is borrowed from below.

ONote that unramified at v is just a fancy way of saying that B, is split.

HThis is a finite set of places, as can be seen using properties of local Hilbert symbols.
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Next we derive a remarkable parity restriction for the local Hilbert symbols.

Proposition 5.10 (Hilbert reciprocity). For all a,b € Q* we have
(a,0)g - | J(a,b)q, = 1.
P
We prove this using quadratic reciprocity and a complete understanding of the
Hilbert symbol (-, )qg,-

Proof. By multiplicativity it is enough to prove this for a,b € {p: prime }U{—1}.
We consider several cases.

First a = b = —1. In this case we have
-1 ifv=2 00
—1,—1)q, = T
( Je. {1 else.
Second a = —1, b = p this covers also a = p, b = —1 by symmetry as well as

the case a = b = p since (a,a)r = (—1,a)p. Obviously we find (—1,p)r = 1 and
(=1,p)q, = 1 for primes ¢ # p. Furthermore for ¢ # 2 we have

(~1,p)q, = <‘71) _ (1R

At the place 2 we have
1 ifp=2orp=1 mod4
(_17p)Q2 = : _
—1 ifp=3 mod4

Putting everything together concludes this case.
Finally lets look at a = p, ¢ = b for (positive) primes p # ¢. By direct compu-
tation one finds

(p,q)r = 1 and (p, q)q, = (—1)P~De=D/4 — {—1 it pg=3 mod 4

1 else.
For all primes [ { 2pq we have (p, q)g, = 1. Thus we are left with

o Tl 0 (2) (2) 1.

p
In the last step we used the quadratic reciprocity law. U

Proposition 5.11. Given a finite set ¥ C {p: prime } U {oo} with an even
number of elements. Then there is a quaternion algebra B over Q with Ram(B) =

Y.
Proof. Set

-1 if by
D= H pand u = oo € 2,
1 else.
pEX\{oo}
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We now choose a prime ¢ such that uq is a quadratic non-residue modulo p or all
2#p| D and

1 mod8 if2¢tD,
up =
P=35 mods if2]D.

Such primes exist due to Dirichlet’s theorem concerning primes in arithmetic pro-

gressions. Now define
B (uD,uq) .
Q

Y C Ram(B) C X U{q}.

By construction we have

According to Hilbert reciprocity Ram(B) must contain an even number of ele-
ments. Thus, since ¥ has an even number elements we find Ram(B) = ¥ as
required. U

Proposition 5.12. Let B, B’ be two quaternion algebras over Q. Then B = B’ if
and only if B, = B, for allv € {p: prime } U{oo}.

The proof can be reduced to the Hasse-Minkowski theorem, which is a local-to-
global principle for quadratic forms. We skip the details.

Combining the last three propositions yields the following nice classification
result.

Theorem 5.13. There is a one-to-one correspondence between Quaternion alge-
bras over Q up to isomorphism and square-free positive integers H. In other words,
a quaternion algebra is uniquely determined by its discriminant H.

Exercise 8. Consider the quaternion algebra B = (%) and determine the

places where it ramifies.

Proof. We first observe that

—2
(—2, _37>R = —1 and (—2, —37)@37 = (—2, —1)(@37 (—) = —1.
In particular we find that
{00,37} € Ram(B) C {0, 2,37}.

Thus by Hilbert reciprocity we must have {co, 37} = Ram(B)."* In particular, B
is definite and has discriminant H = 37. 4

120f course one can also compute the Hilbert symbol

(727 737)@2 = (717 71)@2 (27 71)@2(71737)(@2 (2737)(@2 = (71) -1-1- (71) =1
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5.2. Orders in quaternion algebras. Let R € {Z,Z,} be a principal ideal
domain, take F' = Q(R) and let B be a quaternion algebra over F.

Definition 5.5. A (R-)lattice L is a finitely generated submodule L C B such
that LF' = B. A lattice O C B is called an order if it is a subring of B. We call
an order maximal, if it is not properly contained in any other order.

Example 5.14. We have the following important examples of orders:
(1) Suppose B = M, (F) is split, then My(R) is an order in B.
(2) Suppose B = (“?b), then O = R& Ri & Rj & Rk is an order in B.
(3) Given a lattice L we define
O(L)={aeB:aLCL}and O.(L)={a€ B: La C L}.

This is the left order (resp. right order) of L. These orders will be of key
importance later on.

Lemma 5.15. Let FF = Q. Then an order O C B is maximal if and only if
O, = 0 ®z, Zy, s mazimal for all primes p.
Proof. First let O be maximal and suppose that for some prime ¢ we have O, C O,
We define 0" = O, N, 44 Op- Obviously O C O', which implies O = O’ and
O, =0y

Now we prove the the other direction. Suppose O C O'. Then we have O, C O,
for all p and since O, is maximal we must have O, = O;,. We conclude that

0=(10,=(10,=0.
p p
O

Lemma 5.16. Let F = Q and O C B be an order. Then there is a maximal order
O’ C B containing O. In particular, maximal orders exist. Furthermore, O, is
mazimal for all but finitely many p.

Proof. We leave the proof as an exercise for the reader. O

Thus we need to study orders in quaternion algebras in non-archimedean fields
F = Q,. Let us start with the split case B = M»(Q,). In this case we have
a very general construction of orders. Indeed let V be a F-vector space with
dimp(V) = 2. Then B = Endp(V). Given a Z,-lattice L C V' we define

Endg(L) ={f € Endr(V): f(L) C L}.
It can be shown, that this is an order.

Lemma 5.17. Let B = Endp(V') as above. Every mazimal order O in B is of the
form O = Endg(L) for some lattice L C V. Furthermore, every mazimal order in
M5(Qy) is congugate to My(Z,).
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Proof. We show that every order is contained in Endg(L) for some lattice L C V.
The first statement then follows from maximality while the second one can be
obtained by a suitable change of basis.

Given any lattice N and any order O" we define the lattice L = {z € N: O’z C
N}. By definition we have O" C Endg(L). O

Example 5.18. Another important example for an order in My(Q,) is given by

a b
Mo (p*) = {(C d) € My(Z,): c € p’“Zp} :
Note that this order can be constructed as the endomorphism ring of a lattice.

We not turn to the non-split situation. We are still considering F' = Q, but
now we are assuming that B is a division algebra. Here we have the following
important result.

Lemma 5.19. Let O = {a € B: « is integral over Z,}. Here an element o € B
is called integral if there is a monic P € Z,[X] such that P(a) = 0. Then O is the
unique maximal order in B.

Proof. 1t can be seen that all elements of an order must be integral. Thus, if we
succeed to show that O is an order it must be the unique maximal order, since it
contains all orders. We claim that O coincides with the valuation ring of B. If
this is shown O is obviously a ring and satisfies Q,0 = B. Furthermore, since all
elements of O are integral it follows that it must be an order."

Thus we need to show that o € O if and only if w(«) > 0. To show this we first
suppose that « is integral. Then the minimal polynomial f,(X) = X? — tr(a)X +
nr(a) € Z,[X]. In particular nr(a) € Z, and w(z) = # > 0. On the other
hand, if w(a) > 0 we set K = Q,(«) and obviously 0 < w(a) = w|k(c). Since the
ring of integers of K coincides with the valuation ring w|' (Rsg) we are done. [

Corollary 5.20. We can write O = Sk + Skj, where Sk is the ring of integers
in K = Q,(v/e) the unique unramified extension of Q, and P = Oj is the unique
mazimal ideal of O.

