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1 Introduction

A fundamental problem in representation theory is the construction of all (irreducible,
smooth, complex) representations of certain matrix groups, called p-adic groups (defined
in Section 2), which include groups like the general linear group (GLn(F )), the group of
n× n matrices of determinant one (SLn(F )), the subgroup of SLn(F ) consisting of matrices
that preserve an inner product (SOn(F )) and the subgroup of SL2n(F ) consisting of matrices
that preserve a symplectic form (Sp2n(F )). Here F denotes a non-archimedean local field,
e.g. the p-adic numbers Qp, a notion that we will introduce in Section 2.2 and that plays
a central role in number theory. The building blocks for these representations are called
supercuspidal representations (defined in Section 2.4) and until not too long ago surprisingly
little was known about these representations for general p-adic groups. A construction of
supercuspidal representations of p-adic groups lays not only the foundation for work within
the representation theory of p-adic groups but also allows for a plethora of applications far
beyond this area, for example to advance different incarnations of the Langlands program,
including the local, global and relative Langlands program.

In 1977, a Symposium in Pure Mathematics was held in Corvallis that led to famous Pro-
ceedings. One of the articles in the Proceedings was entitled “Representations of p-adic
groups: A survey”, written by Cartier ([Car79b]). We quote from the introduction of this
article:

“The main goal of this article will be the description and study of the principal
series and the spherical functions. There shall be almost no mention of two im-
portant lines of research which are still actively pursued today:
(a) [...]
(b) Explicit construction of absolutely cuspidal representations [nowadays usu-
ally called “supercuspidal representations”]. Here important progress has been
made by Shintani [Shi68], Gérardin [Gér75] and Howe (forthcoming papers in the
Pacific J. Math.). One can expect to meet here difficult and deep arithmetical
questions which are barely uncovered.”

The present survey will focus on the developments of an explicit construction of supercuspidal
representations. It will provide an introduction to the groundbreaking methods introduced
since the above Symposium had happened to tackle the construction of supercuspidal rep-
resentations for general p-adic groups and conclude with new developments of the last five
years. Thereby the present survey complements the above survey by Cartier, which focuses
on how to reduce the classification of representations of p-adic groups to the back then un-
known construction of supercuspidal representations. (We will not assume that the reader
has read the above survey by Cartier.)

Since the work mentioned in the above quote that started about 50 years ago, mathemati-
cians have tried to construct these mysterious supercuspidal representations. To mention a
few, in 1979, Carayol ([Car79a]) gave a construction of all supercuspidal representations of
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the general linear group GLn(F ) for n a prime number different from p, the residue field
characteristic of F (i.e. the “p” in “p-adic”). In 1986, Moy ([Moy86a]) proved that Howe’s
construction ([How77]) from the 1970s exhausts all supercuspidal representations of GLn(F )
if n is coprime to p. In the early 1990s, Bushnell and Kutzko extended these constructions
to obtain all supercuspidal representations of GLn(F ) for arbitrary n ([BK93]). These re-
sults play a crucial role in the representation theory of GLn(F ). Similar methods have been
exploited by Stevens ([Ste08]) around 15 years ago to construct all supercuspidal representa-
tions of classical groups for p 6= 2, i.e. orthogonal, symplectic and unitary groups. His work
was preceded by a series of partial results by Moy ([Moy86b] for U(2, 1), [Moy88] for GSp4),
Morris ([Mor91] and [Mor92]) and Kim ([Kim99]). Moreover, Zink ([Zin92]) treated division
algebras over non-archimedean local fields of characteristic zero, Broussous ([Bro98]) treated
division algebras without restriction on the characteristic, and Sécherre and Stevens ([SS08])
completed the case of all inner forms of GLn(F ) about 15 years ago. The construction of
supercuspidal representations for inner forms of GLn(F ) plays a key role in the explicit de-
scription of the local Jacquet–Langlands correspondence, which is an instance of Langlands
functoriality.

For arbitrary reductive groups the story is less complete. The introduction of the Moy–
Prasad filtration in the 1990s spurred remarkable progress. The work of Moy and Prasad built
upon the innovative Bruhat–Tits theory introduced in the 1970s/1980s: In [BT72, BT84],
Bruhat and Tits defined a building B(G,F ) associated to a p-adic group G(F ) on which
the p-adic group G(F ) acts. For each point x in B(G,F ), they constructed a compact
subgroup Gx,0 of G(F ), called a parahoric subgroup, which is (up to finite index and center)
the stabilizer Gx of the point x in G. In [MP94,MP96], Moy and Prasad defined a filtration
of these parahoric subgroups by smaller normal subgroups

Gx,0 . Gx,s1 . Gx,s2 . Gx,s3 . . . . ,

where 0 < s1 < s2 < . . . are real numbers depending on x. These subgroups play a crucial
role in the study and construction of supercuspidal representations and will be introduced
in Section 3 below.

For example, if we take G = SL2 over the field F = Qp, the p-adic numbers, with ring of
integers Zp, then the Bruhat–Tits building is an infinite tree with valency p+ 1, see Figure
1 (for p = 2). Let y be the barycenter of a maximal facet, i.e. the center of an edge of the
infinite tree, and x a vertex of the the edge. Then (by choosing an appropriate basis) the
associated Moy–Prasad filtrations at the points x and y look like the following (where we
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Figure 1: Bruhat–Tits building for SL2(Q2).

intersect the displayed matrices with SL2(Qp)):

Gx,0 =

(
Zp Zp
Zp Zp

)
Gy,0 =

(
Zp pZp
Zp Zp

)
Gy,0.5 =

(
1 + pZp pZp

Zp 1 + pZp

)
Gx,1 =

(
1 + pZp pZp
pZp 1 + pZp

)
Gy,1 =

(
1 + pZp p2Zp
pZp 1 + pZp

)
Gy,1.5 =

(
1 + p2Zp p2Zp
pZp 1 + p2Zp

)
Gx,2 =

(
1 + p2Zp p2Zp
p2Zp 1 + p2Zp

)
Gy,2 =

(
1 + p2Zp p3Zp
p2Zp 1 + p2Zp

)
...

...

Based on this filtration, Moy and Prasad introduced in [MP94, MP96] the notion of depth
of a representation, which measures the first occurrence of a fixed vector in a given repre-
sentation. The precise definition will be introduced in Section 3.4. In [MP96], Moy and
Prasad gave a classification of depth-zero representations, showing, roughly speaking, that
they correspond to representations of finite groups of Lie type, the group Gy,0/Gy,0+. A
similar result was obtained around the same time by Morris ([Mor99]). We will discuss
depth-zero representations in more detail in Section 4.4.

In 1998, Adler used the Moy–Prasad filtration to provide a construction of positive-depth
supercuspidal representations for general p-adic groups (that split over a tamely ramified
extension), which was generalized by Yu ([Yu01]) in 2001. Since then, Yu’s construction has
been widely used, e.g. to study the Howe correspondence ([LM18]), to understand distinction
of representations of p-adic groups, i.e. the question if the restriction of a representation
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to a subgroup contains the trivial representation ([HM08, HL12, Hak13, Zha15, Zha20]), to
obtain character formulas ([AS09, DS16, Spi18, Spi, FKS]) and to construct an explicit local
Langlands correspondence ([Kal19,Kal]). We will sketch Yu’s construction in Section 4.

Given the importance of having an explicit construction of supercuspidal representations,
Kim ([Kim07]) achieved the subsequent breakthrough in 2007 by proving that if F has char-
acteristic zero and the prime number p is “very large”, then all supercuspidal representations
arise from Yu’s construction. Last year, in 2021, it has been shown ([Fin21d]) via very differ-
ent techniques that Yu’s construction provides us with all supercuspidal representations only
under the minor assumption that p does not divide the order of the (absolute) Weyl group
of the (tame) p-adic group, an invariant attached to the p-adic group that we will introduce
in Section 2.1. In particular, the result also works for fields F of positive characteristic. We
will provide some more details in Section 5. Based on [Fin21c], we expect this result to be

type An (n ≥ 1) Bn, Cn (n ≥ 2) Dn (n ≥ 3) E6 E7

order (n+ 1)! 2n · n! 2n−1 · n! 27 · 34 · 5 210 · 34 · 5 · 7
type E8 F4 G2

order 214 · 35 · 52 · 7 27 · 32 22 · 3

Table 1: Order of irreducible Weyl groups ([Bou02, VI.4.5-VI.4.13])

essentially optimal (when considering also types for non-supercuspidal Bernstein blocks and
treating all inner forms together, the details of which we omit from this survey).

In fact, in 2014, Reeder and Yu ([RY14]) gave a new construction of some supercuspidal
epipelagic representations of tame semisimple groups, which generalizes the simple supercus-
pidal representations previously constructed by Gross and Reeder ([GR10]). Epipelagic rep-
resentations are representations of smallest positive depth. The papers of Fintzen–Romano
([FR17], special case) and Fintzen ([Fin21b], general case) show that the input for Reeder
and Yu’s construction also exists for small primes p, which provided examples of positive-
depth supercuspidal representations that do not arise from Yu’s construction. It is current
work in progress to provide a more general construction that also works for small p.

In this survey, we will focus on the known construction of supercuspidal representations under
the assumption that p does not divide the order of the Weyl group. While Yu ([Yu01,Fin21a])
showed how to construct a supercuspidal representation from a given input (spelled out in
Section 4.1), Hakim and Murnaghan ([HM08] answered the questions of which inputs yield
the same supercuspidal representations (see Section 4.5 for the answer), which thus leads to
a parametrization of supercuspidal representations. However, it was recently suggested by
Fintzen, Kaletha and Spice ([FKS]) to twist Yu’s construction by a quadratic character, i.e.
a character of an appropriate compact open subgroup appearing in the construction that
takes values in {±1}. While at first glance this just looks like changing the parametrization
of supercuspidal representations, the existence of the quadratic character has far-reaching
consequences. For example, it allowed to calculate formulas for the Harish-Chandra character
of these supercuspidal representations ([FKS, Spi]), to write down a candidate for the local
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Langlands correspondence for simple supercuspidal representations ([Kal]) and to prove that
the local Langlands correspondence for regular supercuspidal representations introduced by
Kaletha ([Kal19]) satisfies the desired character identities ([FKS]).

2 What are p-adic groups and representations of p-adic

groups?

This section will give an introduction to p-adic groups. Those who understand the following
sentence may skip this section: A p-adic group is the group of F -points of a connected
reductive group over a non-archimedean local field F . Those who see the notion of a reductive
group for the first time are encouraged to pay particular attention to the examples we
introduce below. Reading the remainder of the survey focusing on a few examples rather
than the general notion should allow the reader to get some feel for the topic. We also
warn the reader that we have not chosen the most general and most modern treatment, but
instead an approach that requires less prerequisites and space. Some of the definitions we
make are often not used as initial definitions in text books but rather stated as being an
equivalent characterization in later theorems.

2.1 Reductive groups over algebraically closed fields

Let k be an algebraically closed field. In this section we give an overview of the notion of a
reductive group and its important structural properties. For more details, see, for example,
the classical text books on Linear Algebraic Groups [Bor91,Hum75,Spr09] or Brian Conrad’s
lecture notes ([Con17a,Con17b]) for a more modern treatment.

Definition 2.1.1. A linear algebraic group over k is a reduced Zariski-closed subgroup of
the general linear group GLn over k for some integer n. (Equivalently, a linear algebraic
group is a smooth affine group scheme over k.)

Let G be (the k-points of a) linear algebraic group over k. To simplify notation, in this
section we will not distinguish between the linear algebraic groups and their k-points, but
still secretly remember the variety structure when talking about k-points. When we talk
about subgroups in this section, we always mean reduced closed subvarieties that are also
subgroups (in other words closed subgroupschemes endowed with the reduced subscheme
structure) unless explicitly stated otherwise.

