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1. Introduction

1.1. Elliptic curves. Let k be a field. Elliptic curves over k can be defined in three
equivalent ways:

• As marked smooth cubic curves in P2
k.

• As marked proper smooth connected k-curves of genus 1.
• As 1-dimensional proper smooth connected group schemes over k.

We will get to know all these definitions during the course and will show their mutual
equivalence. In this first lecture, we stick to the first one because it is the most concrete.

Definition 1.1. An elliptic curve over a field k is a pair (E,O) that consists of a smooth
curve E/Spec k together with a rational point O ∈ E(k). We moreover require that E can
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be embedded as a cubic curve into P2
k. That is, we assume that there exist a homogeneous

polynomial F ∈ k[X,Y, Z] of degree 3 and an isomorphism

E
∼−→ V+(F ) ⊂ P2

k. (1.1)

Remark 1.2. Condition (1.1) also ensures that E is proper and connected. The smooth-
ness of E then further implies that E is irreducible.

We still need to define what it means for E/Spec k to be smooth. There are several
different definitions which are all powerful, and we will learn about them soon in this
course. Today, we go with the so-called Jacobi criterion which is especially useful for
studying concrete equations such as (1.1).

We use the notion of local dimension: If X is a scheme and x ∈ X, then the local
dimension of X in x is defined by

dimx(X) := lim
x∈U⊂X open affine

dim(U) ∈ [0,∞].

Definition 1.3. (1) The partial derivatives ∂f/∂Tj of a polynomial f ∈ k[T1, . . . , Tn] are
defined by the rules from analysis. Note that this is a purely algebraic definition which
makes sense over any field. The Jacobi matrix of a tuple f1, . . . , fm ∈ k[T1, . . . , Tn] is the
matrix of all partial derivatives(

∂fi
∂Tj

)
i,j

∈Mm×n (k[T1, . . . , Tn]) . (1.2)

(2) Consider U = V (f1, . . . , fm) ⊆ Ank and a point x ∈ U . Let d = dimx U denote the
local dimension of U in x. We say that the Jacobi criterion holds in x if there exist subsets
I ⊆ {1, . . . ,m}, J ⊆ {1, . . . , n} with |I| = |J | = n − d and such that the (I, J)-minor
(∂fi / ∂Tj)i∈I,j∈J is invertible in x. The latter is the case if and only if the polynomial

det
(
(∂fi / ∂Tj)i∈I,j∈J

)
∈ k[T1, . . . , Tn]

does not vanish in x.
(3) Let X be a k-scheme of locally finite type. Then X is said to be smooth in x ∈ X

if there exist integers n,m ≥ 0, polynomials f1, . . . , fm as before, an affine open neighbor-
hood x ∈ U , and an isomorphism U

∼→ V (f1, . . . , fm) ⊆ Ank such that the Jacobi criterion
holds in x. We call X smooth if it is smooth in every point.

Explanation 1.4. In Definition 1.3 (2) and (3), we do not assume that x is a closed.
Let p ⊂ A = k[T1, . . . , Tn] be the prime ideal defined by x and let κ = Quot(A/p) be its
residue field. A polynomial p ∈ A not vanishing in x then means p /∈ p, or equivalently
p(x) 6= 0 where p(x) is the image of p in κ. Similarly, a square matrix P ∈Mn(A) is said
to be invertible in x if its image in Mn(κ) lies in GLn(κ). Equivalently, det(A)(x) 6= 0.

Remark 1.5. The Jacobi criterion is well-known from the implicit function theorem in
analysis. (Recall that this theorem states that the vanishing set V (f1, . . . , fm) ⊆ Rn of
a tuple of smooth functions with det(∂fi/∂Tj)(x) 6= 0 is isomorphic to Rn−m near x.)
Definition 1.3 is an algebraic incarnation of the same idea.