Proof. By Theorem 5.8 we have B & (%) We can rewrite this as B = K + Kj
with j2 = p. In particular, given a = u+ vj we have nr(a) = nr(u) — pnr(v). Now
the p-adic valuation of nr(u) is even while the one of pnr(v) is odd. We conclude
that v,(nr(a)) > 0 if and only if v,(nr(v)) > 0 and v,(nr(uw)) > 0. We are done
since Sk = {z € K: vy(nr(x)) > 0}. O

Q2
i+ j + k) satisfies the Zo-integral equation w? + w + 1 = 0. One concludes that

Example 5.21. Let B = (71’*1>. One can show that the element w = %(—1 +

131t makes a nice exercise in algebra to show that a ring O consisting of integral elements with
Q,0 = B is finitely generated.
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the order Zg + Zgi 4+ Zsj + Zsok is not maximal. On the other hand the unique
maximal order is given by O = Zy + Zoi + Zoj + Zow.

We now turn to the global situation. Let F' = Q and B be a quaternion algebra
over Q. Let us start with a simple example.

Example 5.22. The lattice L = Z + Zi + Zj + Zk is an order, the so called
Lipschitz order, in B, but is not maximal. It is contained in the maximal order

O=Z+7Zi+7Zj+ Zw,
for w = _1+’Tﬂ+k This order is called the Hurwitz order.

In general orders in B are very wild objects. Therefore we restrict ourselves to
special classes of orders.

Definition 5.6. An order O C B is called hereditary if for all p we have O, is
maximal or O, = My(p) C M(Q,) = B,. More generally we call O an Eichler
order if O, is maximal or O, = My (p*) C Ms(Q,) = B,.

Definition 5.7. Let O C B be an order with Z-basis a1, as, a3, ay. Then we
define
dlSC(O) = |d€t(t1‘(0&2‘04j>>i7j| e N.

Note that in general the discriminant is an ideal instead of a ring element.
However, since all the rings we are considering are principal ideal domains we can
make this simplification here.

Example 5.23. If B — (55’) and O = Z + Zi + Zj + Zk, then

disc(O) = (4ab)>.
Proposition 5.24. An order O is mazimal if and only if disc(O) = disc(B)>.

Furthermore, O is hereditary if and only if disc(O) = M? disc(B)? with M square-
free and (disc(B), M) = 1.

The proof reduces to local computations of discriminants using the following
two lemmata. We leave the details to the reader.

Lemma 5.25. Let O C O’ be two orders in B. Then
disc(0) = [0 : O]3 disc(0O),
for [0 : Oz = #(0'/O).** Furthermore, O = O' if and only if disc(O) = disc(O').
Lemma 5.26. We have disc(O,) = p* (45O gnd disc(O) = [ 1, disc(Op).
MErom this one can derive that disc(O) is always a square. Thus some authors prefer to define

the reduced discriminant which essentially is discrd(O) = /disc(O). Of course there is also a
proper algebraic construction of the reduced discriminant.
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We end this subsection on orders by quickly discussing the unit group O* of an
order O C B, for definite B. Recall that we have the inclusion B C B,,. Since
B is definite B, is a divison algebra, so that nr: B — R defines an anisotropic
quadratic form. Since B, is a finite dimensional real vector space nr must be
definite. Further nr(1) = 1, which implies that nr is positive definite.

Now suppose u € O*. Then nr(u),nr(u"!) € Z,, since O is an order. Further
by multiplicativity of the norm we must have nr(u) -nr(u=!) = 1. Thus nr(u) = 1.
Since O is a lattice and {x € By : nr(z) = 1} is compact we find that O* is finite.

Note that more can be said. Indeed, by uniqueness we know that B,, = H. But
the unit group of the Hamiltonian quaternions and its finite subgroups are well
understood. One can prove the following theorem.

Theorem 5.27. Let O be a Z-order in a definite quaternion algebra B. Then
O* /{£1} is one of the following:

Cyclic of order 2,4 or 6;

Quaternion of order 8;

Binary dihedral of order 12;

Binary tetrahedral of order 24.

Exercise 9. Let B = (%) Show that

1 1
O:5(1+j+k)z+Z(i+2j+k)Z+jZ+k:Z (15)
is a maximal order.

Proof. We first compute the matrix

54 37 37 T4

37 28 37 37

A=(rlaay))is == 137 37 74 0

74 37 0 148
Now disc(O) = |det(A)| = 1396 = 37%. Since disc(B) = 37 we find that O is
maximal. O

5.3. Ideals in quaternion orders. Let B be a finite dimensional Q-algebra. It
would make sense to consider more generally finite dimensional F-algebras, for a
number field F', but for our purposes F' = Q suffices.

We will now have to talk about ideals and ideal classes in orders. The goal is to
somehow generalise the theory known for number fields. It is however necessary
to properly deal with the non-commutativity.

Definition 5.8. We call a lattice L principal if there is o € B such that
L=0/(L)a=a0,.(L).

We call a the generator of L. We call L locally principal if L, is principal for
all p. We call L integral if L C O;(L) N O,(L).
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Remark 5.28. Tt is a nice exercise to observe that the obvious notions of left-integral
and left-principal are equivalent to our definition. Further one can observe that L
is integral if and only if it is a right (resp. left) O, (L) ideal (resp. O;(L) ideal).

Definition 5.9. let O be an order in B. A left-fractional-O-ideal (resp. right-
fractional-O-ideal) is a lattice L C B such that O C O;(L) (resp. O C O,(L)).
Given two order O, O’ we say L is a fractional-O, O’-ideal if it is a left-fractional-
O-ideal and a right-fractional-O’-ideal. We call L sated (as a left-fractional-O-
ideal) if O = O;(L). We can extend the notion of satedness in the obvious way to
right-fractional-O-ideals and fractional-O, O'-ideals.

Definition 5.10. Let L, J C B be two lattices. We say L is compatible with J
if O,.(L) = Oy(J). We set

LI={aB:acL,BeJ}

Definition 5.11. We call a lattice L C B right (resp. left) invertible if there is
a lattice L' C B such that L is compatible with L’ (resp. L’ is compatible with L)
and LL' = Oy(L) (resp. L'L = O,(L)). We call L’ the right (resp. left) inverse of
L. We say L is invertible if there is a lattice L' which is simultaneously right and
left inverse for L. We call L’ the two-sided inverse and write L=! = L'. It is given
by

L'={a€B: LaL C L}.

Remark 5.29. It is a nice exercise to show that principal lattices are invertible.

Definition 5.12. A left (resp. right) fractional O-ideal is lattice L C B with
O C Oy(L) (resp. O C O,(L)). We define
nr(L) = ged({nr(a): o € L}).
For an integral ideal L we define the absolute norm by
N(L) = $(O(L)/L).

If L is fractional there is a € B* with aL integral and we define in an ad-hoc
manner'’

N(alL)

nr(a)?

N(L) =

Remark 5.30. If L is principal with generator «, then we have nr(L) = nr(a).
More generally one has nr(aL) = nr(a)nr(L). Further nr(L;Ls) | nr(L;)nr(Ls)
but equality does not hold in general. To prove these facts is a nice exercise.

Lemma 5.31. Suppose Ly is compatible with Ly and Ly or Ly is locally principal,
then nr(LyLy) = nr(Ly)nr(Ls).

150ne can correctly define the Z-module Nmp,p(L) = {nr(a)?: a € L} the absolute norm is
then given by N(Nmp,p(L)). This works also over number fields.
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Proof. Note that the equality nr(aL) = nr(a)nr(L) holds also locally. Thus one
completes the proof by observing that nr(L) = [, nr(Ly). O

In the split case we have the following nice result concerning principal lattices.

