
Bertrand’s Conjecture: At least one Prime between n and 2n *

In 1845 Joseph Bertrand published the conjecture that for any integer n there is always at
least one prime p ∈ (n, 2n) – after checking this numerically up to n = 3000 000.

In 1850 P. Tschebyschew had discovered how much information about primes can be derived
by studying the binomial coefficients. He published a proof of Bertrand’s conjecture and a
preliminary version of the prime number theorem, namely

0.92929
x

log x
≤ π(x) ≤ 1.1056

x

log x
, with π(x) := number of primes ≤ x.

Both proofs are based on looking at the prime factors of binomial coefficients.

I hope to explain the proof of the Bertrand conjecture that I learnt from Aigner-Ziegler in
such a way that a first term mathematics student might get an idea how a genius could
have found such a proof.

First one has to find some facts which seem connected to the primes p ∈ (n, 2n). A century
before Tschebyschew the French mathematician Legendre had looked at the prime factors
of binomial coefficients. He made this observation:

(P1) All primes p ∈ (n, 2n) are clearly simple prime factors of
°2n

n

¢
= (2n)!

n!n! , because they
divide the numerator once and do not divide the denominator. Moreover, no larger primes
divide (2n)!, hence of course not

°2n
n

¢
.

Trivially, a number is equal to the product of all its prime factors (to the right powers).
The assumption, that Bertrand’s conjecture is false for some number n, therefore has the
drastic consequence that

°2n
n

¢
has to be a product only of primes p ∈ [2, n]. This lets us

see a glimpse of a possible strategy: If the product of (the correct powers of) the smaller
primes, p ∈ [2, n], cannot be as large as

°2n
n

¢
, then we have a contradiction that proves the

Bertrand conjecture.

The product formula for the binomial coefficients does not give a good idea how large these
coefficients may be. However, the largest of the coefficients

°n
k

¢
, k = 0, 1, . . . , n, is clearly

smaller than their sum
Pn

k=0

°n
k

¢
= (1 + 1)n. Hence

(B1)
°n

k

¢
≤ 2n,

°2n
n

¢
≤ 4n.

Did this easy proof give a good bound? The largest binomial coefficient of course is also
larger than the average of the n numbers

°n
0

¢
+

°n
n

¢
,

°n
1

¢
, . . . ,

° n
n−1

¢
. Their sum is 2n, hence

(B2) maxk
°n

k

¢
≥ 2n/n,

°2n
n

¢
≥ 4n/2n.

Comment: Since 2n = elog(2n) < 4log(2n) we have 4n−log(2n) <
°2n

n

¢
≤ 4n. This says that the

exponents of the upper and lower bounds are really close together since 1000 < 210 implies
log(1000) < 10, log(1000 000) < 20, log(103k) < 10k. Or: log(2n) is only a small fraction
of n (the larger n, the smaller the fraction). – (B1) and (B2) look like good information.

* This text follows Aigner-Ziegler’s presentation of Erdös’ arguments in Proofs from
the Book. I tried to rewrite it for mathematically less educated readers.
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A slightly more precise glimpse of a possible strategy becomes visible: If the product of
(the correct powers of) the smaller prime factors of

°2n
n

¢
, p ∈ [2, n], could be proved to

be smaller than 4n/2n then there have to be prime factors in (n, 2n), i.e. the Bertrand
conjecture would follow.

At this point one would look up what Legendre knew about the small prime factors of
°2n

n

¢
.

By asking Sokrates type questions, one can also figure it out. First, if n were itsself prime,
n = p, then p2 would divide (2n)! and also n! ·n!, but p3 would not. Therefore this p would
not divide

°2n
n

¢
. For which primes p ≤ n does this argument work? We only used 2n < 3p.

Therefore we have further support for the envisioned strategy:

(P2) No prime p ∈ (2
3n, n] is a factor of

°2n
n

¢
.

Next we ask: To what power does a prime p divide m! and are there assumptions that
make the answer easier? Imagine all the multiples p, 2p, . . . , lp in the sequence 1, 2, . . . ,m.
If m < p2 then pl, l := [m/p](:= the largest integer ≤ m/p) is the exact power of p that
divides m! . We conclude (and find more support for the strategy):

(P3) The primes p ∈ (
√

2n, 2
3n] divide

°2n
n

¢
exactly [2n/p]− 2[n/p] times. And:

[2n/p]− 2[n/p] <<< 2n/p− 2(n/p− 1) = 2. These primes divide
°2n

n

¢
at most once!

Next question: Can we find the exact prime powers pl in m! even if p2 ≤ m but m < p3?
The answer is simple: Each time we find among the multiples of p in 1, 2, . . . ,m a multiple
of p2 we get one more factor p than was already counted by looking at the multiples of p:
we have to count how many multiples of p plus those of p2 we find. The exact power pl in
m! is given by l := [m/p] + [m/p2]. This gives for the binomial coefficient: If p2 ≤ 2n < p3

then the exact power of p in
°2n

n

¢
is pl, l := ([2n/p]−2[n/p])+([2n/p2]−2[n/p2]) ≤ 1+1.

Clearly, this counting can be continued: For any “small” prime p ≤
√

2n first find the
number k such that pk ≤ 2n < pk+1. The same counting as before gives:

(P4) The precise power of p in
°2n

n

¢
is pl with l :=

Pk
j=1([2n/pj ]− 2[n/pj ]) ≤ k,

hence pl ≤ pk ≤ 2n (recall < pk+1).