Remark 1.6. Let X be a k-scheme of locally finite type that is smooth in a point x ∈ X.
Then, in fact, for every choice of affine open neighborhood x ∈ U , integers n,m ≥ 0,
polynomials f1, . . . , fm ∈ k[T1, . . . , Tn], and isomorphism U

∼→ V (f1, . . . , fm), the Jacobi
criterion holds in x. That is, being smooth in x is an intrinsic property.

Our next aim is to construct elliptic curves. Let h(x) = x3 + ax + b be a monic cubic
polynomial (without x2-term). A polynomial of the form

f = y2 − h(x) (1.3)
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is called a simplified Weierstrass equation. Let

F (X,Y, Z) = Y 2Z −X3 − aXZ2 − bZ3 (1.4)

be the homogenization of f , and let E = V+(F ) ⊂ P2
k be its vanishing locus.

Lemma 1.7. Assume that char(k) 6= 2 and that h is separable. Then E is a smooth curve.

Proof. First observe by direct substitution in (1.4) that E ∩ V+(Z) = {[0 : 1 : 0]}. Thus
we can proceed by checking the Jacobi criterion on E∩D+(Z) and for the point [0 : 1 : 0].

By definition, we have

E ∩D+(Z)
∼−→ V (y2 − h(x)) ⊂ A2

k.

The Jacobi matrix of the Weierstrass polynomial is the gradient

(∂f/∂x, ∂f/∂y) = (−h′(x), 2y). (1.5)

Let e ∈ E ∩ D+(Z) be an arbitrary point and let (e1, e2) ∈ κ(e) × κ(e) be the image of
(x, y).1 If e2 6= 0, then also 2e2 6= 0 by our assumption char(k) 6= 2, meaning 2y does not
vanish in e. If e2 = 0, however, then h(e1) = 0 since f(e1, e2) = 0. We have assumed that
h is separable, which is equivalent to h(x) and h′(x) being coprime. Thus h′(e1) 6= 0. In
summary, we have seen that the gradient (1.5) does not vanish in e.

We now consider the point [0 : 1 : 0]. An affine chart is given by

E ∩D+(Y )
∼−→ V (z − x3 − axz2 − bz3) ⊂ A2

k.

In these coordinates, [0 : 1 : 0] maps to (0, 0). Moreover, the gradient of that equation is

(−3x2 − az2, 1− 2axz − bz2). (1.6)

Its second entry does not vanish in (0, 0), so the Jacobi criterion holds in (0, 0). The proof
of the lemma is now complete. �

Definition 1.8. Assume that char(k) 6= 2 and that h(x) = x3 + ax+ b is separable. Let
F be as in (1.4). The elliptic curve defined by the Weierstrass equation y2 − h(x) is the
pair

(E,O) :=
(
V+(F ), [0 : 1 : 0]

)
.

Figure 1. The R-points of the two Weierstrass equations y2 = x3 + 1 and
y2 = x3−x. Note that V (y2− (x3−x)) ⊂ A2

R is a connected scheme. Only
its R-points endowed with the real topology are disconnected.

1Given a scheme X and a point x ∈ X, we use κ(x) = Quot(OX,x/mx) to denote the residue in x.
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1.2. Group structure. The following will be one of our first major results.

Theorem 1.9. Let (E,O) be an elliptic curve over k. Then E has a unique group scheme
structure such that O becomes the identity element. This group structure is abelian.

We will define group schemes later in the course. Here, we will discuss how to endow
the set of rational points E(k) with a group structure.

Lemma 1.10. Let F ∈ k[X,Y, Z] be homogeneous of degree 3 without linear factor and
let E = V+(F ). Let L ⊂ P2

k be any line. Then E intersects L in three points when counted
with multiplicities. More precisely, E ∩ L = SpecA for a k-algebra A with dimk(A) = 3.

Here, by line we mean a curve of the form V+(aX + bY + cZ), where (a, b, c) 6= (0, 0, 0).