Proposition 5.32. Let R be a principal ideal domain and F = Q(R) be its field
of fractions. Further let L C My(F) be an R-lattice such that O)(L) or O,.(L) is
mazimal. Then L is principal and both Oy(L) and O,.(L) are mazimal.

Proof. Without loss of generality we assume that L is integral and O;(L) = My(R)
is maximal (rescaling and conjugating).
We choose a set of generators aq, ..., a,, of L and define the matrix

A= (Oél ce Oém)t c MngQ(R).

Bringing this matrix in Hermite normal form yields @ € GLs,,(R) with QA =
(8,0)t for 8 € My(R). One concludes the proof by showing

L = My(R)S.

We leave the details as an exercise. U
In a similar direction one has the following important result.

Proposition 5.33. A lattice L is invertible if and only if L is locally principal.

Corollary 5.34. It Ly or Ly is invertible, then nr(LyLy) = nr(Ly)nr(Ls).

Definition 5.13. We call a fractional-O, O’-ideal L invertible if it is invertible
as a lattice and sated.

Remark 5.35. It can be shown, that for a maximal order O all left (or right)
fractional O-ideals are invertible. This does not remain true in general.

Definition 5.14. Two lattices L1, Ly C B are in the same right class, if aL; = Lo
for some o € B*. We write Ly ~, Ly. (Similarly one defines left classes.) This
defines an equivalence relation and we denote its classes by [-],. We define the
right class set of O by

Cls,(O) = {[L],: L is an invertible right-fractional-O-ideal }.

Our task is now to show that the right class set is finite. To do so we will employ
the geometry of numbers. Let us start by giving a crash course in it.

A lattice A C R™ is a discrete subgroup such that R"/A is compact. Alterna-
tively we can say A = Z" and RA = R". We define

covol(A) = vol(R™/A).

More concretely there is a basis oq,...,q, of R" such that A = @, Z«a; and
covol(A) = |det(a; )i ;|-
We will use the following theorem.



TOPICS IN AUTOMORPHIC FORMS 59

Theorem 5.36 (Minkowski). Let X C R"™ be a closed conver symmetric subset
and let A C R™ be a lattice. If vol(X) > 2" covol(A) then there is 0 # o € AN X.

Proposition 5.37. Let B be a definite Quaternion algebra over Q with an order
O C B. Then every ideal class in Cls.(O) is represented by an integral right-O-

ideal L with g
N(L) < —+/disc(O).
T

In particular, the right class set Cls.(O) is finite.

Proof. Let B = (“—b) Since B is supposed to be definite we can assume a, b € Z.

Q
We have
B =B®ogR=H.
More concretely we can embed B, — R* via

t+ @i+ yj + 2k — V2(t, 2/ —a, yvV/—b, 2V ab).

It is easy to verify that 2nr(a) = ||«||?, where || - || is the usual euclidean norm on
R*. Further we compute
disc(O) = covol(0)?,
where we view O as a lattice in R* under the embedding above. This is obvious if
we can choose a diagonal basis for O.
Let J be an invertible right-fractional-O-ideal. We need to find an integral
ideal L with small absolute norm in the same class of J. To do so we set ¢* =

2 covol(J71) and X = B.(0). This is obviously closed, symmetric and convex with

vol(X) = 16covol(J 1),

so that Minkowski’s theorem tells us that there is a € (J7' N X) \ {0}. We put
L = oJ. By construction we have [L], = [J], and L is obviously integral. We have
to estimate the absolute norm:
disc(0)2 8 ..
——— < —disc(0)z.
covol(J~1) = w2 ise(0)

The finiteness of the right class set follows since there are only finitely many
integral-right-O-ideals of given norm. O

ol

N(@]) = mr(a)’N(J) = 1ol *N(7) = o]

Definition 5.15. We say two orders are of the same type if there is o € B* such
that O’ = a~!Oa. We write O = O'. We call O and O’ connected if O, = O, for
all p. We set
Gen(0O) = {O": O is connected to O}.
We define the type-set of O, denoted by Typ(O), to be a set of different types of
orders making up the genus of O.'°
160f course being of the same type defines an equivalence relation on the set of all orders and

thus in particular on Gen(O). The type set is exactly given by Gen(O) modulo this equivalence
relation.
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Example 5.38. There is a unique genus consisting exactly of maximal orders.
Lemma 5.39. Let O' € Gen(O) then £Cls,(O) = 4Cls,.(O").

Proof. The key is to construct a locally principal fractional O,0’ ideal J C B. Once
one found such an ideal, also called a connecting ideal, one obtains the bijection

Cls,(0) — Cls, (0", [I], = [I]],.

It is a nice exercise to construct J using the assumption that O and O are
connected. One can even go further and show that O and O’ are connected if and
only if such an ideal J exists. U

Remark 5.40. One can show that the map
Cls,.(O) — Typ(O), [1], — class of O;(I)
is surjective. In particular, the set Typ(O) is finite.

We end this section by giving an idelic incarnation of the right-class-set. To do
so we quickly introduce some notation. We write

Ap = l_IprX = {(bp)p: b, € O, for all but finitely many p},
P
A}, =By x A}, and 0* = ] O
)

These are the finite ideles and the ideles of B. Note that B* embeds diago-
nally in Az and Aj ;. Further O* embeds diagonally in O*. Suppressing these
embeddings from the notation we have

B*Nn0O* = 0~.
Lemma 5.41. There is a bijection
Cls.(0) <+ B*\A} /O,

Proof. Take an invertible right-fractional-O-ideal I. Then I is locally principal

so that we can write [, = )0, for o, € BS, which are well defined up to right

multiplication by O. Thus we get a well defined map
{ invertible right-fractional-O-ideals } — A% ./ 0%, I = (ap)p.
This map descents to the desired bijection. (

This is completely analogue to the situation in quadratic fields K (or more
generally separable ) algebras of dimension 2) with an (Z)-order t. Indeed here
one has an group-isomorphism

Cls(v) = KX\AS /7. (16)
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Here the definitions are completely analogous.
/
Ax=][IK®@Q), and v =] [k ®2Z,]".
p P
The adeles and ideles turn out particular useful if one wants to work over more
general number fields than Q. However, they form a flexible framework to ef-
ficiently implement the local-to-global arguments that we have already used so
many times.
We conclude this section by proving an adelic compactness result which also
implies the finiteness of the class number. Note that the ideles come with a mul-
tiplicative map

111 A% = Roo, (@0)o = ] TInr(aw)lo.

We define Ag) = ker(|| - ||). Of course we have the inclusion B* C Ag) diagonally.

Theorem 5.42. Let B be a division algebra over Q, then B* C Ag) 1S co-compact.

Remark 5.43. One deduces easily that B* C Aj s 1s co-compact which on the other
hand implies that B*\A g s / O* is finite. This is a standard topological argument!

Proof. In this proof we will use the following existence statement which can be
interpreted as an adelic version of Minkowski’s convex body theorem. There is a
compact set E C Ap such that for all § € Ag) the map fE — Ap — B\Agp is
not injective.

Let E be as above and set X = E — E. Note that X as well as X - X are
compact in Ag.

By construction of E there exist distinct elements x, 2’ € E such that f(x—2') €
B\ {0} = B*. Thus, for all 8 € A} we know that X N B* # 0.

Define T'= B* N X - X. Since X - X is compact and B* is discrete, T" must be
a finite set. Further we put

K=T"'XxX,

which is obviously finite. Now given § € Ag) we know that 8X N B* # () and
similarly X371 N B* # (. Unravelling this we find v,v’ € X and b, € B* such
that fv = b and v/~ = /. In particular

bb= (B (fv) =vve B*NX-X =T.
This implies v™! € T7'X and 8 = bv~!. Thus we have seen that we can decompose
Ag) = B*d~Y(K) where d: Ag) 5>z (z,27HAY x Aj.