Let us begin with a list of examples of linear algebraic groups to keep in mind throughout
the survey:

� the general linear group GLn(k), i.e. n× n invertible matrices with entries in k

� the special linear group SLn(k), i.e. matrices of determinant one
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� the subgroup Nn(k) of GLn(k) consisting of matrices of the following shape
1 ? ? . . . ?
0 1 ? . . . ?

0
. . .

. . .
. . . ?

0 . . . 0 1 ?
0 . . . 0 0 1


� the subgroup Bn(k) of GLn(k) consisting of matrices of the following shape

? ? ? . . . ?
0 ? ? . . . ?

0
. . .

. . .
. . . ?

0 . . . 0 ? ?
0 . . . 0 0 ?


� the orthogonal group On(k) = {A ∈ GLn(k) | tAA = 1}, where tA denotes the trans-

pose of A and 1 denotes the identity matrix consisting of ones on the diagonal and
zeros everywhere else

� the special orthogonal group SOn(k) = {A ∈ On(k) | det(A) = 1}

� the symplectic group Sp2n(k) = {A ∈ GLn(k) | tAJA = J}, where J =

(
0n×n wn
wn 0n×n

)

with wn =


1

. .
.

1
1


In representation theory we often restrict to a subclass of linear algebraic groups, called
reductive groups. In order to define them, we need to introduce the notion of unipotent
groups and unipotent radicals.

Definition 2.1.2. A (closed reduced) subgroup G of GLn(k) is called unipotent if G is

conjugate to a subgroup of Nn(k) =




1 ? ? . . . ?
0 1 ? . . . ?

0
. . .

. . .
. . . ?

0 . . . 0 1 ?
0 . . . 0 0 1




⊂ GLn(k)

Definition 2.1.3. The unipotent radical (RG)u (or RuG) of a linear algebraic group G is
the maximal connected unipotent normal subgroup of G.
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Definition 2.1.4. A linear algebraic group G is reductive if its unipotent radical is trivial.

Examples of reductive groups include GLn(k), SLn(k),On(k), SOn(k), Sp2n(k) and products
of reductive groups. The group GL1 is often also called the multiplicative group, because
GL1(k) = k× (with group law multiplication), and we also denote it by Gm.

Examples of linear algebraic groups that are not reductive include the groups Nn(k) and
Bn(k) for n ≥ 2. In both cases their unipotent radical is Nn(k), which is nontrivial. The
group N2 is also called the additive group, since N2(k) = k (with group law addition), and
we also denote it by Ga.

Reductive groups have a rather rich structure, similarly to compact Lie groups, which forms
a basis for studying the representation theory of these groups. A key tool to obtain this
structure is to consider the following objects.

Definition 2.1.5. A torus is a product of multiplicative groups, i.e. Gm× . . .×Gm = (Gm)n

for some integer n. We say that a subgroup T of a linear algebraic group G is a maximal
torus if T is a torus and is not strictly contained in a larger torus that is also a subgroup of
G.

A crucial theorem for the structure theory is the uniqueness of maximal tori up to conjuga-
tion.

Theorem 2.1.6. All maximal tori in G are conjugate.

For example, all maximal tori of GLn(k) are conjugate to the group of diagonal matrices
? . . .

?


 .

Since linear algebraic groups are varieties we also have the powerful tool of considering the
tangent space of the variety at points of our choice. The canonical point to choose is the
identity element of the group G(k). Since linear algebraic groups are not just varieties, but
also groups, the tangent space T (G)e of the group G at the identity e can be equipped with
the structure of a Lie algebra. We denote the resulting Lie algebra by Lie(G)(k). The Lie
bracket for Lie(GLn)(k) = Matn×n(k) is given by [A,B] = AB −BA for A,B ∈ Matn×n(k),
which restricts to the Lie bracket for Lie(G)(k) when G is a subgroup of GLn. We refer the
reader to the literature for the general abstract definition and to Table 2 for some examples.
We will often denote the Lie algebra Lie(G)(k) of G(k) also by g(k) and in general use fraktur
letters denote the Lie algebra, i.e. gln(k) will denote the Lie algebra of GLn(k), etc.

The group G(k) acts on itself by conjugation. Taking the derivative of this action, we obtain
an action of G(k) on its Lie algebra g(k), which we call the adjoint action and denote by
Ad. For example, for g ∈ GLn(k) and A ∈ Lie(GLn)(k) = Matn×n(k), we have

Ad(g)(A) = gAg−1.
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G(k) Lie(G)(k) Lie bracket [·, ·]
GLn(k) Matn×n(k) [A,B] = AB −BA
SLn(k) Matn×n(k)trace=0 [A,B] = AB −BA
Sp2n(k) {A ∈ Matn×n(k) | JA+ tAJ = 0} [A,B] = AB −BA

Table 2: Examples of Lie algebras

Let T be a maximal torus of G. Then T (k) acts on g(k) via the (restriction to T (k) of
the) adjoint action. This action is diagonalizable, i.e. we can decompose g(k) into a sum of
simultaneous eigenspaces for the action of T (k). The “eigenvalues” in this setting are then
characters of the torus.

For example, if G(k) = GLn(k), we may choose T to be the subgroup consisting of diagonal
matrices, i.e.

T (k) =



t1

t2
. . .

tn

 | t1, t2, . . . tn ∈ k×
 ,

and let Xi,j for 1 ≤ i, j ≤ n be the matrix with a one in position (i, j) and zeros everywhere
else. Then

Ad(diag(t1, t2, . . . , tn))(Xi,j) = tit
−1
j Xi,j

and gln(k) = ⊕1≤i,j≤nkXi,j.

Notation 2.1.7. We write X∗(T ) = Homk(T,Gm) for the homomorphisms from T to Gm

as group varieties i.e. morphisms of algebraic varieties that commute with the group action.
The group law on Gm turns X∗(T ) into an abelian group.

Note that if T ' Gm, then X∗(Gm) ' Homk(Gm,Gm) ' Z (with the group law on Z
being addition), where the isomorphism is given by sending an integer n ∈ Z to the element
fn ∈ Homk(Gm,Gm) that satisfies fn(x) = xn for x ∈ Gm(k) = k×. More generally, we have
by definition that T ' Gn

m for some integer n, and hence

X∗(T ) ' Homk(Gn
m,Gm) ' Zn.

From now on we assume that G is a reductive group, and we write g(k) = ⊕α∈X∗(T )gα(k),
where

gα(k) = {X ∈ g(k) | Ad(t)(X) = α(t)X ∀t ∈ T (k)}.

Definition 2.1.8. The roots of G with respect to T are the elements

Φ(G, T ) = {α ∈ X∗(T ) \ {0} | dim gα(k) 6= 0} ⊂ X∗(T ) ⊂ X∗(T )⊗Z R ' Rn

for some integer n.
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Fact 2.1.9. (a) The subspace gα(k) for α ∈ Φ(G, T ) is one dimensional.

(b) The subset Φ(G, T ) of the real vector space X∗(T ) ⊗Z R forms a root system, and this
root system does not depend on the choice of T .

While we will not use this fact later, we remark that G/Z(G), where Z(G) denotes the
scheme-theoretic center (a not necessarily reduced/smooth subgroup), is uniquely determined
by the root system.

Examples.

GLn(k): Let G(k) = GLn(k) with T the torus above consisting of diagonal matrices. Then
Φ(G, T ) = {αi,j | 1 ≤ i, j ≤ n, i 6= j}, where αi,j is the character of T that satisfies

αi,j :


t1

t2
. . .

tn

 7→ tit
−1
j .

Note that all roots of GL3(k) lie in a plane. Restricting our attention to this plane the root
system is drawn in Figure 2.

Figure 2: Root system of GL3

Sp2n(k): Let G(k) = Sp2n(k) with T the subgroup consisting of diagonal matrices, i.e.

T (k) =





t1
. . .

tn
t−1
n

. . .

t−1
1


| t1, t2, . . . tn ∈ k×


,

Then Φ(G, T ) = {α±i,±j, α±i, α±n | 1 ≤ i < j ≤ n, i 6= j}, where α±i,±j is the character of T
that satisfies

α±i,±j : diag(t1, . . . , tn, t
−1
n , . . . , t−1

1 ) 7→ t±1
i t±1

j
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and α±i is the character satisfying

α±i : diag(t1, . . . , tn, t
−1
n , . . . , t−1

1 ) 7→ t±2
i .

Figure 3 shows the root system of Sp4.

Figure 3: Root system of Sp4

Definition 2.1.10. We call a subset ∆ of Φ(G, T ) a basis of Φ(G, T ) if every root α ∈
Φ(G, T ) can be written uniquely as a sum

∑
αi∈∆ niαi where either all the ni are non-negative

integers or all the ni are non-positive integers.

For example, if G(k) = GLn(k) with T and Φ(G, T ) as above, then we can choose

∆ = {αi,i+1 | 1 ≤ i ≤ n− 1}.

Figure 4: Root system of GL3 with a choice of basis ∆ = {α1,2, α2,3} in red

In order to classify and construct representations of reductive groups the following subgroups
will become important.

Definition 2.1.11. A Borel subgroup is a maximal connected solvable (closed reduced)
subgroup of G. A parabolic subgroup is a (closed reduced) subgroup of G that contains a
Borel subgroup.
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Fact 2.1.12. All Borel subgroups of a reductive group are conjugate.

For GLn(k), the Borel subgroups are the conjugates of

Bn(k) =




? ? ? . . . ?
0 ? ? . . . ?

0
. . .

. . .
. . . ?

0 . . . 0 ? ?
0 . . . 0 0 ?




and the parabolic subgroups are conjugates of block upper triangular matrices, e.g. matrices
of the shape 


? ? ? ? ? ?
? ? ? ? ? ?
0 0 ? ? ? ?
0 0 ? ? ? ?
0 0 ? ? ? ?
0 0 0 0 0 ?




or




? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
0 0 0 ? ? ?
0 0 0 ? ? ?
0 0 0 ? ? ?




.

The parabolic subgroups of a reductive group G that contain a fixed Borel subgroup B ⊂ G
are in one to one correspondence with subsets of a basis ∆ of Φ(G, T ).

Fact 2.1.13. Let P be a parabolic subgroup of G.

(i) P is reductive if and only if P = G.

(ii) There exists a Levi decomposition of the parabolic subgroup P , i.e. we can write P as a
semidirect product MnN , where M is a reductive group and N is the unipotent radical
of P . M is called a Levi subgroup of P . Note that M is not unique in general.

For example, the Levi decomposition P = M nN for a parabolic subgroup of GLn(k) might
look like the following


? ? ? ? ? ?
? ? ? ? ? ?
0 0 ? ? ? ?
0 0 ? ? ? ?
0 0 ? ? ? ?
0 0 0 0 0 ?




=




? ? 0 0 0 0
? ? 0 0 0 0
0 0 ? ? ? 0
0 0 ? ? ? 0
0 0 ? ? ? 0
0 0 0 0 0 ?




n




1 0 ? ? ? ?
0 1 ? ? ? ?
0 0 1 0 0 ?
0 0 0 1 0 ?
0 0 0 0 1 ?
0 0 0 0 0 1




In order to construct representations, we need to get an even better handle on the structure
of reductive groups. Apart from the tori, the below defined root groups will play a crucial
role. We fix a maximal torus T of our reductive group G and recall that gα(k) = {X ∈
g(k) | Ad(t)(X) = α(t)X ∀t ∈ T (k)}

13



Representations of p-adic groups Jessica Fintzen

Definition (Fact) 2.1.14. Let α ∈ Φ(G, T ). The root (sub)group Uα is the unique (closed
reduced) connected T -stable subgroup of G whose Lie algebra is gα.