Proof. After a linear change of coordinates, we may assume that L = V+(Z). Since F has
no linear factor, Z - F . Thus F |L = F (X,Y, 0) is a non-zero homogeneous polynomial of
degree 3 and hence has three zeroes (counted with multiplicities) as claimed. �

Construction 1.11. Let E = V+(F ) ⊂ P2
k be a smooth cubic curve with a fixed point

O ∈ E(k). Given P1, P2 ∈ E(k), define a line L ⊂ P2
k as follows:

(1) If P1 6= P2, then let L be the unique line that passes through P1 and P2.
(2) If P1 = P2, then let L be the tangent line to E in that point.

The definition of the tangent uses the smoothness of E. (In a local chart, take the line
perpendicular to the gradient of the equation defining E.) The smoothness of E also
implies that F has no linear factor. Hence Lemma 1.10 applies and shows that E and L
intersect in three points (counting multiplicities). But two of these points are known to
be P1 and P2 which lie in L(k)! And if a cubic polynomial has two rational roots, then
the third root is rational as well. Thus there exists a unique third rational intersection
point P3 ∈ (E ∩ L)(k). Repeating this construction with O,P3 instead of P1, P2, defines
a fourth point P4 ∈ E(k).

Remark 1.12. A nice illustration of the above construction can be found here.

Definition 1.13. The sum of P1, P2 ∈ E(k) is defined as P1 + P2 := P4.

It is true, but not obvious, that this indeed defines a group structure on E(k). The fun
and easy part is to show that O is a neutral element and that every element has an inverse
(exercise). It is moreover clear that the operation (P1, P2) 7→ P1 + P2 is commutative,
which is why we have written it additively.

A difficulty is to show associativity. Moreover, it is true, but again not obvious, that
the construction of P3 and P4 only depends on (E,O) and not on the (auxiliary) choices
of F and E ∼→ V+(F ). During the course, we will take a different approach to the group
structure on E which will be in terms of line bundles. All the mentioned properties will
then follow immediately.

1.3. Small panoramic outlook. Elliptic curves play a central role in many branches of
algebraic geometry and number theory. In this last section of today’s introduction, I want
to mention some important aspects and results.

Example 1.14. First consider the case k = C. A general theorem provides an equivalence
of categories {

Connected proper smooth
algebraic curves over C

}
∼−→
{Connected compact

Riemann surfaces

}
. (1.7)

Under this equivalence, elliptic curves are precisely the compact Riemann surfaces of the
form C/Λ for a Z-lattice Λ ⊂ C. The group structure here is the additive group structure
on C/Λ.

https://en.wikipedia.org/wiki/Elliptic_curve#The_group_law
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Note that while one can always find an isomorphism of real Lie groups

C/Λ ∼−→ R/Z× R/Z, (1.8)

it is not true that the quotients C/Λ (for varying lattices Λ) are isomorphic as Riemann
surfaces. In fact, their isomorphism classes form a 1-dimensional space which is called
the modular curve. This space coincides with the C-points of the moduli space we will
construct later in the course.

Example 1.15. Now assume that k = Fq is a finite field, p = char(k). There are only
finitely many elliptic curves over Fq (up to isomorphism) because there are only finitely
many cubic homogeneous polynomials in three variables over Fq.

Note that the n-torsion (C/Λ)[n] of a complex elliptic curve is isomorphic to (Z/n)⊕2

which is clear from (1.8). A fascinating result we will show during the course is that
for an elliptic curve E over Fq, the n-torsion E[n] is also a group scheme of degree n2.
If (n, p) = 1, then it behaves just like (Z/n)⊕2. If p | n, however, then E[n] will be a
non-reduced group scheme. We will study its structure in the course and learn about the
ordinary/supersingular distinction.

Another feature over Fq is the existence of the q-Frobenius endomorphism Frobq ∈
End(E). Its characteristic polynomial determines the number of points E(Fqr) for every
r, and enables a classification of elliptic curves over Fq by the Honda–Tate theorem.

Example 1.16. Finally, assume that k is a number field, i.e. a finite extension of Q. The
central structure theorem goes back to Mordell (1922):

Theorem 1.17 (Mordell’s Theorem). For every elliptic curve (E,O)/k, the group E(k)
is finitely generated.