In particular we have a surjection d~*(K) — BX\AS). Since the set d~(K) is
compact we are done. O
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5.4. Eichler’s mass formula. We are now going to prove a formula for the
(weighted) number of (right)-classes in an order O. This can be seen as a quater-
nionic analogue of Dirichlet’s class number formula for imaginary quadratic fields.

Definition 5.16. Given an order O we define the zeta-function of O by

1 = a,(O
Cols) = Z N Z n(zs)

ICcCO n=1

with
an(O) =8{I C O:nr({) =n}.

If O is a maximal order this corresponds to the Dedekind zeta function of an
imaginary quadratic field.

Lemma 5.44. If O’ € Gen(O), then a,(0) = a,,(O") for alln € N. In particular,
Co depends only on the genus of O.

Proof. Using the local to global properties of lattices it is easy to construct a
bijection between {/ C O: nr(I) =n} and {I C O": nr(I) = n}. O

Lemma 5.45. Let I be an invertible integral lattice with nr(I) = nm for integer
(n,m) = 1. Then there is a unique integral lattice J such that I is compatible with
J~Y and IJ71 is integral and nr(J) = m.

Proof. The lattice .J is constructed locally. U
Corollary 5.46. For (n,m) =1 we have apm(0) = a,(0)a,(O).
Proof. Let A,,(O) ={I C O: nr(I) =n}. We have a map

A (0) = A, (0), I — J,

where J is the unique lattice constructed in the previous lemma. One can show
that each fibre of this map has cardinality a,,(O). O

This obviously implies that (o(s) is eulerian. Thus we can write

Co(s) = [ [ ¢o, (9)-

If O is a maximal order the numbers a,(0) can be computed explicitly and one
finds

Co(s) = ¢(2s)¢(2s = 1) J[ @=p"™).

p|disc(B)

On the way one establishes that, for (n,disc(O)) = 1, we have
a,(0) = o1(n).
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Lemma 5.47. For a mazimal order O we have

(1) = lim(s = )Go(s) = =

where H = disc(B).

Proof. From the explicit formula above we see that

O

The main reason behind defining these quaternionic zeta functions is to gener-
alise Dirichlet’s class number formula for imaginary quadratic fields. Indeed one
can prove the following weighted class number formula for Eichler orders.

Theorem 5.48. Let B be a definite Quaternion algebra over Q and let O be an
FEichler order with disc(O) = M*D?, where D = disc(B) and (M, D) = 1. Then

_ L _ p(D)Mp(M)
mass(Cls.(O)) = Z o B ;
[J]-€ Cls;(O)
where wy = §(O)(J)*/{£1}) and ¢ is the Euler toitent function and (M) =
[T (14 5)-

Before we can prove this theorem we need some preparation.

Definition 5.17. We define the partial zeta-function of O as follows. Let J
be an integral invertible right-O-ideal. Then we define

Co,u.(s) = Z N(I)™.
1co,
U]r=[J]r

Remark 5.49. These new functions are built such that
Cols) = > Com(s).
[J]r€Clsr(O)

On the other hand, since uJ = J if and only if u € O)(J)* and [I], = [J], exactly
if I =aJ for o € J71, we have

1 —2s
o ()= oy 2 mle)™
7 0£ae]—1/{+1}

We will need to understand the analytic properties of these functions. We will
do this by invoking the following theorem, which we don’t prove here.
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Theorem 5.50. Let A be a Z-lattice, X C R™ be a cone and N: X — Ry
be a function such that N(tx) = t"N(z) for all x € X and t € Ry. We set
Xa={xe X: N(x) <1}. Then

1
Cax(s) = Z N(A)®

XNA

converges for Re(s) > 1 and
UOZ(X<1)
f (1) = ==
Gx(l) covol(A)
Lemma 5.51. We have

7.(2

wy disc(O)2

Proof. First we can identify J~! with a lattice A C R*. This is done as in the
proof of Proposition 5.37. There we did also see that

Co. (1) =

di 1
covol(A) = %
Recall that under this identification we also have 2nr(a) = ||«/|?>. We now take

the cone X by suitably choosing a fundamental domain for the action of {1} on
Bgr = R*. Putting N = || - ||*, we find

1
Co.(8) = WCA,X(S)~
The above theorem implies the statement since vol(X<;) = ’1—2. u

Proposition 5.52. If O is a mazximal order, then

plH)

mass(Cls,.(0)) = T

where H is the discriminant of B.
Proof. Since disc(O) = H? for maximal orders we have

p(H) _ Egg)(l) = g Z (5,1, (1) = mass(Cls,(O)).

12 2
[J]r€Cls,(O)
O

We will now reduce the general case to the one of maximal orders as follows.

Definition 5.18. We call O' D O a (Z)-superorder if there is a prime [ such
that O, = O, for all p # [.

Lemma 5.53. If O is a superorder of O, then we have
mass(Cls,(0)) = [(0;)*: O Imass(Cls,(0")).
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Proof. We have the surjective map
Cls,.(O) — Cls,.(O"), [1], — [IO'],.

We need to understand the fibres of this map. Without loss of generality we
can work with suitable representatives. The fibres of this map (on the level of
representatives) are

F(I"={IcoO:10"=T1}.
Given p; € (0))* we define

[IM] _ ,Bl/LlOl lfp = l and Ip = ﬁpOp,
A if p £ 1.
This defines a simply transitive right action of (0))* on F(I'). The kernel is of

course O/. In particular $F(I') = [(O))*: O/]. One further checks that [[*], =
[1"], if and only if al* = I" for a € O;(I")*. We thus get

mass(Cls,(0)) = Z Z i

wr
[I']-€Cls(O') IEO(I')X\F(I")

Unravelling the inner sum using the observation above concludes the proof. U

In general the index [(O;)*: O;] is determined by the so called local Eichler-
symbol.'” Since we are only interested in Eichler orders we can be more concrete.
Suppose B; splits and O; = My(I¥). We now take O] = My(Z;). Tt is well known
that in this case it is well known, that'®

(O O] =" (1 +171) =y (I").

With this at hand we can complete the proof of the main theorem of this section.
Proof of Theorem 5.48. We argue by induction on the number of prime divisors of
M. If M =1, then we are done because O is maximal. Now suppose [ | M. Let

O’ be the Eichler order of level M/(M,[>°). This is a superorder of O and by the
results above we have

mass(Cls, (0)) = ¥((M,1°))mass(Cls,(O")).
We conclude the prove by applying the induction hypothesis together with
DM, I2) (M (M, 17)) = ¢ (M).
O
Note that Eichler’'s mass formula is a very clean statement. Unfortunately it is

not a straight forward task to remove the weights w;. This can be done with the
help of the theory of embedding numbers which we develop next.

"This should remind one of how the Kronecker-symbol turns up when relating class numbers
of orders in imaginary quadratic fields to the class number of the ring of integers.
18This is a reincarnation of the fact [SLa(Z): To(I%)] = 1(1%).
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Exercise 10. Let B = <%> and take O as in (15). Show that O has class

number 3. Further, find representatives of left O ideals and compute their norm.

Proof. In practice one can use Proposition 5.37 to find integral representatives for
the class group of small norm. In our particular case one would need to find all
integral ideals I with

2
1<nr(l)=N(I)z <5< 2v2.37<6.
m

Of course the only ideal of norm 1 is the order itself and we have Iy = O. The
computations for 2,3,4 and 5 get slightly unpleasant. The idea however is that,
since p = 2,3,5 are unramified, we can embed O, — M(Z,) for p = 2,3,5.
One then uses normal form theory to classify all possible ideals of these norms.
The tricky bit is then to find the relations between them and pick convenient
representatives. This is illustrated in [9][Example 17.6.3] for a different B and O.