All this information from Legendre is promising, but how can we proceed from here? It
looks as if most of the primes we have to deal with are those from (P3). Without further
information we need to assume that all of them are factors of the binomial coefficient. The
simplest way to proceed would therefore be to find a good upper bound for the product of
all primes p ≤ x. In other words, can we find a function f(x) such that (

Q
p≤x p) ≤ f(x)?

Since such a bound for an odd number x will also work for the next even number x+1 = 2m,
we can assume by induction that

we found f(x) for all x ≤ 2m and we need to find f(2m + 1).

How can we split the product (
Q

p≤2m+1 p) so that we can use f(x) for x ≤ 2m? The proof
of (P1) also gives: All the primes p ∈ (m + 1, 2m + 1] are simple prime factors of

°2m+1
m+1

¢

(they divide the numerator once and do not divide the denominator).
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Therefore we have

(
Y

m+1<p≤2m+1

p) ≤
µ

2m + 1
m + 1

∂
. And this is ≤ 4m,

because the proof of (B1) can be slightly changed: There are two largest coefficients
µ

2m + 1
m + 1

∂
=

µ
2m + 1

m

∂
, thus we get:

µ
2m + 1
m + 1

∂
≤ 1

2
(1 + 1)2m+1 = 4m.

Putting these observations together proves:

(
Y

p≤2m+1

p) = (
Y

p≤m+1

p) · (
Y

m+1<p≤2m+1

p) ≤ (
Y

p≤m+1

p) ·
µ

2m + 1
m + 1

∂
≤ (

Y

p≤m+1

p) · 4m

≤ f(m + 1) · 4m.

This is indeed an induction step because it estimates (
Q

p≤2m+1 p) in terms of the smaller
product (

Q
p≤m+1 p). The step works for any bounding function f that satisfies

f(m + 1) · 4m ≤ f(2m + 1),

Y

p≤m+1

p ≤ f(m + 1) then
Y

p≤2m+1

p ≤ f(2m + 1).namely if

Such a function is easy to guess, f(x) = c · 4x will do. The induction can start at x = 2 if
we put c = 1/8 since 2 ≤ 42/8. Therefore we proved for all x ≥ 2

Y

p≤x

p ≤ 4x

8
.

We have found enough pieces and can put them together. The decisive question is: Will
the result be small enough? The product of the primes that go into

°2n
n

¢
at most to the

first power (i.e. the p ∈ (
√

2n, 2
3n] by (P3) ) we estimate by f(2

3n), as just derived. For the
primes p ≤

√
2n we use Legendre’s bound: their largest power that divides

°2n
n

¢
is pl ≤ 2n.

Except for initial crowding there are less primes than odd numbers. If
√

2n ≥ 14 then
below

√
2n are at most

√
2n/2− 1 primes.

The following principal estimate bounds the product of the prime powers in
°2n

n

¢
, under

the assumption that the Bertrand conjecture is false, as follows:

4n/2n ≤
µ

2n
n

∂
≤ (2n)

√
2n/2−1 · (

Y

√
2n<p ≤ 2

3 n

p) ≤ (2n)
√

2n/2−1 · 4 2
3 n/8,

or
8 · 42n/6 ≤ (2n)

√
2n/2.
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But why is this a contradiction? With the inequality 45 = 1024 > 103 we can elementarily
show the opposite for even powers of 10, 2n = 102k, by using 10k ≥ 10k which is true (by
induction) for integers k ≥ 1. Namely:

8 · 42n/6 = 8 · 4102k/6 > 10102k/10 ≥ 10k10k

= (102k)10
k/2 = (2n)

√
2n/2.

With a small amount of analysis one can prove the inequality 10r ≥ 10r for all real r ≥ 1
(show: the derivative of 10x − 10x is positive in [1,1)). This establishes the contradiction
for 2n ≥ 142. It remains to check the conjecture numerically up to n = 98. The following
primes {2, 3, 5, 7, 13, 23, 43, 83, 163}, which satisfy pi+1 < 2pi, provide this check to n = 162.

h
A break of style? If one does not want to quote any analysis at all, one can use the
inequality 10k ≥ 100k + 20 (true by induction for k ≥ 3) to prove

4 · 42n/6 > (100 · 2n)
√

100·2n/2 for 2n = 102k, k ≥ 3, hence:

4 · 42n/6 > (2n)
√

2n/2 for 2n = 102k, 102k + 2, 102k + 4, . . . , 102(k+1), k ≥ 3.

In that case it remains to check the Bertrand conjecture numericaly up to 2n = 106.
i

Final remark. The crucial part of the principal inequality is that the exponent 2n/6 on
the left grows faster than the exponent

√
2n/2 on the right. This allows to generalize the

conjecture for example to:
In every interval (n, 2n) are more than

√
2n/2 primes.

The same indirect argument as above gets
√

2n/2 additional factors of primes p ∈ (n, 2n)
into the upper bound estimate (underlined below), giving

4n/2n ≤
µ

2n
n

∂
≤ (2n)

√
2n/2−1 · (

Y

√
2n<p≤ 2

3 n

p) · (2n)
√

2n/2 ≤ (2n)
√

2n−1 · 4 2
3 n/8,

or
8 · 42n/6 ≤ (2n)

√
2n.

This is wrong for 2n ≥ 900, the new conjecture can be checked numerically for 2n < 900.
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