By the structure theorem for finitely generated abelian groups, we can thus write

E(k)
∼−→ E(k)tors ⊕ Zr (1.9)

for a unique integer r ≥ 0 called the algebraic rank of E. This rank is a central object
of study in number theory. For example, the Birch and Swinnerton-Dyer conjecture, one
of the seven Clay Millennium problems, asserts that it equals the vanishing order of the
L-function of E at its center of symmetry.

Fixing the number field k, there is an upper bound on the size #E(k)tors of the tor-
sion group. For example, #E(Q)tors ≤ 16 for every elliptic curve E/Q (Mazur’s torsion
theorem). It is an open question, however, whether or not the rank r in (1.9) is similarly
bounded in terms of k. We refer to the homepage of Dujella for a list of rank records.

Part 1. Elliptic curves as group schemes and algebraic curves

2. Group schemes

In this course, we will always work with the following definition.

Definition 2.1. Let k be a field. An elliptic curve over k is a proper, smooth, connected
and 1-dimensional k-group scheme.

We will now first discuss group schemes in some detail because this notion will play
an important role throughout the lecture. Our first result about elliptic curves (next
section) will then be that they are always commutative. This does not require the one-
dimensionality, so the argument will apply to abelian varieties as well:

Definition 2.2. An abelian variety over k is a proper, smooth and connected k-group
scheme.

https://en.wikipedia.org/wiki/Modular_curve
https://en.wikipedia.org/wiki/Honda%E2%80%93Tate_theorem
https://en.wikipedia.org/wiki/Birch_and_Swinnerton-Dyer_conjecture
https://web.math.pmf.unizg.hr/~duje/tors/rankhist.html
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2.1. Group schemes.

Definition 2.3. Let S be a scheme. A group scheme over S is a pair (G,m) that consists
of an S-scheme G and an S-scheme morphism (called multiplication morphism)

m : G×S G −→ G

such that for every S-scheme T , the resulting map on T -valued points

m(T ) : G(T )×G(T ) −→ G(T )

makes G(T ) into a group. We call G commutative if G(T ) is a commutative group for
every T .

Observe that for every morphism u : T ′ → T of S-schemes, the diagram

G(T )×G(T )
m(T ) //

u∗×u∗
��

G(T )

u∗

��
G(T ′)×G(T ′)

m(T ′) // G(T ′)

(2.1)

commutes which means that u∗ : G(T ) → G(T ′) is a group homomorphism. Before
discussing further general properties, we give some examples.

Example 2.4 (The multiplicative group). Assume that S = SpecR is affine. Define
Gm,S = SpecR[t, t−1] which we would like to make into a group scheme over S. Recall
that Spec(−) is an anti-equivalence from R-algebras to affine S-schemes. We define the
multiplication map m : Gm,S ×S Gm,S → Gm,S as Spec(m∗) where m∗ is

m∗ : R[t, t−1] −→ R[t, t−1]⊗R R[t, t−1]

t 7−→ t⊗ t.
(2.2)

We next verify that this makes Gm,S into an S-group scheme. For every S-scheme T , we
identify

Gm,S(T )
∼−→ OT (T )×

[g : T → Gm,S ] 7−→ g∗(t).
(2.3)

Note that this map is obviously defined; the fact that it is an isomorphism is the adjunction
MorS(T, Spec(A))

∼→ HomR(A,OT (T )). Given two morphisms g1, g2 : T → Gm,S , we have

R[t, t−1]
m∗−→ R[t, t−1]⊗R R[t, t−1]

g∗1⊗g∗2−→ OT (T )

t 7−→ t⊗ t 7−→ g∗1(t)g∗2(t).

Thus we see that the operation m(T ) on Gm,S(T ) translates to the usual multiplication
under (2.3). In particular, m(T ) is a group structure for every T , and hence (Gm,S ,m) a
group scheme. It represents the functior T 7→ (OT (T )×, ∗).