We omit the computations but give the following set of representatives taken
from [5][Example 10.1]: Cls; = {[L1];, [I2];, [I3);} for I, = O,

Iy = (246§ + 10K)Z + (i + 2j + 9k)Z + 12jZ + 12kZ,
I5 = (2 4 267 + 26k)Z + (i + 2j + 13k)Z + 28j7 + 28kZ.

Note that it is not hard to pass from left classes to right classes. However, these
representatives don’t have small norm.

O

5.5. Embedding numbers. Let K be a separable quadratic Q-algebra (i.e. ei-
ther a separable quadratic field extension of Q or Q@ x Q). Embeddings from
K < B are parametrised by K*\B*. This can be deduced from the Skolem-
Noether theorem.

We want to restrict our attention to integral embeddings. More precisely, fix an
order O C B and an order v C K. We consider embeddings ¢: v < O. Such an
embedding can be extended to K in the obvious way.

Definition 5.19. An embedding ¢: v < O is optimal if it satisfies
(K)NO = ¢(v).
The set of all such embeddings is denoted by Emb(t, O).
This gives the following partition of the set of all embeddings:
{¢:t— O} =| | Emb(¥,0).
vDr

Example 5.54. Suppose d < 0 with d = 0,1 mod 4, then K = Q(+/d) defines an
imaginary quadratic field of discriminant dx = f~2d and ring of integers Q. Fur-
thermore, there is exactly one order ty24, C Ok of conductor f and discriminant
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d. We have
{¢: tpg = O} = | | Emb(ryny,, 0).
I'f
Lemma 5.55. An embedding ¢: v — O s optimal if and only if ¢,: v, — O, is
optimal for all p.

Proof. Follows directly from the local-to-global properties of lattices. O

Given v € O* and an optimal embedding ¢: v — O we can form the conjugate
a v to(a)y. We set

Emb(t, O7 OX) = Emb(t, O)/ ~OX,

where ~px is the equivalence relation coming from conjugation with elements of
O*. We set
m(t,0,0”) = fEmb(r, 0,0%).

Lemma 5.56. We have
Emb(v,0) = K*\E and Emb(t,0,0*) = K*\E/O™,

for
E={Be€B*: KNBOJ ' =1l

We have the following important result, which reduces the computation of em-
bedding numbers to local considerations.

Proposition 5.57. One has
> mr,0I),0(I)*) = h(r)m(F,0,0%).

(1) € Cls,(O)
Here the adelic embedding number is defined by m(t, 5, 6X) = ﬁAIXCf\E/@\X, for
E={BecA},;: p'AxsB N0 =578},
Proof. We have the natural surjective map
KX\E/O* % A} \E/O*.
We claim that the cardinality of theA fibres of p is precisely the class number h(t)."”
In general the the fibre p~" (A ;80%) consists of

K*vB0* with K*v € KX\AY .

A short computation shows that vaﬁé\x = Kxﬁax if and only if K*v C K*t*,
which establishes the claim. We deduce that

sKX\E/O* = h(x)m(7,0,0%). (17)

9The cleanest instance of this is p~1(1) = KXAIX(J/;; = Cls(r).
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We now compute this cardinality in a different way. We choose representatives
Ag’f = |_| BXOéié\X.
[1]€Cls,(O)
In particular, I = 04@-6 N B. To save space we write Oy = O)(I) = aiéai’l N B.
Finally define
E;={B3€B*: KNpOg ' =1}
For 0% € E/O* there is a unique I such that
B*B0* C B*a;0%.
In particular there is b € B* such that fO* = (ba;@x) and the class bO} is well

defined. One checks that b € E; and that given b € Ey one has 8 = ba;' € E.
Thus we have the bijections

~ ~ KXBOX—K*bOJ x
KN\E/O* S PO || k0 E0f 4 | ] Emb(r,04,05).
[1]€Cls, (0) [1]€Cls, (0)
Together with (17) this competes the proof. O

This result expresses an average of embedding numbers in terms of the cardinal-
ity of an adelic (double)-quotient. There is hope that the latter can be computed
place by place. Therefore we work locally and assume that t, = Z,[vy]. Let
f1(X) = X? —tX + n be the minimal polynomial of v and write d = * — 4n.

Lemma 5.58. Suppose B, = M3(Q,) and O, is mazimal. Then
m(ty, Op, O)) = 1.

Proof. Because the embedding number only depends on the type of O, we can
assume that O, = M5(Z,). Now we have a canonical optimal embedding given by

|_>0—n
v 1t )

Given another embedding 1) defined by

»(7) = (CCL Z)

one considers q(z1,72) = cx? + (d — a)zywa — br. One can see that there is
X = (21, %2)" € Z2 such that q(z1,22) € ZY. We define the matrix o = (x9(7)x).
Since det(a) = q(z1,22) we have a € GLy(Z,) = O). Furthermore, this matrix is

constructed such that
-1 o 0 —n

We have seen that every other optimal embedding is O*-conjugate to the canonical
one. This completes the proof. Il
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We are now going to compute the local embedding numbers in some other im-
portant cases. We define the Legendre type symbol

% 1 if K, =2Q, x Q,,
(—) =<0 it Q, C K, is ramified,
b -1 if Q, C K, is unramified.

Lemma 5.59. Let B, be a divison algebra and O, C B, mazimal. Then we have

1— (%) if v is maximal,

0 else.

m(Sp, Op, Oy) = {

Proof. It is a well known fact, that there are only embeddings K, — B, if K, is a
field. Furthermore, since O, is maximal it is the ring of integral elements in B,.
In particular, if v, is not maximal it is not integrally closed and thus can not be
embedded in O in an optimal manner. Thus we take v, to be maximal.

Observe that for all 3 € B we have 0,3 ~1 = 0,, by uniqueness of the maximal
order. We conclude that E'= B)’. By Corollary 5.20 we have O, = 5 & Sj, where
S is the maximal order in the unlque unramified quadratic extensmn F, of Q, and
j is an element in B with nr(j) = p.

If K, is unramified, then K, = F}, and v, = S. In this case we have two optimal
embeddings, since conjugation by j normalises /.

If K, is ramified, then K, = Q,[j] and this determines the only optimal embed-
ding. U

This lemma can be nicely rephrased in terms of the modified Kronecker-symbol
defined in (13).

Corollary 5.60. Let r C K be an order in an imaginary quadratic field K of
discriminant d.,. Further let B, be non-split and let O, C B, be the mazimal

order. Then
d
m(Sp,Op,OpX) =1- {—} )
p

Lemma 5.61. Let B, be split and O,, = My(p). Further assume that vt C K is an
order of discriminant d.. Then we have

dy
m(tp,Op,O;) =1+ {;} .