The root group Uα is isomorphic to the additive group Ga. For G = GLn, the root subgroup
Uαi,j(k) consists of those matrices that have ones on the diagonal and zeros in all non-diagonal
entries except for the (i, j)-entry. For example, for G = GL2,

Uα1,2(k) =

{(
1 ?
0 1

)}
.

Fact 2.1.15. Let B be a Borel subgroup containing a maximal torus T of G. Then B = TnU
and U is isomorphic as a variety (not necessarily as a group) to the product variety

∏
α∈Φ+ Uα,

where Φ+ denotes all those roots that are a non-negative linear combination of roots in an
appropriately chosen basis ∆ ⊂ Φ(G, T ).

Definition 2.1.16. We write N(T ) for the subgroup of G that normalizes the torus maximal
torus T . The Weyl group W is defined to be the quotient N(T )/T of the normalizer of T
by the torus T .

The Weyl group is a finite group. More precisely, we have the following fact.

Fact 2.1.17. The group W = N(T )/T is the Weyl group of the root system Φ(G, T ), i.e.
it is the subgroup of the isometries of the real vector space X∗(T ) ⊗Z R generated by the
reflections {sα |α ∈ ∆}, where sα denotes the reflection about the hyperplane perpendicular
to the root α and ∆ is a basis for Φ(G, T ).

If G = GLn, the Weyl group is isomorphic to the symmetric group Sn on a set of n elements.
If T is the torus consisting of diagonal matrices, then representatives for the elements in the
Weyl group can be chosen to be permutation matrices, e.g. for GL2 the nontrivial element

in the Weyl group can be represented by

(
0 1
1 0

)
.

It is a nice exercise to observe that the Weyl group of the symplectic group Sp2n is isomorphic
to the semidirect product Sn n (Z/2Z)n.

We conclude this section by stating an important decomposition of reductive groups into
locally closed subsets.

Theorem 2.1.18 (Bruhat decomposition). The group G is (as a set) the disjoint union
tw∈WBnwB, where nw ∈ N(T ) is any element whose imagine in W = N(T )/T is w and B
denotes a Borel subgroup of G containing T . Moreover, multiplication yields an isomorphism
of varieties from

B × nw ×
∏
α∈Φ+

w−1(α)/∈Φ+

Uα
'−→ BnwB.

14
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2.2 p-adic numbers and other non-archimedean local fields

Definition 2.2.1. The p-adic absolute value of a rational number ps · a
b

with a and b non-zero
integers coprime to p and s an arbitrary integer is defined by∣∣∣ps · a

b

∣∣∣
p

=

(
1

p

)s
and |0| = 0.

The p-adic absolute value on the rational numbers is a non-archimedean absolute value, i.e.
|x+ y|p ≤ max(|x|p , |y|p) for all rational numbers x and y.

Definition 2.2.2. The p-adic integers Zp are the completion of the integers Z by the p-adic
absolute value |·|p.
The p-adic numbers Qp are the completion of the rational numbers Q by the p-adic absolute
value |·|p.

This means we can represent p-adic integers as a converging “power series in p”:

a0 + a1 · p+ a2 · p2 + a3 · p3 + . . . for some integers ai (0 ≤ ai < p),

and we can write a p-adic number as a “Laurent series in p” (with only finitely many terms
with negative exponents):

a−n · p−n + . . .+ a0 + a1 · p+ a2 · p2 + . . . | ai (0 ≤ ai < p).

A ring closely related to the ring of p-adic integers is the ring of power series Fp[[t]] with
coefficients in a finite field Fp with p elements. We denote its fraction field by Fp((t)). It is
the field of formal Laurent series over Fp, i.e. its elements can be written as

a−n · t−n + . . .+ a0 + a1 · t+ a2 · t2 + . . . | ai ∈ Fp,

where we only allow finitely many non-zero coefficients for the negative exponents of t. We
equip the field Fp((t)) with the absolute value satisfying

∣∣ts(a0 + a1 · t+ a2 · t2 + . . .)
∣∣
p

=

(
1

p

)s
for a0 ∈ Fp \ {0}, a1, a2, . . . ∈ Fp and any integer s.

Let E be a finite field extension of Qp or Fp((t)). Then we can extend the absolute value
|·|p (uniquely) to an absolute value on E, which we also denote by |·|p. This absolute value
allows us to equip E with a topology.

Definition 2.2.3. A non-archimedean local field is a finite field extension of Qp or Fp((t))
equipped with the topology arising from the absolute value |·|p.
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Notation 2.2.4. The ring of integers OE of E is the subring:

OE = {e ∈ E | |e|p ≤ 1}

and it has the maximal ideal
PE = {e ∈ E | |e|p < 1}.

An element $E ∈ PE whose p-adic absolute value is maximal among the elements in PE is
called a uniformizer.

2.3 p-adic groups

In this section we define reductive groups over non-algebraically closed fields. Let F be either
a non-archimedean local field or a finite field, and fix an algebraic closure F of F . We will
view all algebraic field extensions of F as contained in F .

We first state the definition of a linear algebraic group over F and then provide some expla-
nation for those who have not seen the notion of geometrically reduced closed F -subgroups
before.

Definition 2.3.1. A linear algebraic group over F is a geometrically reduced closed F -
subgroup of the general linear group GLn over F for some integer n. (Equivalently, a linear
algebraic group is a smooth affine group scheme over F .)

To explain what we mean by an F -subgroup, we note that the ring of regular functions of
GLn over F is given by

F [GLn] := F [xi,j, y | 1 ≤ i, j ≤ n]/(det(xi,j)y − 1),

which can be written as

F [GLn] = F [GLn]⊗F F , where F [GLn] := F [xi,j, y | 1 ≤ i, j ≤ n]/(det(xi,j)y − 1).

Definition 2.3.2. An ideal I ⊂ F [GLn] is defined over F if I ∩ F [GLn] generates I as an
ideal.

This allows us to restate the definition of a linear algebraic group over F .

Definition 2.3.3. A linear algebraic group over F is a reduced closed subgroup of GLn over
F that is defined as the set of zeros of some ideal I ⊂ F [GLn] that is defined over F .

Let G be a linear algebraic group over F . For an algebraic field extension F ′/F , we write
G(F ′) for the F ′-points of G, i.e. the intersection G(F ) ∩ GLn(F ′). We denote by GF ′ the
base change of G to F ′, which means that we only remember that the group is defined over
F ′ rather than F .

16
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Definition 2.3.4. A linear algebraic group G over F is reductive if GF is reductive, i.e. the
unipotent radical (RGF )u of GF is trivial.

This allows us to now understand what we mean by a p-adic group. A p-adic group is the
group of F -points of a connected reductive group over a non-archimedean local field F . We
caution the reader that different authors might mean different things by “p-adic groups”,
e.g. some only work with reductive groups over finite extensions of the p-adic numbers.

Examples of reductive groups over F include the groups GLn, SLn,On, SOn, Sp2n that can
all be defined by ideals over F . However, new interesting phenoma arise over non-algebraic
closed fields.

Definition 2.3.5. An F -torus (or a torus over F ) is a linear algebraic group T over F such
that TF is a torus, i.e. such that T n

F
' Gn

m for some integer n.

As over algebraically closed fields, we denote GL1 over F also by Gm. Then for every field
extension F ′/F , we have Gm(F ′) = (F ′)×. Taking products of the multiplicative group Gm

provides us with examples of tori, which we call split tori.

Definition 2.3.6. An F -torus T is called split (or F -split) if T ' Gn
m for some integer n.

All tori over algebraically closed fields are split, however, over non-algebraically closed fields,
the theory is richer and becomes a key ingredient for the construction of representations of
p-adic groups. Here is an example of a torus that is used in the construction of supercuspidal
representations.

Example of a non-split torus. Let F = Qp, and let E be the quadratic extension of Qp

obtained by adjoining a squareroot
√
p of p. We define T to be the torus over F that is a

subgroup of GL2 satisfying

T (F ) =

{(
a b
pb a

)
⊂ GL2(F )

}
.

Then

T (F ) =

{(
a b
pb a

)
⊂ GL2(F )

}
' E× 6' (F×)2.

An important result by Grothendieck that allows us to understand the structure of reductive
groups over F is the following.

Theorem 2.3.7. If G is a linear algebraic group, then there exists an F -torus T ⊂ G such
that TF is a maximal torus of GF .

Definition 2.3.8. A reductive group G over F is called split (or F -split) if it contains a
maximal torus that is split.

For split reductive groups we obtain an analogous structure theory to the one discussed above
over the algebraic closure. In particular, Borel subgroups are defined over F , the Lie algebra
of the reductive group decomposes into the Lie algebra of a torus and one-dimensional sub-
algebras gα(F ) on which the torus acts via a root α, and root groups Uα are defined over F
and isomorphic to the additive group Ga over F .
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2.4 Representations of p-adic groups

From now on let F be a non-archimedean local field and let G be a connected reductive
group over F . We equip G(F ) with the topology arising from the topology of F , i.e. a basis
of open neighborhoods of the identity 1 in GLn(F ) consists of the subgroups

1 +$Matn×n(OF ) ⊃ 1 +$2 Matn×n(OF ) ⊃ 1 +$3 Matn×n(OF ) ⊃ . . . ,

where $ denotes a uniformizer of F . Then G(F ) is the group that we also refer to as a
p-adic group.

Definition 2.4.1. A smooth representation (π, V ) of G(F ) is

� a complex vector space V and

� a group homomorphism π : G(F )→ Aut(V )

such that for every v ∈ V the stabilizer Stab(v) = {g ∈ G(F ) |π(g)v = v} of v in G(F ) is
an open subset of G(F ).

We define smooth representations of closed subgroups of G(F ) (with respect to the p-adic
topology underlying the topological group G(F )) analogously.

In this survey we will focus on the irreducible smooth representations, i.e. those smooth
representations (π, V ) that have precisely two subrepresentations (subspaces of V preserved
under the action of G(F )): the trivial representation on the zero dimensional vector space
{0} and the representation (π, V ) itself.

An important finiteness property of smooth representations is the following.

Definition 2.4.2. A smooth representation (π, V ) of G(F ) is called admissible if the space

V K := {v ∈ V | π(k)v = v ∀ k ∈ K}

of K-fixed vectors has finite dimension for every compact open subgroup K of G(F ).

An important fact for representations with complex coefficients is that irreducible smooth
representations are automatically admissible.

Fact 2.4.3. If (π, V ) is an irreducible smooth representation of G(F ), then (π, V ) is admis-
sible.

An important tool to construct representations is the induction. There are two kinds of
inductions that will play an important role for us.

Definition 2.4.4. Let H be a closed subgroup of G(F ) (with respect to the p-adic topology
underlying the topological group G(F )) and let (σ,W ) be a smooth representation of H.

The induced representation (R, Ind
G(F )
H W ) (also sometimes referred to as smooth induction)

is defined as follows:

18
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� Ind
G(F )
H W is the space of functions f : G(F )→ W satisfying

(a) f(hg) = σ(h)f(g) for all h ∈ H, g ∈ G(F ), and

(b) there exists a compact open subgroup Kf ⊂ G(F ) such that f(gk) = f(g) for all
k ∈ Kf .

� The action of G(F ) on Ind
G(F )
H W is via right translation, i.e.

(R(g)(f))(x) = f(xg) ∀ g ∈ G(F ), f ∈ Ind
G(F )
H W,x ∈ G(F ).

We may also write (Ind
G(F )
H σ, Ind

G(F )
H W ) instead of (R, Ind

G(F )
H W ).