Example 2.5 (The additive group). In an analogous way, we define a group structure
a = Spec(a∗) on the affine line Ga,S = SpecR[t] by

a∗ : R[t] −→ R[t]⊗R R[t]

t 7−→ t⊗ 1 + 1⊗ t.

In this case, we obtain (exercise) an isomorphism of sets with binary operation

(Ga,S(T ), a)
∼−→ (OT (T ),+)

[g : T → Gm,S ] 7−→ g∗(t).
(2.4)

In particular, (Ga,S , a) is a group scheme that represents T 7→ (OT (T ),+).
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Recall that the Yoneda Lemma states that taking functor of points defines a fully faithful
embedding

(Sch/S) −→ Fun ((Sch/S)op, Sets)

X 7−→ [T 7→ Mor(T,X)].

We may thus reverse the logic of Definition 2.3: Giving a group scheme structure on
an S-scheme G is equivalent to giving a group structure on G(T ) for every T such that
for every S-scheme morphism u : T ′ → T , the pullback u∗ : G(T ) → G(T ′) is a group
homomorphism. Examples 2.4 and 2.5 show that this is often a very intuitive way of
thinking about a group scheme.

Example 2.6 (The general linear group). The (underlying scheme of the) general linear
group in n variables over S is defined as

GLn,S = SpecR
[
tij , 1 ≤ i, j ≤ n; det((tij)i,j)

−1
]
.

There is a natural isomorphism (exercise) of the functor of points of GLn,S and the functor
T 7→ GLn(OT (T )) which is given by

Φ : [g : T → GLn,S ] 7−→ (g∗(tij))i,j . (2.5)

We endow GLn(OT (T )) with the usual matrix multiplication. Clearly, for every u : T ′ →
T , the pullback map

u∗ : GLn(OT (T )) −→ GLn(OT ′(T ′))
is a group homomorphism. Hence, as explained before, there exists a unique S-morphism
m : GLn,S×SGLn,S → GLn,S such that Φ becomes a group isomorphism for every T → S.
It is also easy to write m down in terms of coordinates:

m∗(tij) =
n∑
k=1

tik ⊗ tkj .

Note that if (G,m) is a group scheme over S and if T → S is a morphism, then

(GT ,mT ) := (T ×S G, idT ×m) (2.6)

is a group scheme over T , called its base change. At this point, we say a word about
intuition: If G is a variety2 over Spec k, where k is an algebraically closed field, then a
group scheme structure on G is the same as a group structure on G(k) that comes from a
morphism G×G→ G. For a general scheme S, a group scheme over S is best thought of
as a family of group schemes over the residue fields of S.

The above three examples make sense for every base S, not necessarily affine: Simply
set

Gm,S := S ×SpecZ Gm,Z, Ga,S := S ×SpecZ Ga,Z

and analogously for GLn,S . In fact, recall that affine S-schemes (in the sense that the
structure morphism X → S is affine) are anti-equivalent to quasi-coherent OS-algebras by
the relative Spec construction,

[u : X → S] 7−→ u∗OX
Spec(A) ←−p A.

(2.7)

Thus we could have worked with a general base from the beginning. For example,

(Gm,S ,m) = Spec(OS [t, t−1],m∗(t) = t⊗ t).

The following provides examples of group schemes that do not necessarily come by base
change from Z.

2That is, G is of finite type over k and integral.
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Example 2.7. Let S be any scheme and let E be a vector bundle of rank n on S.3 Then
the functor

[u : T → S] 7−→ Aut(u∗E)

is representable by an affine S-group scheme G = Aut(E) (exercise). If U ⊆ S is an open
subscheme such that E|U ∼= O⊕nU , then G|U := U ×S G is isomorphic to GLn,U .

2.2. Further structure on group schemes. We come back to Definition 2.3 and deduce
some general properties. First, G(S) is a group which means that there exists an identity
element e : S → G. Because of (2.1), for every u : T → S, we find that u∗(e) = e◦u ∈ G(T )
is the neutral element. The faithfulness part of the Yoneda lemma thus implies that the
following triangle commutes,

S ×S G
e×id // G×S G

m
zz

G.