Proof. We will only sketch this proof. A reincarnation of Atkin-Lehner theory tells
us that (for k£ > 0)

Npx (0,) = {B € GLy(Q,): Mo (p") 5~ = M(p")} = (Qyx O, W),
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0 1
p" 0
embedding”’ by

for Wy = . Given an optimal embedding ¢ we define the A-L-conjugate

o1 (a) = W36 (a) W

Further we call an embedding normalised and associated to z if

) = (—ff(x) t—1x> |

The proof now roughly proceeds as follows.
First, one shows that either the class of ¢ or the class ¢~L in Emb(t,, O,, Oy)
is represented by a normalised embedding.
Second, one investigates when normalised embeddings are conjugate by O.
One finds
(1) Two normalised embeddings ¢ and ¢" are O, conjugate if and only if z =
2’ mod p*;
A-L : - : _
(2) If d € Z, then ¢ and ¢" are O)° conjugate if and only if 2’ =t —
x mod p*;
(3) If d € pZ,, then ¢*~L and ¢ are O, conjugate if and only if 2’ =t —
z mod p* and f,(z) # 0 mod pF+?;
Third, we parametrise the set of optimal embeddings up to conjugation by O,
terms of normalised embeddings and their Atkin-Lehner conjugates. Using the list
above this leads to

m(ty, Op, 0)) = tM (k) + 8yafimeg(M (k + 1) — Z,/p"Z,)],
for
M(e) ={x € Z,/p°Z,: f,(x) =0 mod p°}.
Finally, one counts elements in M (e) using the arithmetic of Z,. O

Corollary 5.62. Altogether we have seen that, if O is hereditary and v C K is an
order of discriminant d., then

reoon= T 0-G) T (43)

‘disc(B)Q

If v is maximal, then the modified Kronecker symbols reduce to classical Legendre
symbols.

We will encounter these notions again when we are computing the traces of
Brandt matrices. On a similar note one can use embedding numbers to compute
the class number on the nose. This is reflected in the following theorem.

2ODisclaimer: No standard terminology!
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Theorem 5.63 (Eichler’s class number formula). Let B be a definite quaternion
algebra over Q and O C B be a (Z)—order Then we have

t Cls.(O) = mass(Cls, (O Z Z h(®)m(E,0,0%).
q>2 o /{£1}=q
We postpone the proof for now. A special case of this is the following.
Theorem 5.64. Let B be a definite Quaternion algebra over Q and let O be an
FEichler order with disc(O) = M?D?, where D = disc(B) and (M, D) = 1. Then

c01s,(0) = LD e &

12 4 3’
o= Il (-G (1+(5)) watdie0) g

0 else,

for

and
L {Hp|p (1= (32)) e (1 (52))  ir 9 4disc(O), (19)
0 else.

One can also compute Type numbers using similar machinery. An example is
the following result.

Theorem 5.65 (Deuring). Let B be a quaternion algebra with disc(B) =p > 5
and let O be a maximal order. Then

§Cls.(0) | $CUQ(YP))
2 + 4

1 ifp=1 mod4,
4  if p=3 mod 8,
2 ifp="7 mod 8.
Exercise 11. Compute mass(Cls,(O)), Cls,.(O) and §Typ(O) for O as in (15).

Proof. Of course we have

1 Typ(O) =

»(37)
12
Further, by Eichler’s class number formula we find

w10t (- () 3~ (2) -3

mass(Cls,(0)) = = 3.

In particular, writing Cls,(O) = {[11], [l2], [I3]} we find that O;(;)* = {£1} for
1 <i < 3. Note that Cls(Q(v/—3 )) Z/2Z, so that Deuring’s result yields
tTyp(0) = 2.
U

Exercise 12. Fill in the details in the proof of Lemma 4.28 using the results of
this section.



TOPICS IN AUTOMORPHIC FORMS 72

5.6. Brandt Matrices. Let B be a definite quaternion algebra over Q and let
O C B be an hereditary order. In the previous section we have seen that h =
1Cls,(0O) < oo. Further we can fix (integral) representatives (with small norm)
Ii,..., I such that

Cls.(O) =A{[L]s,- -, [In)r}
Definition 5.20. We define the Brandt Matrix T'(n) € M(Z) by
T(n)ij =t{J C I;: nr(J) = n-nr(l;) and [J], = [L],}.

Remark 5.66. For (n,disc(O)) # 1 this definition usually appears in slightly dif-
ferent form in order to make the Hecke-relations work for p | disc(O). This mod-
ification would of course also effect the right hand side of Eichler’s trace formula
for Brandt matrices as soon as (n, disc(O)) # 1. However, since we will not really
need these ramified Hecke-operators we will stick to this easier definition.

Let My(O) = {Cls, — Z}. This is a free Z-module with (canonical basis)
B = {011;,: 1 <4 < h}. In this basis the Brandt-matrix defines a Z-linear map
T(n): My(O) — Ms(O), which we call the nth Hecke operator. This operator can
be described by

T ) = > F(T])
nr(J)J:CTf,nr(I)

Lemma 5.67. Let ¢; = nr(1;), O; = O)(I;) and w; = 40 /{x1}. Then
1
2w

T(n)y = o—t{a € LI na) = 2},

4di
Proof. We observe that al; = J C I; and nr(J) = n - nr(/;) if and only if
a € L;I7! and nr(a)g = ng;.
We observe that « is uniquely determined up to right multiplication by 4 € O;. O

Remark 5.68. Note that this reduces the computation of the entries T'(n);; of the
nth Brandt matrix to a lattice point enumeration. Indeed, we have a quadratic
form
Qij: LI =7, ars nr(oz)q—J.
di
The entries are essentially given by the representation numbers a(n; Q;;).

Proposition 5.69. The Brandt matrices have the following properties.

1) The sums h: T'(n);; are constant in j. Furthermore, if (n,disc(O)) =1,
=1 J
then we have
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(2) If (m,n) =1, then
T(mn) =T(n)T(m).

Proof. We first prove the first point. To do so let f = 1 be the constant one
function. Observe that

D Ty =TI = Y  1=t{JCOl): n(J) = n} = a(O(L))).
i JCl;
nr(J)=n-nr(I;)
Since O(1;) € Gen(O) for j = 1,...,h the right hand side is independent of j.
Furthermore if (n, disc(O)) = 1 we have computed it before.
Due to the definition of matrix multiplication we have to show that

h

T(nm)i; =Y T(n)wT (m);.

k=1

Given an ideal .J contributing to T'(nm);; we have nr(JI; ') = nm. Since (n,m) =
1 we can apply Lemma 5.45. This determines a unique 1deal Jy such that nr(J;) =
n and nr(JI; 'J71) = n. From this decomposition one can construct a bijec-
tion between ideals J contributing to the count of T'(nm) and tuples of ideals
(J11y, JIJ._lJl_lfj) contributing the the right hand count. O

Proposition 5.70. We have
T(p**) =TE T (p) —pT@").

Proof. We would like to apply a similar tactic as previously and argue by uniquely
factoring ideals contributing to T'(p"™). However, this is not possible without
slightly modifying the argument.

We call an ideal I primitive if it can not be written as I = al’ for an integral
Ideal I’ and a € Z. We now decompose

T(P"?) = Tprim (") + Tomprim (0" 2)

accordingly. The upshot is, that for primitive ideals unique factorisation as earlier
essentially works.
We first observe that Tprim(p"2) = T(p"1). Now we look at

[T( r+1 T 741 sz ki

M;

k=1
We can understand this as counting products J.J’ with J/ being a invertible-O;,0y-
ideal with nr(J) = p" and J' being a invertible-O,0j;-ideal with nr(J’) = p. If
the product is primitive then it uniquely determines J, and J' and it contributes
to the count of Tpim(p"™2);. So let us assume that J/.J' is imprimitive. It can be
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shown, that there are exactly as many configurations giving J'.J' = J'.J' as there
are right-O-ideals of norm p. Since there are p + 1 such ideals we get

TP ™T(p) = Tprim(P?) + (0 + 1) Thinprim (0" 2)
=T (") + pTomprim (") = T(" ) + pT(p").
O

We now define a bilinear form (-,-): M3(O) x M3(O) — Z which is symmetric
and non-degenerate. On the basis B this bilinear form is given by

011, 01,,) = wi - i
Proposition 5.71. For (n,disc(O)) = 1 the operator T(n) is self adjoint with
respect to (-,-). In symbols, T'(n)* = T(n).
Proof. Let W = diag(wy, ..., wy). Using the basis B we can identify M,(O) with
Z". Writing elements as row vectors we have (z,y) = 2Wy'. Further the Brandt
matrices act by right multiplication and the adjoint, defined by (z7'(n),y) =
(x,T(n)*y), is given by

T(n)* =W (n)'W.