The compact induction of (σ,W ) from H to G(F ) is the subrepresentation (R, c-ind
G(F )
H W )

of (R, Ind
G(F )
H W ) consisting of functions f ∈ Ind

G(F )
H W whose support has compact image

in H\G(F ). We may also write (c-ind
G(F )
H σ, c-ind

G(F )
H W ) instead of (R, c-ind

G(F )
H W ).

For the smooth induction, we are particularly interested in the following special case.

Definition 2.4.5. Let P ⊂ G be a parabolic subgroup of G with Levi decomposition
P = M n N . Let (σ,W ) be a smooth representation of the Levi subgroup M(F ). The

parabolic induction (Ind
G(F )
P (F ) σ, Ind

G(F )
P (F ) W ) is defined by inflating (i.e. extending) the rep-

resentation σ to a representation of P (F ) that is trivial on N(F ) and then inducing the
resulting representation from P (F ) to G(F ).

Remark 2.4.6. We caution the reader that some authors normalize the parabolic induction

by replacing σ(m) by σ(m)
∣∣det AdLie(N)(F )(m)

∣∣1/2 for m ∈M(F ). This normalized induction
preserves unitary. However, for our applications, both parabolic inductions, the normalized
and the unnormalized one, work equally well.

This allows us to define supercuspidal representations.

Definition 2.4.7. An irreducible smooth representation (π, V ) of G(F ) is called supercus-
pidal if for all proper parabolic subgroups P ( G with Levi subgroup M and all irreducible
smooth representations (σ,W ) of M(F ) the representation (π, V ) is not a subrepresentation

of (Ind
G(F )
P (F ) σ, Ind

G(F )
P (F ) W ).

The following fact explains why we call the supercuspidal representations the building blocks.

Fact 2.4.8. Let (π, V ) be an irreducible smooth representation of G. Then there exists a
parabolic subgroup P ⊆ G with Levi subgroup M and a supercuspidal representation (σ,W )

of M(F ) such that (π, V ) is a subrepresentation of (Ind
G(F )
P (F ) σ, Ind

G(F )
P (F ) W ).
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It is a folklore conjecture that all supercuspidal representations arise via compact induction
from a representation of a compact-mod-center open subgroup. In this survey we will out-
line how to construct all supercuspidal representations via compact induction under some
mild tameness assumptions. In order to do this, we will need to introduce some additional
structure theory. Though before doing so in the next section, let us mention the analogous
definition of supercuspidal representations in the finite group case for later use.

Definition 2.4.9. LetH be the Fq-points of a reductive group. An irreducible representation
(π, V ) of H is called cuspidal if the following equivalent conditions are satisfied:

(a) There does not exist a proper parabolic subgroup P = MN of H and a representa-
tion (σ,W ) of a Levi subgroup M such that V embeds into the induced representation
(IndHP σ, IndHP W ).

(b) There does not exist a proper parabolic subgroup P of H with unipotent radical N such
that the space of N -fixed vectors V N is non-trivial.

We conclude this section by stating an equivalent definition of supercuspidal representations,
for which we first introduce the contragredient representation.

Definition 2.4.10. Let (π, V ) be a smooth representation of G(F ). We denote by V ∗ the
dual vector space of V with the (often not smooth) representation π∗ given by

π∗(g)(λ)(v) = λ(π(g−1)v) for g ∈ G(F ), λ ∈ V ∗, v ∈ V.

The contragredient representation (π̃, Ṽ ) is the restriction of the representation (π∗, V ∗) to

the subspace of smooth vectors Ṽ :=
⋃
K(V ∗)K , where the union runs over all compact open

subgroups K of G(F ).

Fact 2.4.11. An irreducible smooth representations (π, V ) of G(F ) is supercuspidal if and
only if the image in G(F )/Z(G(F )) of the support of the function

G(F ) → C
g 7→ λ(π(g)v)

is compact for all v ∈ V, λ ∈ Ṽ , where Z(G(F )) denotes the center of G(F ). Equivalently,

we may ask this condition to be satisfied only for some 0 6= v ∈ V and 0 6= λ ∈ Ṽ .

3 An introduction to the Moy–Prasad filtration and

Bruhat–Tits theory

The Moy–Prasad filtration is a decreasing filtration of G(F ) by compact open subgroups
that are normal inside each other and whose intersection is trivial. It is a refinement and
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generalization of the congruence filtration of GLn(F ). One usually starts with the definition
of a Bruhat–Tits building that Bruhat and Tits ([BT72, BT84]) attached to the reductive
group G over F in 1972/1984, and then to each point in the Bruhat–Tits building, Moy and
Prasad ([MP94,MP96]) associated in 1994/1996 a filtration by compact open subgroups. In
this survey, we will take a different approach and first introduce the Moy–Prasad filtration
and use it to define the Bruhat–Tits building.

We abbreviate the ring of integers OF of F by O and write Fq for the residue field, which is
defined to be the quotient O/PF . The residue field Fq is a finite field with q elements for some
power q of p. We fix a uniformizer $ ∈ PF , and we define the valuation val : F � Z ∪ {∞}
by

val(x) =
log(|x|p)
log(|$|p)

∀x ∈ F \ {0} and val(0) =∞.

Then
val($) = 1 and O = {x ∈ F | val(x) ≥ 0}.

We extend this valuation to any finite field extension E of F using the same formula. The
valuation on E takes values in Q ∪ {∞}.

3.1 The split case

We assume in this subsection that G is split over F . Let T be a split maximal torus of G.
We recall that a Chevalley system {Xα}α∈Φ(G,T ) consists of a non-trivial element Xα in the
one dimensional F -vector space gα(F ) for each root α of G with respect to T such that

Ad(wβ)(Xα) = ±Xsβ(α) , ∀α, β ∈ Φ(G, T ),

where wβ is an element of the normalizer N(T )(F ) of T determined by Xβ whose image in
the Weyl group (N(T )/T )(F ) is the simple reflection sβ corresponding to β. For example,

if G = SL2 and Xβ =

(
0 1
0 0

)
, then wβ =

(
0 1
−1 0

)
. In general wβ is defined as follows. For

every root β, we let xβ : Ga
'−→ Uβ be the isomorphism whose derivative sends 1 ∈ F = Ga(F )

to Xβ, then
wβ = xβ(1)xβ(ε)xβ(1)

where ε ∈ {±1} is the unique element for which xβ(1)xβ(ε)xβ(1) lies in the normalizer of T .

For example, for GLn the collection {Xαi,j}1≤i,j≤n;i 6=j consisting of the matrices with all
entries zero except for a one at position (i, j) forms a Chevalley system.

This allows us to make the following definition, but we warn the reader that we have not
seen anyone else use the terminology “BT triple”.

Notation 3.1.1. A BT triple (T,Xα, xBT ) consists of

(i) a split maximal torus T of G,
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(ii) a Chevalley system {Xα}α∈Φ(G,T ), and

(iii) xBT ∈ X∗(T )⊗Z R := HomF (Gm, T )⊗Z R.

Here HomF denotes homomorphisms in the category of F -group schemes, i.e. HomF (Gm, T )
denotes the homomorphisms between the F -varieties Gm and T that commute with the
group action. Then HomF (Gm, T ) is a free Z-module, hence HomF (Gm, T )⊗Z R is a finite-
dimensional real vector space. Moreover, we have a bilinear pairing between X∗(T ) :=
HomF (T,Gm) and X∗(T ) = HomF (Gm, T ) obtained by identifying HomF (Gm,Gm) with Z.
We extend this map R-linearly in the second factor to obtain a map

〈·, ·〉 : X∗(T )×X∗(T )⊗Z R→ R.

In particular, we may pair xBT with a root α ∈ Φ(G, T ) to obtain a real number 〈α, xBT 〉.
We now fix a BT triple x = (T, {Xα}, xBT ) and define the Moy–Prasad filtration attached
to it.

Filtration of the torus.

We set
T (F )0 = {t ∈ T (F ) | val(χ(t)) = 0 ∀χ ∈ X∗(T ) = HomF (T,Gm)},

which is the maximal bounded subgroup of T (F ). For r ∈ R>0, we define

T (F )r = {t ∈ T (F )0 | val(χ(t)− 1) ≥ r ∀χ ∈ X∗(T )}.

For example, if G = GLn and T is the torus consisting of diagonal matrices, then T (F )0

consists of diagonal matrices whose entries are all in O× and T (F )r consists of diagonal
matrices whose entries are all in 1 +$dreO.

Filtration of the root groups.

Let α ∈ Φ(G, T ). We recall that the isomorphism xα : Ga → Uα is defined by requiring its
derivative dxα to send 1 ∈ F = Ga(F ) to Xα. For r ∈ R≥0, we define the filtration subgroups
of Uα(F ) as follows

Uα(F )x,r := xα($dr−〈α,xBT 〉eO).

Let us consider the example of G = SL2 and T the torus consisting of diagonal matrices.

Example 1. Let x1 be the Bruhat–Tits triple

(
T,

{(
0 1
0 0

)
,

(
0 0
1 0

)}
, 0

)
. Let α = α1,2,

and hence −α = α2,1. Then xα(y) =

(
1 y
0 1

)
for y ∈ F = Ga(F ) and

Uα(F )x1,r =

(
1 $dreO
0 1

)
and U−α(F )x1,r =

(
1 0

$dreO 1

)
.
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Example 2. Let x2 be the Bruhat–Tits triple

(
T,

{(
0 1
0 0

)
,

(
0 0
1 0

)}
, 1

4
α̌

)
, where α̌ is the

coroot of α, i.e. the element of X∗(T ) that satisfies α̌(t) =

(
t 0
0 t−1

)
for t ∈ F× = Gm(F ).

Then

Uα(F )x2,r =

(
1 $dr−

1
2eO

0 1

)
and U−α(F )x2,r =

(
1 0

$dr+
1
2eO 1

)
.

Filtration of G(F ).
We define the filtration subgroup G(F )x,r of G(F ) for r ∈ R≥0 to be the subgroup generated
by T (F )r and Uα(F )x,r for all roots α, i.e.

G(F )x,r = 〈T (F )r, Uα(F )x,r |α ∈ Φ(G, T )〉 .

If the ground field F is clear from the context, we may also abbreviate G(F )x,r by Gx,r.

In the example of G = SL2 for the two Bruhat–Tits triples above, we have for r > 0

Gx1,0 = SL2(O) , Gx1,r =

(
1 +$dreO $dreO
$dreO 1 +$dreO

)
det=1

and

Gx2,0 =

(
O O
$O O

)
det=1

, Gx2,r =

(
1 +$dreO $dr−

1
2eO

$dr+
1
2eO 1 +$dreO

)
det=1

.

Filtration of g(F ) and g∗(F ) .
One can analogously define a filtration gx,r of the Lie algebra g(F ) and a filtration g∗x,r of the
F -linear dual g∗(F ) of the Lie algebra g(F ) as follows. Let r be a real number, and recall
that we write t for the Lie algebra of the torus T . Then we set

t(F )r = {X ∈ t(F ) | val(dχ(X)) ≥ r ∀χ ∈ X∗(T )},

where dχ denotes the derivative of χ,

gα(F )x,r = $dr−〈α,xBT 〉eOXα ⊂ gα(F )

for α ∈ Φ(G, T ), and

g(F )x,r = t(F )r ⊕
⊕

α∈Φ(G,T )

gα(F )x,r.

We define the filtration subspace g∗(F )x,r of the dual of the Lie algebra by

g∗(F )x,r = {X ∈ g∗(F ) |X(Y ) ∈ $O for all Y ∈ g(F )x,s with s > −r}.