(2.8)

Moreover, for each T → S, there is an inverse map i(T ) : G(T ) → G(T ), g 7→ g−1. For
each u : T → T ′, (2.1) implies that u∗ ◦ i(T ) = i(T ′)◦u∗, so the fullness part of the Yoneda
lemma implies that {i(T )}T is induced from a morphism i : G→ G. Applying the Yoneda
lemma once more shows that

G×S G

��

id×i // G×S G
m
��

S
e // G

(2.9)

commutes. Finally, again by the Yoneda lemma, associativity (and possibly commutativ-
ity) for all the groups G(T ) imply the commutativity of the squares

G×S G×S G
m×id //

id×m
��

G×S G

m

��
G×S G

m // G

G×S G
(g,h) 7→ (h,g) //

m
$$

G×S G

m
zz

G.

(2.10)

In fact, one may also reverse the logic of this section and obtains the more classical
definition of a group scheme over S: It is the same as an S-scheme G together with a
morphism m : G ×S G → G such that there exist morphisms e : S → G and i : G → G
such that the diagrams in (2.8), (2.9) and (2.10) commute.

Example 2.8. Neutral element and inverse of Gm,S = SpecOS [t, t−1] are given by e∗(t) =

1 and i∗(t) = t−1. What are these morphisms for Ga,S and GLn,S?

2.3. Group scheme homomorphisms.

Definition 2.9. Let (G1,m1) and (G2,m2) be group schemes over S. A group scheme
morphism from G1 to G2 is a morphism of S-schemes f : G1 → G2 such thatm2◦(f×f) =
f ◦m1. Equivalently, for all T → S, the induced map

f(T ) : G1(T ) −→ G2(T )

is a group homomorphism.

3That is, E is a quasi-coherent OS-module that is locally free of rank n.
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Example 2.10. Let S be any scheme. There is a group scheme morphism realization
of the determinant det : GLn,S → Gm,S which may be defined in either of the following
equivalent ways. First, we may define it using (2.7) by det = Spec(det∗) where

det ∗ : OS [t, t−1] −→ OS [tij , 1 ≤ i, j ≤ n; det((tij)ij)
−1]

t 7−→ det((tij)ij).

Second, we may apply the Yoneda lemma and define det as the unique morphism such
that for every T → S,

det(T ) : GLn(OT (T )) −→ OT (T )×

is the usual determinant. Here, we have used the identifications from (2.3) and (2.5).

Example 2.11. Assume that (G,+) is a commutative group scheme over S. Then the
set of group scheme endomorphisms End(G,+) is a (not necessarily commutative) ring:
Multiplication is defined as composition of group scheme endomorphisms, addition by the
rule (φ+ψ)(g) = φ(g) +ψ(g) for all T → S and g ∈ G(T ). In particular, for every n ∈ Z,
there is a multiplication-by-n homomorphism

[n] : G −→ G

obtained by adding idG (or the inverse morphism i, if n is negative) |n| times. For every
T → S and g ∈ G(T ), we have [n](g) = ng.

Proposition 2.12. Let S be a connected scheme. Then End(Gm,S) = Z.

Proof. Step 1: The case of fields. Let k be any field. By definition, a group scheme
endomorphism f of Gm,k is the same as f = Spec(f∗) for a unique k-algebra morphism
f∗ : k[t, t−1] −→ k[t, t−1] such that

(f∗ ⊗ f∗) ◦m∗ = m∗ ◦ f∗ (2.11)

where m∗(t) = t ⊗ t is as in (2.2). Giving a k-algebra morphism f∗ is equivalent to
specifying its image f∗(t) ∈ k[t, t−1]×. These units are

k[t, t−1]× = {λtn | λ ∈ k×, n ∈ Z}.