We define A(n);; = {a € LI ': nr(a) = nt}. Thus,

WT(n) = (3#A()y):
Our goal is to construct a bijection from A(n);; to A(n);;. This implies that
WT(n)=(WT(n)) =T(n)'W
and T'(n)* = W=IT(n)!W = T(n) follows straight away.

The map is defined by

A(n)y — A(n)ji, = na .

If this map is well defined its obviously bijective. So let us start by checking

nlgq; ! = nq—

4;

nr(na~t) = n?

as needed. Further we compute that

aeLl =1 =%r1"
4i
Thus,
-1 n__ nq; -1
na = ae I
nr(a) nr(a)g ’

=1

g

Definition 5.21. Let T(O) be the subring of M,(Z) generated by T'(n) with
(n,disc(O)) = 1. We call this the unramified Hecke-algebra of O.
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Corollary 5.72. The space Ms(O) is a (free) finite dimensional T(O) module
featuring a basis of simultaneous T(O) eigenfunctions.

Proof. This follows since T(O) is generated from a family of commuting operators
that are self adjoint with respect to (-, ). O

Corollary 5.73. The ring T(O) is a commutative semisimple Z-algebra.

Exercise 13. Compute the Brandt matrices T'(n) with n = 1, 2, 3 for the order O
defined in (15).

5.7. The Eichler-Brandt trace formula. Let B be a definite quaternion al-
gebra over Q and let O be a hereditary (Z)-order with disc(O)2 = DM for
D = disc(B) and M square-free with (D, M) = 1.

Theorem 5.74 (Eichler’s trace formula I1a). For (n,disc(O)) = 1 we have
1 t? —4n ©(D)Mp(M)

teZ  f2|t2—4n
t2—4n<0

with
_ h<Sd) m X
o= gy L S 00

We call the numbers ho(d) modified Hurwitz class numbers.

Proof. Note that

Tr(T(n)) = Z T(n)-

We write
2w;T(n)y; = Z t{a € O;: nr(a) = n, tr(a) = t}.
teZ

If and only if n is a perfect square we have the contribution a = ++/n € Q to the
count. On the other hand, given any such a ¢ Q contributing to the count we
consider the ring Z[a] = Z[X]/(X? — tX 4+ n). This is an order of discriminant
t? — 4n in Q(«). since any embedding of Z[a] is uniquely determined by its value
on o we obtain

tH{a € O;: nr(a) = n, tr(a) = t}—20,-0 = 28{¢: Zla] —» O;} = Z 26Emb(S, O;).
Zla)CS

Note that tEmb(S,0;) = mm(é’, 0;,0;). Further all orders in quadratic

fields are determined by their discriminant and real quadratic fields can not be

embedded into definite quaternion algebras. We conclude

1 1 i .
Tr(T(n)) = 3 ;Z fzzl TCANIESY) ;m(stzf_%,Oi,Oi )+0n—omass(Cls,(0)).

2
12—4n<0 f2|t2—4n f
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We conclude by Proposition 5.57. U

Remark 5.75. According to the explicit computations of local embedding numbers
we can compute the Hurwitz class numbers more explicitly in terms of modified
Kronecker-symbols. For a hereditary order O, we get

-y T ()01, (- ()

Idisc(B)2

Exercise 14. Prove Theorem 5.63 using the trace formula for Brandt matrices.

5.8. Extending the Brandt matrix to non-trivial representations. In this
section we have to extend the definition of the Brandt matrix by a symmetric
kth-power. This is necessary to deal with the basis problem for arbitrary (even)
weight.

We start by making the following inclusion

t + /—azic v —=by + Vabzic
—V/=by + Vabzic  t —/—azxic ’

Note that since B is definite we have a,b < 0 and the square roots are all real.
Further note that this inclusion satisfies

tr(a) = tr(p(a)) and nr(a) = det(p(a)).

p: B* —>GLQ(C),t+ix+jy+kzr—><

Further we have the canonical map sym”*: GLy(C) — GLj,;1(C) given by lifting
the standard representation of GLy(C) on C? to Sym*(C?). Combining these two
maps we obtain

pr = sym*op: B — GL41(C).
We collect two important results.
Lemma 5.76. The functions defined by
pr(x1 + 2ot + 37 + x4k) = (Pij(21, T2, T3, 24) )o<i j<k
are harmonic polynomials of degree k.

Proof. This can be reduced to well known facts from classical representation theory
of compact Lie-groups. 0

Lemma 5.77. Suppose a € B* is such that nr(a) = n and tr(a) =t. Then

AR = g (!
tr(pufo) = S

n

where XT(t), \; (t) are the two solutions of X* —nX + n.

A 1

Proof. This can be computed by diagonalising p(a). O
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For (n,disc(O)) = 1 we define the n—Brandt—matriX of weight &k by

T(n) = (MY (n))1<; j<n for MY ) € Myi1(Q).

1

One can similarly define Tj(n) for (n,disc(O)) 7& 1. However in this case a slight
modification is to ensure the matrices satisfy a Hecke-like-relation. We will omit
these technicalities.

We define the Z-algebra

T,(O) = (Tr(n): (n,disc(0)) = 1)z.

Theorem 5.78. The Z-algebra T\(O) is commutative and semisimple. Further-
more the Brandt-matrices satisfy the Hecke-relation

T(mp'*") = T(mp")T(p) — Sppaisc(o) - dr>0 - p* T (mp' ™) (21)
for all primes p and (m,p) = 1.

Proof. We skip the proof and hope that the underlying principles are appropriately
illustrated by the £ = 0 case discussed above. Note that the Hecke-relation for
primes p | disc(O) relies on a suitable definition of the Brandt matrices T'(p) for
such p, which has not been discussed. O

Theorem 5.79 (Eichler’s trace formula IIb). Let O be a hereditary order of level
M, k even and (n,disc(O)) = 1. Then

THT(n)) = Spers (k + 1)&% N % A (Atl(;) - iggg +

h(Si#) 152;# t2;24n
2 s e 1L (”{T}>md§3) (l{ ’ }>

dlsc(B)

with the usual notation.

Proof. Note that tr(Tx(n)) = Z?Zl tr(MZ(Zk)(n)) We proceed as before and com-
pute

2w; tr( M(k Z Z tr(pr(a

teZ «a€0;,
nr(a):m
tr(a)=t

Z Z )\—i— k:+1 -\ (t)k—i-l
teZ 0(46? Ag(t)

tr(a):t

where we applied Lemma 5.77. The terms of the inner sum are independent
of «a, so that we can proceed as in the proof of Theorem 5.74 and use (20) to
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explicate the Hurwitz class numbers. Note that if n is a square the contribution
of a = £4/n € Q is weighted by

k

3

tr(pp(£vn)) = (k+ 1)nz.

Theorem 5.80. If k > 0, then the series
0(z; 0, k), ZTk ), for 1 <i,j < (k+1)h,

are generalised theta series and satisfy
0(2: 0, k)ij € Spya(disc(0)7,1).

Proof. By writing out the definition of the coefficients T} (n);; the fact that the
series are indeed generalised f-series follows from Lemma 5.76. The result then
follows from Proposition 3.7 after identifying the correct level. U

We will refer to the matrix 6(z; 0, k) = (0(2; 0, k);;);; of theta series as the
Brandt theta series.