If the ground field F is clear from the context, we may also abbreviate g(F )x,r and g∗(F )x,r
by gx,r and g∗x,r, respectively.
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Properties of the Moy–Prasad filtration

Definition 3.1.2. A parahoric subgroup of G is a subgroup of the form Gx,0 for some BT
triple x.

For r ∈ R≥0, we write Gx,r+ =
⋃
s>rGx,s and gx,r+ =

⋃
s>r gx,s.

We collect a few facts about this filtration.

Fact 3.1.3. Let x be a BT triple.

(a) Gx,r is a normal subgroup of Gx,0 for all r ∈ R≥0.

(b) The quotient Gx,0/Gx,0+ is the group of Fq-points of a reductive group Gx defined over
the residue field Fq of F .

(c) For r ∈ R>0, the quotient Gx,r/Gx,r+ is abelian and can be identified with an Fq-vector
space.

(d) Let r > 0. Since Gx,r is a normal subgroup of Gx,0, the group Gx,0 acts on Gx,r via
conjugation. This action descends to an action of the quotient Gx,0/Gx,0+ on the vector
space Gx,r/Gx,r+ and the resulting action is (the Fq-points of) a linear algebraic action,
i.e. corresponds to a morphism from Gx to GLdimFq (Gx,r/Gx,r+) over Fq.

(e) We have the following isomorphism that is often referred to as the “Moy–Prasad iso-
morphism”: Gx,r/Gx,r+ ' gx,r/gx,r+ for r ∈ R>0 and more general Gx,r/Gx,s ' gx,r/gx,s
for r, s ∈ R>0 with 2s ≥ r.

In fact we have a rather good understanding of the representations occurring in (d). In
[Fin21b] they are described explicitly in terms of Weyl modules. Previously they were also
realized using Vingberg–Levy theory by Reeder and Yu ([RY14]), which was generalized in
[Fin21b].

The Bruhat–Tits building

Definition 3.1.4. The (reduced) Bruhat–Tits building B(G,F ) of G over F is as a set the
quotient of the set of BT triples by the following equivalence relation: Two BT triple x1 and
x2 are equivalent if and only if Gx1,r = Gx2,r for all r ∈ R≥0.

As a consequence of the definition, for x ∈ B(G, T ), we may write Gx,r for the Moy–Prasad
filtration attached to any BT triple in the equivalence class of x.

The Bruhat–Tits building B(G,F ) admits an action of G(F ) that is determined by the
property

Gg.x,r = gGx,rg
−1 ∀ r ∈ R≥0, g ∈ G(F ).

We will now equip the Bruhat–Tits building with more structure.

Apartments as affine spaces.
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Definition 3.1.5. For a split maximal torus T , we call the subset of B(G,F ) that can be
represented by BT triples whose first entry is the given torus T , i.e.

A (T, F ) := {(T, {Xα}, xBT )}/∼ ⊂ B(G,F )

the apartment of T .

We fix a split maximal torus T and a Chevalley system {Xα}α∈Φ(G,T ). Then it turns out
that every element in A (T, F ) can be represented by a BT triple whose first two entries
are the torus T and the fixed Chevalley system {Xα}α∈Φ(G,T ). Moreover, two BT triples
(T, {Xα}, xBT,1) and (T, {Xα}, xBT,2) are equivalent if and only if xBT,2 − xBT,1 lies in the
subspace X∗(Z(G)) ⊗ R, where Z(G) denotes the center of G. Note that X∗(Z(G)) ⊗ R
is trivial when the center Z(G) of G is finite. Thus the set A (T, F ) is isomorphic to
X∗(T )⊗R/X∗(Z(G))⊗R, and we use this isomorphism to equipp A (T, F ) with the structure
of an affine space over the real vector space X∗(T )⊗R/X∗(Z(G))⊗R. While the isomorphism
of A (T, F ) with X∗(T ) ⊗ R/X∗(Z(G)) ⊗ R depends on the choice of the Chevalley system
{Xα}α∈Φ(G,T ), the structure of A (T, F ) as an affine space does not. In fact, the choice of a
Chevalley system turns the affine space into a vector space by choosing a base point.

Polysimplicial structure on apartments.

Let T be a split maximal torus of G. For α ∈ Φ(G, T ), we define the following set of
hyperplanes of the apartment A (T, F ):

Ψα :=

{
hyperplanes H ⊂ A (T, F ) satisfying

Uα(F )x,0 = Uα(F )y,0 ∀x, y ∈ H
Uα(F )x,0 6= Uα(F )x,0+ ∀x ∈ H

}
.

We set
Ψ :=

⋃
α∈Φ(G,T )

Ψα

and use these hyperplanes to turn the apartment A (T, F ) into the geometric realization of
a polysimplicial complex. This means the connected components of the complement of the
union of the hyperplanes in Ψ are the maximal dimensional polysimplices, which are also
called chambers.

We record the following facts that will become useful later when constructing supercuspidal
representations.

Fact 3.1.6. Let x ∈ A (T, F ) ⊂ B(G,F ).

(a) The root system of Gx is given by Φ(Gx) = {α ∈ Φ(G, T ) |x ∈ H for some H ∈ Ψα}.

(b) Let y ∈ A (T, F ). Then the image of Gx,0 ∩ Gy,0 in Gy,0/Gy,0+ is a parabolic subgroup
Px,y and the image of Gx,0+ ∩ Gy,0 in Gy,0/Gy,0+ is the unipotent radical of Px,y. If
x 6= y and y is a vertex, i.e. a polysimplex of minimal dimension, then Px,y is a proper
parabolic subgroup.
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Figure 5: Excerpt of an apartment for SL3 with hyperplanes

3.2 The non-split (tame) case

We first assume that G splits over an unramified Galois field extension E over F . In that
case all the above definitions can be descended to G by taking Gal(E/F )-fixed points of the
corresponding objects for GE. More precisely, we set

G(F )x,r = G(E)Gal(E/F )
x,r ,

where G(E)x,r is defined using the valuation on E that extends the valuation val on F . As
in the split case, we may abbreviate G(F )x,r by Gx,r.

Via the action of Gal(E/F ) on G(E) and hence on its filtration subgroups, we obtain an
action of Gal(E/F ) on the Bruhat–Tits building B(G,E) and we define

B(G,F ) = B(G,E)Gal(E/F ).

More generally, if we only assume that G splits over a tamely ramified Galois field extension
E over F , then we have for r > 0

Gx,r = G(F )x,r = G(E)Gal(E/F )
x,r ,

where G(E)x,r is defined using the valuation on E that extends the valuation val on F

and Uα(E)x,r = xα($
de(r−〈α,xBT 〉)e
E OE) with e the ramification index of the field extension E
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over F . Defining the parahoric subgroup G(F )x,0 is slightly more subtle in general. It is a

finite index subgroup of G(E)
Gal(E/F )
x,0 . The parahoric subgroup G(F )x,0 being occasionally a

slightly smaller group than G(E)
Gal(E/F )
x,0 will ensure that G(F )x,0/G(F )x,0+ are the Fq-points

of a connected reductive group rather than a potentially disconnected group. More precisely,
the parahoric subgroup G(F )x,0 is defined by

Gx,0 = G(F )x,r = G(E)Gal(E/F )
x,r ∩G(F )0

for some explicitly constructed normal subgroup G(F )0 ⊂ G(F ). We refer the interested
reader to the literature, e.g. [KP], for the precise definition of G(F )0 and only note that
G(F )0 = G(F ) if G is simply connected semi-simple, e.g. for G = SLn we have SLn(F )0 =
SLn(F ).

As in the unramified setting, using the action of Gal(E/F ) onG(E) and hence on its filtration
subgroups, we obtain an action of Gal(E/F ) on the Bruhat–Tits building B(G,E) and we
define

B(G,F ) = B(G,E)Gal(E/F ).

Similarly, we have for the Lie algebra

gx,r = g(F )x,r = (g(E)x,r)
Gal(E/F ).

We note that the above definitions rely on the extension E over F being tame, but are
independent of the choice of E.

Aside 3.2.1. If G splits only over a wildly ramified extension E/F , then the space of fixed
vectors of the Galois action on the Bruhat–Tits building over E might be larger than the
Bruhat–Tits building defined over F (which we have not introduced in that generality in
this survey).

3.3 The enlarged Bruhat–Tits building

In some circumstances it is more convenient to work with the enlarged Bruhat–Tits building.
The enlarged Bruhat–Tits building B̃(G,F ) is defined as the product of the reduced Bruhat–
Tits building B(G,F ) with X∗(Z(G))⊗Z R, i.e.

B̃(G,F ) = B(G,F )×X∗(Z(G))⊗Z R.

This means that if the center of G is finite, then the reduced and the non-reduced Bruhat–
Tits buildings are the same. In general, an important difference is that stabilizers in G(F )
of points in the enlarged Bruhat–Tits building are compact while stabilizers of points in the
reduced Bruhat–Tits building contain the center of G(F ) and are compact-mod-center. For

the enlarged building, the apartments Ã (S, F ) correspond to maximal split tori S and are

affine spaces under the action of X∗(S) ⊗Z R. For a point x ∈ B̃(G,F ) we denote by [x]
the image of x in B(G,F ) (by projection on the first factor) and we define Gx,r := G[x],r for
r ∈ R≥0 and gx,r := g[x],r and g∗x,r := g∗[x],r for r ∈ R.
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3.4 The depth of a representation

The Moy–Prasad filtration allows us to introduce the notion of the depth of a representation,
initially defined by Moy and Prasad in [MP94,MP96]. Our definition is slightly different but
equivalent to theirs.

Definition 3.4.1. Let (π, V ) be an irreducible smooth representation of G. The depth of
(π, V ) is the smallest non-negative real number r such that V Gx,r+ 6= {0} for some x ∈
B(G,F ).

4 Construction of supercuspidal representations

As discussed in the introduction, mathematicians have worked on the construction of su-
percuspidal representations the past 50 years. Here we will present the construction of
supercuspidal representations by Yu ([Yu01]) from 2001, with a twist introduced by Fintzen,
Kaletha and Spice ([FKS]) in 2021. Contrary to earlier works, this construction applies to
all p-adic groups that split over a tamely ramified extension and is exhaustive if p does not
divide the order of the (absolute) Weyl group of the p-adic group. Yu’s construction is a
generalization of a construction by Adler ([Adl98]), which in term was inspired by work of
Howe, Morris, Moy and unpublished work of Jabon.

4.1 The input for the construction

We fix for the rest of the paper an additive character ϕ : F → C× (i.e. a group homo-
morphism from the group F (equipped with addition) to the group C× (equipped with
multiplication)) that is nontrivial on O and trivial on $O and we assume that p 6= 2.

Definition 4.1.1. A subgroup G′ of G is a twisted Levi subgroup if G′E is a Levi subgroup
of GE for some finite field extension E over F .

If G′ is a twisted Levi subgroup of G, and we assume that G′ splits over a tamely ramified field
extension of F , then we have an embedding of the enlarged Bruhat–Tits building B̃(G′, F )

of G′ into the enlarged Bruhat–Tits building B̃(G,F ) of G. This embedding is unique up
to translation by X∗(Z(G′)) ⊗Z R. Below we will fix such embeddings when working with

twisted Levi subgroups to view B̃(G′, F ) as a subset of B̃(G,F ).

The input for the construction of supercuspidal representations by Yu (following the notation
of [Fin21a]) is a tuple ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ, (φi)1≤i≤n) for some non-negative integer n
where

(a) G = G1 ⊇ G2 ) G3 ) . . . ) Gn+1 are twisted Levi subgroups of G that split over a
tamely ramified extension of F ,

(b) x ∈ B̃(Gn+1, F ) ⊂ B̃(G,F ),
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(c) r1 > r2 > . . . > rn > 0 are real numbers,

(d) ρ is an irreducible representation of (Gn+1)[x] that is trivial on (Gn+1)x,0+,

(e) φi, for 1 ≤ i ≤ n, is a character (i.e. a one-dimensional representation) of Gi+1(F ) of
depth ri

satisfying the following conditions

(i) Z(Gn+1)/Z(G) is anisotropic, i.e. its F -points are a compact group,

(ii) the image [x] of the point x in B(Gn+1, F ) is a vertex, i.e. a polysimplex of minimal
dimension

(iii) ρ|(Gn+1)x,0 is a cuspidal representation of the reductive group (Gn+1)x,0/(Gn+1)x,0+,

(iv) φi is (Gi, Gi+1)-generic relative to x of depth ri for all 1 ≤ i ≤ n with Gi 6= Gi+1,

where generic characters are defined below. We will call a tuple satisfying the above condi-
tions a Yu datum.

Aside 4.1.2. Our conventions for the notation (following [Fin21a]) differ slightly from those
in [Yu01]. In particular, Yu’s notation for the twisted Levi sequence is G0 ( G1 ( G2 (
. . . ( Gd. The reader can find a translation between the two different notations in [Fin21a,
Remark 2.4].

In order to define generic character (following [Fin, §2.1], which is based on [Yu01, §9], but
is slightly more general for small primes), we first define the notion of generic elements in
the dual of the Lie algebra and then use the Moy–Prasad isomorphism to obtain the notion
of generic characters.

Let G′ ( G be a twisted Levi subgroup that splits over a tamely ramified extension of F ,
and denote by (Lie∗(G′))G

′
(F ) the subspace of the linear dual of Lie(G′)(F ) that is fixed by

(the dual of) the adjoint action of G′(F̄ ).

Definition 4.1.3. Let x ∈ B̃(G′, F ) and r ∈ R>0.

(a) An elementX of (Lie∗(G′))G
′
(F ) ⊂ Lie∗(G′)(F ) is calledG-generic of depth r (or (G,G′)-

generic of depth r) if the following three conditions hold.

(GE0) For some (equivalently, every) point x ∈ B̃(G′, F ), we have X ∈ Lie∗(G′)x,−r.

(GE1) val(X(Hα)) = −r for all α ∈ Φ(GF̄ , TF̄ )\Φ(G′
F̄
, TF̄ ) for some maximal torus T of G′,

where Hα := dα̌(1) ∈ g(F̄ ) with dα̌ the derivative of the coroot α̌ ∈ HomF̄ (Gm, TF̄ )
of α.
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(GE2) (GE2) of [Yu01, §8] holds, where we refer the reader to [Yu01] for details. Condition
(GE1) implies (GE2) if p is not a torsion prime for the dual root datum of G,
i.e., in particular, if p does not divide the order of the (absolute) Weyl group of
G. Hence, by assuming that p is large enough, the reader may ignore Condition
(GE2).

(b) A character φ of G′(F ) is called G-generic (or (G,G′)-generic) relative to x of depth r if φ
is trivial on G′x,r+, non-trivial on G′x,r and the restriction of φ to G′x,r/G

′
x,r+ ' g′x,r/g

′
x,r+

is given by ϕ ◦X for some (G,G′)-generic element X of depth r.

For example, if F = Q17, G = GL2 and G′ is the diagonal torus T . Then

Hα1,2 = −Hα2,1 =

(
1 0
0 −1

)
and the elements

X :

(
A 0
0 B

)
7→ A and X ′ :

(
A 0
0 B

)
7→ A−B

are G-generic of depth 0. The elements

X :

(
A 0
0 B

)
7→ A+B and X ′ :

(
A 0
0 B

)
7→ A− 16B

are also contained in Lie∗(T )x,0 \ Lie∗(T )x,0+ (for any x ∈ B̃(T, F )), but are not G-generic
of depth r for any real number r.

4.2 The construction of supercuspidal representations à la Yu

In this section we outline how Yu ([Yu01]) constructs from a Yu datum

((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ, (φi)1≤i≤n)

a compact-mod-center open subgroup K̃ and a representation ρ̃ of K̃ such that c-ind
G(F )

K̃
ρ̃

is an irreducible supercuspidal representation of G(F ).

The compact-mod-center open subgroup K̃ is given by

K̃ = (G1)x, r1
2

(G2)x, r2
2
. . . (Gn)x, rn

2
(Gn+1)[x],

where (Gn+1)[x] denotes the stabilizer in Gn+1(F ) of the point [x] in the (reduced) Bruhat–
Tits building B(Gn+1, F ).

The representation ρ̃ is a tensor product of two representations ρ and κ,

ρ̃ = ρ⊗ κ,
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where ρ also denotes the extension of the representation ρ of (Gn+1)[x] to K̃ that is trivial on
(G1)x, r1

2
(G2)x, r2

2
. . . (Gn)x, rn

2
. The representation κ is built out of the characters φ1, . . . , φn.

If n = 0, then κ is trivial and we are in the setting of depth-zero representations.

We will first sketch the construction of κ in the case n = 1, i.e. when the Yu datum is of
the form ((G = G1 ⊃ G2 = Gn+1), x, (r1), ρ, (φ1)). To simplify notation, we write r = r1 and

φ = φ1, and we assume G1 6= G2. In this case K̃ = Gx, r
2
(G2)[x].

Step 1 (extending the character φ as far as possible): The first step consists of
extending the character φ to a character φ̂ of Gx, r

2
+(G2)[x]. This is done by sending the

root groups outside G2 to 1. More precisely, φ̂ is the unique character of Gx, r
2

+(G2)[x] that
satisfies

� φ̂|(G2)[x]
= φ, and

� φ̂|Gx, r2 +
factors through

Gx, r
2

+/Gx,r+ ' gx, r
2

+/gx,r+ = (g2(F )⊕ r(F ))x, r
2

+/(g2(F )⊕ r(F ))x,r+

→ (g2)x, r
2

+/(g2)x,r+ ' (G2)x, r
2

+/(G2)x,r+,

on which it is induced by φ. Here we used the Moy–Prasad isomorphism and r(F ) is
defined to be

r(F ) = g(F ) ∩
⊕

α∈Φ(GE ,TE)\Φ((G2)E ,TE)

g(E)α

for some maximal torus T of G2 that splits over a tamely ramified extension E of F

with x ∈ Ã (TE, E), and the surjection g2(F )⊕ r(F ) � g2(F ) sends r(F ) to zero.

Step 2 (Heisenberg representation): As second step we extend the (one-dimensional)
representation φ̂|Gx, r2 +(G2)x, r2

to a representation (ω, Vω) of Gx, r
2
. We write V r

2
for the quotient

V r
2

= Gx, r
2
/(Gx, r

2
+(G2)x, r

2
)

and we view V r
2

as an Fp-vector space. (It can also be viewed as an Fq-vector space, but
here we only consider the underlying Fp-vector space structure.) Then one can show that
the pairing

〈g, h〉 := φ̂(ghg−1h−1), g, h ∈ Gx, r
2

defines a non-degenerate symplectic form on V r
2

= Gx, r
2
/(Gx, r

2
+(G2)x, r

2
) when we choose an

identification between the p-th roots of unity in C× and Fp.
Now the theory of Heisenberg representations implies that there exists a unique irreducible
representation (ω, Vω) of Gx, r

2
that restricted to Gx, r

2
+(G2)x, r

2
acts via φ̂ (times identity), and

the dimension of Vω is
√

#V r
2

= p
(dimFp V r2

)/2
.

Step 3 (Weil representation): The final step of the construction consists of extending

the action of Gx, r
2

on Vω via ω to an action of K̃ = Gx, r
2
(G2)[x] on Vω by defining an action of
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(G2)[x] on Vω that is compatible with ω. In order to obtain this action, we first observe that
(G2)[x] acts on V r

2
via conjugation and that this action preserves the symplectic form 〈·, ·〉.

This provides a morphism from (G2)[x] to the group Sp(V r
2
) of symplectic isomorphisms of

V r
2
. Now the Weil representation is a representation of the symplectic group Sp(V r

2
) on the

space Vω of the Heisenberg representation of the symplectic vector space that is compatible
with the Heisenberg representation in the following sense. Using the composition of the
morphism (G2)[x] → Sp(V r

2
) with the Weil representation tensored with the character φ

allows us to extend the representation (ω, Vω) from Gx, r
2

to Gx, r
2
(G2)[x]. We denote the

resulting representation of K̃ = Gx, r
2
(G2)[x] also by (ω, Vω) and set (κ, Vκ) = (ω, Vω).

This concludes the construction of κ and hence ρ̃ = ρ⊗ κ in the case of n = 1. For a more
general Yu datum ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ, (φi)1≤i≤n) with n > 1 we construct from each
character φi (1 ≤ i ≤ n) a representation (ωi, Vωi) analogous to the construction of (ω, Vω)
above. Then we define κ to be the tensor product of all those representations, i.e.

(κ, Vκ) =

(⊗
1≤i≤n

ωi,
⊗

1≤i≤n

Vωi

)
.

For the details we refer the reader to [Fin21a, §2.5], which is based on [Yu01].

Theorem 4.2.1 ([Yu01,Fin21a]). The representation c-ind
G(F )

K̃
ρ̃ is a supercuspidal smooth

irreducible representation of G(F ).

We will sketch the structure of the proof in the next section.

4.3 The proof that the representations are supercuspidal

It is a nice exercise to deduce from Fact 2.4.11 the following lemma.

Lemma 4.3.1. If c-ind
G(F )

K̃
ρ̃ is irreducible, then c-ind

G(F )

K̃
ρ̃ is a supercuspidal representation

of G(F ).

This means it suffices to show that c-ind
G(F )

K̃
ρ̃ is irreducible, for which the standard approach

is via Fact 4.3.3 below. In order to state the fact, we need to introduce some notation.

Let K be a compact-mod-center open subgroup of G(F ) that contains the center Z(G(F ))
and let (σ,W ) be a smooth representation of K.

Notation 4.3.2. For g ∈ G(F ), we write gσ for the representation of gK := gKg−1 satisfying
gσ(h) = σ(g−1hg) for h ∈ gK.

We say that g intertwines (σ,W ) if HomgK∩K(gσ|gK∩K , σ|gK∩K) 6= {0}.

Fact 4.3.3. Suppose g ∈ G(F ) intertwines (σ,W ) if and only if g ∈ K. Then c-ind
G(F )
K σ is

irreducible.
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This result relies on the Mackey decomposition.

Lemma 4.3.4 (Mackey decomposition). If K ′ is a compact-mod-center open subgroup of G,

then the restriction of c-ind
G(F )
K σ to K ′ decomposes as a representation of K ′ as follows

(c-ind
G(F )
K σ)|K′ =

⊕
K′\G(F )/K

IndK
′

gK∩K′
gσ|gK∩K′

The proof of the lemma is left as an exercise for the reader.

Sketch of the structure of the proof of Theorem 4.2.1.

In order to prove that c-ind
G(F )

K̃
ρ̃ is supercuspidal it suffices to prove that it is irreducible

by Lemma 4.3.1. First one notes that ρ̃ itself is irreducible. We assume that an element
g ∈ G(F ) intertwines ρ̃. Now the main task is to show that g ∈ K̃ so that we can apply
Fact 4.3.3. This is done in two steps.

Step 1. We show recursively that g ∈ K̃Gn+1K̃ using that the characters φi are generic.

The key part for this step is [Yu01, Theorem 9.4], which in the example of n = 1 spelled out
above implies the following lemma.

Lemma 4.3.5 ([Yu01]). Suppose that g intertwines φ̂|Gx, r2 +
. Then g ∈ Gx, r

2
G2(F )Gx, r

2
.