Exercise 15. Explain why Theorem 5.80 fails for £ = 0. Further modify the
original Brandt matrices to fix this problem.
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6. THE BASIS PROBLEM

Recall that our goal was to decompose the T(N) -module Si(N,Id) into sub-
modules, which consist of (quaternionic) theta series and carry a intrinsic Hecke-
action.

Let us first introduce some notation. Given a space of functions V' C {f: H —
C} we define

={z— f(K2): feV}
Further given two positive square-free integers M and H we write Oy g for a
hereditary order of level M in the quaternion algebra B of discriminant H. Note
that we will always ensure that H has an odd number of prime divisors (u(H) =
—1) so that B is definite.
For some 1 < jo < (k + 1)h we define the C-vector space

Ok(Omu) = (0(z,0n .1, k)ijo: 1 < i < (k+1)h)c.

This is the space of theta series spanned by the entries of one (the joth) column
of the Brandt theta series. Note that the dimension of ©y(Oyp) is in general
not (k + 1)h. In other words, the theta series 6(z,On,p, k)ij, are not linearly
independent.

Lemma 6.1. For (p, K) =1 we have

(k+1)h
ThO(K-, On s k) igo = Z T (n)ab (K-, O, K)o -

Here T, is the nth Hecke-operator on Sk+2(KMH, Id) and Ty(n) is the nth Brandt-
matriz of weight k associated to Onr .

Proof. Since the Brandt matrices T'(n) and the Hecke-operators satisfy the same

(Hecke)-relations it is enough to verify the statement for n = p prime. We will

only consider primes (p, KM H) = 1 and omit the details in the remaining cases.
We start by noting that 7}, acts as follows:

[T,0(K-, Onr s k)ijo) (2) = Z |:5p|mpk+1Tk:(%)ijo + Ti(pm)ij, | e(mKz).

m>1

From (21) we deduce that Ty (pm) + 5p|mpk+1Tk(%) = Ti(p)Tr(m). Looking at the
entry 77 reveals

[T,0(K-, Orrar, k)i (2) = Y [Ti(p)Ti(m)],, e(mK 2)
k+1)h

Z Ty (p szTk m)j,e(mKz).

m>1

This obviously concludes the proof. U
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This lemma ensures that the spaces ©;(Oy )" are T(MHK) sub-modules of
Skio(MHK,Id). These subspaces are exactly the pieces we want to decompose
our space in. Note that we will not be able to cover forms that are lifted from level
1, since the quaternionic theta functions always feature at least the discriminant of
the underlying quaternion algebra in their level. Thus we will not be able to avoid
the subspace Si(1,1d) itself in our decomposition. We are now ready to state the
main theorem of this course.

Theorem 6.2. For square-free N, k > 2 even and p | N we have
N N b
Sk<N, [d) :@k,Q(Oﬂm)@Sk E,[d @Sk E,[d . (22)

Iterating this theorem yields the following corollary.

Corollary 6.3. Let N =py - ...-p,, then we have

W(N, Id) = @ QB OO, p0)" | & |ED Sk(1, 1d)

=1 K| K|N

=
H _1Pj

Remark 6.4. Let us make the following computation as a reality check. Using (14)
we find

. . N
dim Sk(N, Id) — 2dim Sk(571d) = TrT1|Sk(N,Id) — 2TrT1|Sk(%,Id)

A e () (- ()
e (+ () ()

= Tr Tj_o(1).

Where we used Theorem 5.79 in the last step. Note that using the trace formula
for k = 2 one obtains

: : N
dim Si(N,Id) — 2dim Sk(g,ld) = ﬁCls(O%yp) —1=trTp(1) — 1.

This is another incarnation of the little correction that has to be made for k = 2.

The proof of our main theorem will heavily rely on the comparison of traces.
The trace of T,,, at least for (n, N) = 1, on Sg(N,Id) is given by Theorem 4.42.
The following lemma allows us to compute the trace of Tp[g, (¥ 1414, (X 1) USING

P’ P’

Theorem 4.42 for N’ = %
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Lemma 6.5. Let T, be the nth Hecke-operator acting on Sk(N). Fiz a basis B for
Sk(%, Id), then B? = {¢(p-): ¢ € B} is obviously a basis for Sk( JId)P. Let T, be

the matrix representing the nth Hecke-operator acting on Sk(? ]d) with respect to

the basis B. Then
<in £n> if (n,p) =1,

M, T, =
BUBP( |Sk(%,]d)@sk(%7[d)) <_5p2|npk]_‘z:2 _pk]_(zn> else

P

T n %n

Proof. This is easily verified taking the definition of the Hecke-operators for dif-
ferent levels into account. U

We will only need this for (n, N) = 1, in which case we get

TT(Tn|sk(%,1d)@sk(g,1d)) =2T(T},),

where 7] is the nth Hecke operator on Si(N’,Id). We replace the action of the
Hecke-operator on O_ Q(ON ,) by the nth Brandt-matrix T} 5(n) of weight k — 2,

for which we can compute the trace using Theorem 5.79.

Proof of Theorem 6.2. Note that both sides of (22) are (finite dimensional) repre-
sentations of the semisimple ring T(NV). Indeed, this is obvious for the left hand
side. On the right hand side we let T'(n) act by Ty_2(n) & T, & T, which is
well defined since Ty_o(n), T} and T, satisfy the same relations for (n, N) = 1
(see Theorem 5.78). The theorem will follow as soon as we know that these two
representations are equivalent. To see this it is enough to verify the trace identity

TY(T,,) — 2 TH(T}) = Te(T}o(n)) (23)

for all (n, N) = 1. We check these identities by considering the different contribu-
tions to the traces of T;, and 7}, in Theorem 4.42.
The contribution of the scalar term yields

Tr(Tn)scalar QTI"(T )scalar - 5 DnQ_l% N¢(N) - 25 : 1?(5)
k k k2 k — 1 N N
= Op=0n? 1?? w( )[W(p) —2] = 6p—cn 2 Tz w(g) @(p).

This matches exactly the main term of Tr(7;_o(n)) given by Theorem 5.79.
The parabolic contribution yields

Tr(Tn)parabolzc 2TI'(T )parabolzc — 5n on 2 [2w(N) ! 2w(%)] =0.
Note that w(N) — 1= w( ) holds only if p?  N.
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The hyperbolic contribution is given by
TI"(T )hyperbolzc —2 Tr<T )hyperbolzc
1 AL A @)
:_5 Z Iﬂln(| n( )|7| n( )|) Z ¢<f)[2w(N)_22w(%)] —0.

+ _ —
S NO-NO0 e
2 _4n=0

Finally we compute the elliptic contribution:
Tr(Tn)elliptzc 2 TI'(T )ellzptzc

R NP V() s Y Ol h((#2 — 4n)/ f?)
ST X TN A2, Kyl (B

t2—4n<0

T e )

A =AM —4n)/f?)
Z A (8) f2|t224n ]j(s(ﬂ 4n /fQ/{:l:})

T ()

According to Theorem 5.79 this agrees with
k—1 N N
Te(Th-2(n)) — o = 2 w( )e(p).

Thus the trace equality (23) is established and the proof is complete. U

Remark 6.6. Note that using the appropriate trace formula for (n, N), (n, disc(O)) #
1 one can even show the trace identity

Tr(Ty) = Tr(Ti—2(n)) + Tr(Tn|Sk(%,Id)@Sk(%,Id))
for all n.

Exercise 16. After doing Exercise 15 modify the statement of Theorem 6.2 ac-
cordingly and proof it. One can use the Eichler’s version of the trace formula for
k = 2 stated in Remark 4.43.
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