As mentioned above, this lemma crucially uses the fact that φ is (G,G2)-generic relative to
x of depth r (if G1 6= G2) and we refer to [Yu01, Theorem 9.4] for the proof.

Step 2. By Step 1 we may assume that g ∈ Gn+1(F ). Step 2 consists of showing that then
g ∈ (Gn+1)[x] using the structure of the Weil–Heisenberg representation and that ρ|(Gn+1)x,0

is cuspidal.

The reader interested in the full details of the proof is encouraged to read [Fin21a, §3],
which refers to precise statements in [Yu01] that allow an easy backtracking within [Yu01]
if the reader is interested in all the details that make the complete proof. While Section 3
of [Fin21a] is only about four pages long, we do not see a merit in copy+pasting it here.
Instead we present readers who are only interested in a glimpse of an idea of the proof of
Step 2 with the proof in the depth-zero case, i.e. the n = 0 case, in this survey. This case has
been known already much earlier ([MP96, Mor99]) and does not require an intricate study
of the Weil–Heisenberg representations, but on the other hand shows the importance played
by ρ|(Gn+1)x,0 being cuspidal.

4.4 Depth-zero supercuspidal representations

In this section, we consider the special case of depth-zero supercuspidal representations,
which are precisely those arising from a datum as above with n = 0, except we do not need
to assume that G splits over a tamely ramified field extension. The following theorem, a
special case of Theorem 4.2.1, is due to Moy and Prasad ([MP94,MP96]) and independently
due to Morris ([Mor99]).
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Theorem 4.4.1 ([MP94, MP96, Mor99]). Let x ∈ B(G,F ) be a vertex. Let (ρ, Vρ) be an
irreducible smooth representation of the stabilizer Gx of x that is trivial on Gx,0+ and such

that ρ|Gx,0 is a cuspidal representation of the reductive group Gx,0/Gx,0+. Then c-ind
G(F )
Gx

ρ
is a supercuspidal irreducible representation of G(F ).

The above authors also showed that all depth-zero supercuspidal (irreducible smooth) rep-
resentations are of the form as in Theorem 4.4.1.

Proof of Theorem 4.4.1.
By Lemma 4.3.1 and Fact 4.3.3 it suffices to show that an element g ∈ G(F ) intertwines
(ρ, Vρ) if and only if g ∈ Gx. Since all g ∈ Gx intertwine (ρ, Vρ), it remains to show the
other direction of the implication. Hence we assume g ∈ G(F ) intertwines (ρ, Vρ), i.e. we
can choose a nontrivial element

f ∈ HomGx∩gGxg−1(gσ, σ) 6' {0}.

Since σ is trivial when restricted to Gx,0+, the representation gσ is trivial when restricted to
gGx,0+g

−1 = Gg.x,0+. Hence Gg.x,0+ ∩Gx,0 acts trivially on the image Im(f) of f . If g /∈ Gx,
then g.x 6= x and hence by Fact 3.1.6(b) (which also holds for not necessarily split reductive
groups), the image of Gg.x,0+ ∩ Gx,0 in Gx,0/Gx,0+ is the unipotent radical N of a proper
parabolic subgroup of Gx,0/Gx,0+. Thus

{0} 6' Im(f) ⊂ V N
ρ ,

which contradicts that (ρ, Vρ) is cuspidal.

4.5 A parameterization of supercuspidal representations

In Section 4.2 we outlined how to attach supercuspidal representations to a Yu datum, that
was described in Section 4.1. In Section 5 we will see that under mild assumptions this pro-
vides us with all supercuspidal smooth irreducible representations. In order to parameterize
all supercuspidal smooth irreducible representations it therefore remains to understand which
Yu data yield the same representation. This has been resolved by Hakim and Murnaghan
([HM08]) up to a hypothesis that was removed by Kaletha ([Kal19, § 3.5]). Hakim and
Murnaghan define an equivalence relation on the Yu data, which they call G(F )-equivalence
and the key result is that two supercuspidal representations arising from Yu’s construction
are equivalent if and only if the input Yu data are G(F )-equivalent. In order to define the
G(F )-equivalence, Hakim and Murnaghan introduced the following three transformations of
Yu data.

Definition 4.5.1 (Elementary transformation). A Yu datum ((Gi)1≤i≤n+1, x
′, (ri)1≤i≤n, ρ

′,
(φi)1≤i≤n) is obtained from a Yu datum ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ, (φi)1≤i≤n) via an elemen-
tary transformation if [x] = [x′] and ρ ' ρ′.
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Definition 4.5.2 (G-conjugation). We say that a Yu datum is a obtained from the Yu
datum ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ, (φi)1≤i≤n) via G(F )-conjugation if it is of the form

((gGig
−1)1≤i≤n+1, x, (ri)1≤i≤n,

gρ, (gφi)1≤i≤n)

for some g ∈ G(F ).

While the above two operations clearly yield isomorphic representations, there is a third
operation on the Yu datum that does not change the isomorphism class of the resulting
supercuspidal representation.

Definition 4.5.3 (Refactorization). A Yu datum ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ
′, (φ′i)1≤i≤n) is

a refactorization of a Yu datum ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ, (φi)1≤i≤n) if the following two
conditions are satisfied.

(i) For 1 ≤ i ≤ n, we have∏
1≤j≤i

φj|(Gi+1)x,ri+1+ =
∏

1≤j≤i

φ′j|(Gi+1)x,ri+1+ ,

where we set rn+1 = 0, and

(ii)

ρ⊗
∏

1≤j≤n

φj|(Gn+1)[x]
= ρ′ ⊗

∏
1≤j≤n

φ′j|(Gn+1)[x]
.

These three operations together allow us to define the desired equivalence relation on the Yu
data.

Definition 4.5.4. Two Yu data are G(F )-equivalent if one can be transformed into the other
via a finite sequence of refactorizations, G(F )-conjugations and elementary transformations.

The following theorem shows that this is the equivalence relation we were looking for.

Theorem 4.5.5 ([HM08, Kal19]). Two Yu data ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ, (φi)1≤i≤n) and
((G′i)1≤i≤n+1, x

′, (r′i)1≤i≤n, ρ
′, (φ′i)1≤i≤n) yield isomorphic supercuspidal representations of G(F )

if and only if they are G(F )-equivalent.

For a proof, see [HM08, Theorem 6.6] and [Kal19, Corollary 3.5.5.].
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4.6 A twist of Yu’s construction

Let ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ, (φi)1≤i≤n) be a Yu datum. Instead of associating to this

Yu datum the representation c-ind
G(F )

K̃
ρ̃ constructed by Yu, a new suggestion by Fintzen,

Kaletha and Spice ([FKS]) consists of associating the representation c-ind
G(F )

K̃
(ερ̃) for an

explicitly constructed character ε : K̃ → {±1}. We refer the reader to [FKS, p. 15] for
the definition of ε as it is rather involved. There are multiple reasons for the introduction
of this quadratic twist in the parametrization. For example, it restores the validity of Yu’s
original proof ([Yu01]) that c-ind

G(F )

K̃
(ερ̃) is a supercuspidal irreducible representation, which

is not valid for the non-twisted version as it relied on a misprinted statement in [Gér77]. In
particular, we restore the validity of the intertwining results [Yu01, Proposition 14.1 and
Theorem 14.2] for the twisted construction that form the heart of Yu’s proof. Instead of
stating the results in full generality, which would involve introducing additional notation, we
state its implication in the setting that we already introduced above.

Proposition 4.6.1 ([Yu01, FKS]). Let ((G = G1 ) G2 = Gn+1), x, (r1 = r), ρ, (φ1 = φ)) be

a Yu datum from which we construct a representation κ of K̃ = Gx, r
2
(G2)[x] as in Section

4.2. Then for g ∈ G2(F ), we have

dimC HomK̃∩gK̃g−1(εκ, g(εκ)) = 1.

This result also holds in a more general setting in which we drop the assumption that
Z(G2)/Z(G) is anisotropic. We refer the reader to [FKS, Corollary 4.1.11 and Corol-
lary 4.1.12] for the detailed statements and proofs.

Applications of the existence of the above quadratic character ε : K̃ → {±1} include being
able (under some assumptions on F ) to provide a character formula for the supercuspidal

representations c-ind
G(F )

K̃
(ερ̃) ([Spi18,Spi,FKS]), to suggest a local Langlands correspondence

for all supercuspidal Langlands parameters ([Kal]) and to prove the stability and many
instances of the endoscopic character identities for the resulting supercuspidal L-packets
that such a local Langlands correspondence is predicted to satisfy ([FKS]).

5 Exhaustiveness of the construction of supercuspidal

representations

In the previous section we have seen how to construct supercuspidal smooth irreducible
representations of a p-adic group G(F ). In this section we will see that under some mi-
nor assumptions the above construction by Yu provides us with all supercuspidal smooth
irreducible representations.

5.1 Exhaustiveness result

Theorem 5.1.1 ([Kim07,Fin21d]). Suppose that G splits over a tamely ramified field exten-
sion of F and that p does not divide the order of the (absolute) Weyl group of G. Then every
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supercuspidal smooth irreducible representation of G(F ) arises from Yu’s construction, i.e.
via Theorem 4.2.1.

This result was shown by Kim ([Kim07]) in 2007 under the additional assumptions that F
has characteristic zero and that p is “very large”. Her approach was very different from
the recent approach in [Fin21d]. Kim proves statements about a measure one subset of
all smooth irreducible representations of G(F ) by matching summands of the Plancherel
formula for the group and the Lie algebra, while the recent approach in [Fin21d] is more
explicit and can be used to recursively exhibit a Yu datum for the construction of the given
representation. We will give a sketch of the latter approach. The proof consists of two main
steps. The first step is to prove that every supercuspidal smooth irreducible representation
of G(F ) contains a (maximal) datum as defined in [Fin21d], which we recall below, and
which can be viewed as a skeleton of a Yu datum. The second step consists of obtaining a
Yu datum from that maximal datum and showing that the representation we started with
is isomorphic to the one constructed from this Yu datum.

We assume from now on that G splits over a tamely ramified field extension of F and that
p does not divide the order of the (absolute) Weyl group of G.

5.2 The datum as in [Fin21d]

A (maximal) datum as defined in [Fin21d] is at the same time a skeleton for a Yu datum
and a much more refined version of the so called unrefined minimal K-type introduced by
Moy and Prasad ([MP94,MP96]).

Definition 5.2.1. Let n ∈ Z≥0. A datum of G of length n is a tuple (x, (Xi)1≤i≤n, (ρ0, Vρ0))
such that it can be extended to a tuple, called extended datum,

(x, (ri)1≤i≤n, (Xi)1≤i≤n, (Gi)1≤i≤n+1, (ρ0, Vρ0))

where

(a) G = G1 ⊇ G2 ) G3 ) . . . ) Gn+1 are twisted Levi subgroups of G,

(b) x ∈ B̃(Gn+1, F ) ⊂ B̃(G,F ),

(c) r1 > r2 > . . . > rn > 0 are real numbers,

(d) (ρ0, Vρ0) is an irreducible representation of (Gder
n+1)[x],0/(G

der
n+1)[x],0+, where Gder

n+1 denotes
the derived subgroup of Gn+1,

(e) Xi ∈ g∗x,−ri \ g
∗
x,(−ri)+ for 1 ≤ i ≤ n

satisfying the following conditions for all 1 ≤ i ≤ n

(i) Xi ∈ g∗i := Lie(Gi)
∗(F ) ⊂ g∗(F ),

37



Representations of p-adic groups Jessica Fintzen

(ii) Xi is generic of depth −ri at x ∈ B̃(Gi, F ) as an element of g∗i (under the action of
Gi) ,

(iii) Gi+1 = CentGi(Xi).

Here we use the following definition of “generic”, which will imply the genericity conditions
required for a Yu datum.

Definition 5.2.2. We say that an element X ∈ g∗(F ) is generic of depth r at x ∈ B̃(G,F )
if the G-orbit of X is closed and if there exists a tamely ramified extension E over F and a
split maximal torus T ⊂ CentG(X)×F E such that

� x ∈ Ã (T,E) ∩ B̃(G,F ),

� X ∈ g∗x,r,

� for every α ∈ Φ(GE, TE), we have X(Hα) = 0 or val(X(Hα)) = r, where Hα = dα̌(1),
and

� if X(Hα) = 0 for all α ∈ Φ(G, T ), then X /∈ g∗x,r+.

Given a datum, we write Hi for the derived subgroup of Gi for 1 < i ≤ n − 1, and we
write H1 = G1 if G1 = G2 and otherwise we write H1 for the derived subgroup of G1. We

choose a maximal torus T of Gi+1 such that x ∈ Ã (T,E), where E denotes a finite tamely
ramified extension of F of ramification degree e over which T splits. Then we define for a
non-negative real number r

(Hi)x,r := Hi(F ) ∩ (Gi)x,r , (Hi)x, r
2

+ := Hi(F ) ∩ (Gi)x, r
2

+

and

(Hi)x,r, r
2

+ := H(F ) ∩
〈
T (E)r, Uα(E)x,r, Uβ(E)x, r

2
| α ∈ Φ((Gi+1)E, TE) ⊂ Φ(GE, TE),

β ∈ Φ((Gi)E, TE) \ Φ((Gi+1)E, TE) 〉 .

This definition is independent of the choice of T and E ([Yu01, p. 585 and p. 586]). We
define the subalgebras hi, (hi)x, r

2
+ and (hi)x,r, r

2
+ of g analogously.

Let (π, V ) be a smooth irreducible representation of G(F ). We set rn+1 = 0 and say that
a datum (x, (Xi)1≤i≤n, (ρ0, Vρ0)) of G is contained in (π, V ) if V ∪1≤i≤n+1((Hi)x,ri+) contains a
subspace V ′ such that

� (π|(Hn+1)x,0 , V
′) is isomorphic to (ρ0, Vρ0) as a representation of (Hn+1)x,0/(Hn+1)x,0+

and

� (Hi)x,ri, ri2 +/(Hi)x,ri+ ' (hi)x,ri, ri2 +/(hi)x,ri+ acts on V ′ via the character ϕ ◦ Xi for
1 ≤ i ≤ n,
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where ϕ : F → C∗ is the additive character of F that is trivial on $O that we fixed above.

We caution the reader that at this stage the representation (ρ0, Vρ0) is more like a place holder
and is not the same as the representation ρ that forms part of a Yu datum. In fact, retrieving
ρ from ρ0 is a key task in the second step of the proof that all supercuspidal representations
arise form Yu’s construction. In the first step the main focus is on constructing the generic
elements Xi recursively.

Theorem 5.2.3 ([Fin21d]). Let (π, V ) be a smooth irreducible representation of G(F ), and
recall that we assume that G splits over a tamely ramified field extension and p does not
divide the order of the (absolute) Weyl group of G. Then (π, V ) contains a datum.

Note that we do not assume that (π, V ) is supercuspidal. This result works without the
assumption of supercuspidality and will lead to the notion of types in general, which we will
not elaborate in this survey. As mentioned above, the proof proceeds recursively, i.e. by first
showing the existence of a suitable element X1 so that the action of (H1)x,r1, r12 +/(H1)x,r1+ is

given by ϕ ◦X1. Let us denote the resulting character of (H1)x,r1, r12 + by χ1 and assume G is

semisimple for now for simplicity, which implies H1 = G1 = G. Then (Gx,r1 , χ1|Gx,r1 ) is an
unrefined minimal K-type of depth r1 contained in (π, V ) as introduced by Moy and Prasad.
However, the genericity condition imposed on X1 described above is slightly stronger than
the non-degeneracy condition that Moy and Prasad imposed on a pair (Gx,r1 , χ1|Gx,r1 ) to
be called an unrefined minimal K-type. The slightly stronger condition is crucial for the
recursion steps to work and to eventually recover a Yu datum. After proving the existence
of a suitable element X1, the proof consists of recursively finding X2, X3, . . ., but additional
difficulties arise when constructing X2 from ensuring that not only should the action of
(H2)x′,r2, r22 + be given by X2, but also the action of (H1)x′,r1, r12 + should still be given by

X1. As our notation indicates, the initial point x ∈ B̃(G,F ) used to find X1 might not be
suitable and has to be changed to a different point x′ to achieve this result. The required
arguments to show that the recursion works form a significant part of [Fin21d] and we refer
the reader to [Fin21d, Proof of Theorem 6.1] for the details.

5.3 Recovering a Yu datum from a supercuspidal representation

Let (π, V ) be a smooth irreducible supercuspidal representation of G(F ). The second step
in the proof of Theorem 5.1.1 consists of refining a datum contained in (π, V ) to obtain a Yu
datum from which (π, V ) can be constructed. To this end, we start with a maximal datum
rather than an arbitrary datum. We call a datum (x, (Xi)1≤i≤n, (ρ0, Vρ0)) contained in (π, V )
a maximal datum for (π, V ) if given another datum (x′, (Xi)1≤i≤n, (ρ

′
0, V

′
ρ0

)) contained in

(π, V ), we have that the dimension of the facet of B̃(Gn+1, F ) that contains x is at least the

dimension of the facet of B̃(Gn+1, F ) that contains x′. A maximal datum provides a twisted

tame Levi sequence (Gi)1≤i≤n+1, a point x ∈ B̃(Gn+1, F ) and real numbers r1 > r2 > . . . >
rn > 0, and it remains to find an appropriate irreducible representation ρ of (Gn+1)[x] and
characters φi of Gi+1(F ) that together form a Yu datum and whose associated representation
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is isomorphic to (π, V ). The characters φi are constructed recursively from the elements Xi

and their genericity properties result from the Xi being generic. The construction of ρ and
the proof that ρ is cuspidal uses the theory of Weil–Heisenberg representations together
with the property of the datum being a maximal datum for (π, V ). We refer the reader to
[Fin21d, § 7] for the details. So far we have not used that (π, V ) is supercuspidal, and indeed,
for readers who know about types, we remark that we obtain for every smooth irreducible
representation of G(F ) an input for the construction of a type by Kim and Yu ([KY17])
for the corresponding Bernstein block. When (π, V ) is supercuspidal we can prove that the
remaining conditions for a Yu datum are satisfied ([Fin21d, § 8]) and through the way that

the Yu datum is obtained we ensure that the resulting representation ρ̃ of K̃ constructed by
Yu is contained in (π|K̃ , V ). Using Frobenius reciprocity we deduce that (π, V ) is isomorphic

to c-ind
G(F )

K̃
ρ̃.
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Selected notation

(Gn+1)[x], 30
(Hi)x,r, r

2
+, 38

Bn, 8
G(F )x,r, 23, 26
Gx,r+, 24
Gx,r, 23
Nn, 8
Uα, 14
Uα(F )x,r, 22
X∗(T ), 10, 22
X∗(T ), 22
Xi,j, 10
Ad, 9
Ind

G(F )
H , 18

Φ(G, T ), 10
Φ+, 14
SOn, 8
Sp2n, 8
Fp((t)), 15
Fp[[t]], 15
Ga, 9
Gm, 9
Qp, 15
Zp, 15
OE, 16
PE, 16
c-ind

G(F )
H , 19

g(F )x,r, 23, 27
g∗(F )x,r, 23
g∗x,r, 23
gα, 10
gx,r+, 24
gx,r, 23, 27

φ̂, 31
κ, 31
On, 8
A (T, F ), 24
B(G,F ), 24
ϕ, 28

K̃, 30
ρ̃, 30
B̃(G,F ), 27
gK, 32
gσ, 32
[x], 27
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Selected definitions

(G,G′)-generic, 30
G-generic, 30
G(F )-conjugation, 35
G(F )-equivalent, 35
p-adic absolute value, 15
p-adic group, 17

adjoint action, 9
apartment, 25

basis of a root system, 12
Borel subgroup, 12
Bruhat–Tits building, 24
BT triple, 21

chamber, 25
Chevalley system, 21
compactly induced representation, 19
cuspidal representation, 20

datum, 37
depth, 28

elementary transformation, 34
enlarged Bruhat–Tits building, 27

generic, 30, 38
generic character, 30

induced representation, 18
intertwine, 32
irreducible smooth representation, 18

Levi decomposition, 13
Levi subgroup, 13
linear algebraic group, 7
linear algebraic group over F , 16

Mackey decomposition, 33
maximal datum, 39
maximal torus, 9

non-archimedean absolute value, 15

non-archimedean local field, 15

p-adic integers, 15
p-adic numbers, 15
parabolic induction, 19
parabolic subgroup, 12
parahoric, 24

reductive group, 9, 17
refactorization, 35
residue field, 21
ring of integers, 16
root group, 14
roots, 10

smooth induction, 18
smooth representation, 18
split reductive group, 17
split torus, 17
supercuspidal representation, 19

torus, 9, 17
twisted Levi subgroup, 28

uniformizer, 16
unipotent, 8
unipotent radical, 8

Weyl group, 14

Yu datum, 29
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[SS08] Vincent Sécherre and Shaun Stevens, Représentations lisses de GLm(D). IV. Représentations
supercuspidales, J. Inst. Math. Jussieu 7 (2008), no. 3, 527–574. MR2427423

[Ste08] Shaun Stevens, The supercuspidal representations of p-adic classical groups, Invent. Math. 172
(2008), no. 2, 289–352. MR2390287

[Yu01] Jiu-Kang Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001),
no. 3, 579–622 (electronic).

[Zha15] Lei Zhang, Distinguished tame supercuspidal representations of symmetric pairs
(Sp4n(F ), Sp2n(E)), Manuscripta Math. 148 (2015), no. 1-2, 213–233. With an appendix
by Dihua Jiang and the author. MR3377755

[Zha20] Chong Zhang, Distinguished regular supercuspidal representations, Math. Ann. 376 (2020), no. 3-4,
1561–1598. MR4081123

[Zin92] Ernst-Wilhelm Zink, Representation theory of local division algebras, J. Reine Angew. Math. 428
(1992), 1–44. MR1166506

Universität Bonn, Bonn, Germany and University of Cambridge, Cambridge, UK and Duke
University, Durham, NC, USA

Mailing address: Universität Bonn, Mathematisches Institut, Endenicher Allee 60, 53115
Bonn, Germany

E-mail address: fintzen@math.uni-bonn.de

45

https://arxiv.org/pdf/2108.12935.pdf

	Introduction
	What are p-adic groups and representations of p-adic groups?
	Reductive groups over algebraically closed fields
	p-adic numbers and other non-archimedean local fields
	p-adic groups
	Representations of p-adic groups

	An introduction to the Moy–Prasad filtration and Bruhat–Tits theory
	The split case
	Properties of the Moy–Prasad filtration
	The Bruhat–Tits building

	The non-split (tame) case
	The enlarged Bruhat–Tits building
	The depth of a representation

	Construction of supercuspidal representations
	The input for the construction
	The construction of supercuspidal representations à la Yu
	The proof that the representations are supercuspidal
	Depth-zero supercuspidal representations
	A parameterization of supercuspidal representations
	A twist of Yu's construction

	Exhaustiveness of the construction of supercuspidal representations
	Exhaustiveness result
	The datum as in Fi-exhaustion
	Recovering a Yu datum from a supercuspidal representation

	Selected notation
	Selected definitions