If f∗(t) = λtn, then (2.11) evaluated at t becomes

λtn ⊗ λtn ?
= λ(t⊗ t)n (2.12)

which holds if and only if λ2 = λ, meaning λ = 1. Note that f∗(t) = tn precisely defines
the multiplication-by-n morphism [n] (meaning taking n-th power in this context) and
thus End(Gm,k) = Z is proved.
Step 2: The case of reduced S. Assume that S is reduced and let f : Gm,S → Gm,S be

any morphism. Step 1 provides a function S → Z which takes s to the unique integer n(s)
such that the fiber

f(s) : κ(s)⊗S Gm,S −→ κ(s)⊗S Gm,S

equals [n(s)]. We claim that for every n ∈ Z, the set

{s ∈ S | n(s) = n} (2.13)

is open and closed. This is a topological property that we can check locally. So assume
S = SpecR is affine. Then f = Spec(f∗) for a (unique) R-algebra endomorphism f∗ of
R[t, t−1]. Any such endomorphism is uniquely determined by the image f∗(t) ∈ R[t, t−1]×.
By step 1, the n-th coefficient cn of f∗(t) has the property that for every point s ∈ S, the
value in the residue field cn(s) ∈ κ(s) is either 0 or 1. It is 1 if and only if n(s) = n.
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Recall now that since R is a reduced ring, it embeds into the product of all its residue
fields,

R ↪−→
∏

s∈SpecR

κ(s).

Thus an element e ∈ R is an idempotent if and only if all its specializations e(s) ∈ κ(s)
are idempotents. We obtain that each coefficient of f∗(t) is an idempotent, and hence
that each of the sets (2.13) is open and closed as claimed.

Note that if S is connected, then this implies End(Gm,S) = Z.
Step 3: The general case. Extending from the reduced to the general case can again be

done locally. So assume S = Spec(R) as before and f = Spec(f∗) for some f∗ as above.
Assume further that f∗(t) = tn + h(t) where h(t) has nilpotent coefficients. Our aim is to
show that h(t) = 0.

Let I ⊂ R be a nilpotent ideal such that h(t) ≡ 0 mod I. (For example, take I as the
ideal generated by the coefficients of h(t).) We show that then h(t) ≡ 0 mod I2 which
finishes the proof of the proposition by induction. Indeed, since f is a group scheme
endomorphism, f∗ satisfies (2.11) which we may evaluate at t to obtain

(tn + h(t))⊗ (tn + h(t)) = (t⊗ t)n + h(t⊗ t).

Subtracting tn ⊗ tn on both sides we obtain that

tn ⊗ h(t) + h(t)⊗ tn ≡ h(t⊗ t) mod I2[t, t−1].

Comparing the coefficients of each monomial ta ⊗ tb in this expression first shows that
necessarily h(t) = λtn for some λ ∈ I, and then

2λtn ⊗ tn ≡ λtn ⊗ tn mod I2[t, t−1].

This implies that λ ∈ I2 and hence h(t) ∈ I2[t, t−1] which finishes the proof. �

Proposition 2.12 is sometimes called the “rigidity of endomorphisms of Gm”. The word
“rigidity” refers to the property of an endomorphism (say of a fiber κ(s)⊗SGm) spreading
out in at most one way to all of the connected scheme S. We will see that this is a property
of homomorphisms between abelian varieties as well. For most group schemes, however,
there is no such phenomenon:

Example 2.13. Let S = SpecR; consider the additive group Ga,S = SpecR[t]. Then

R −→ EndS-grp sch(Ga,S)

r 7−→ [r] := Spec (r∗ : t 7→ rt).
(2.14)

The functor of points description of [r] is as follos: For every u : T → S, the endomorphism
[r](T ) of OT (T ) is multiplication by u∗(r).

2.4. Kernels. It is easy to define kernels of group scheme homomorphisms because of the
existence of fiber products of S-schemes. Defining quotients is much more tricky and will
be discussed later in the course.

Definition 2.14. Let f : G1 → G2 be a homomorphism of S-group schemes. Let e2 :
S → G2 be the neutral element section of G2. The kernel of f is defined as the fiber
product

ker(f) //

��

S

e2
��

G1
f // G2.

(2.15)
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It is clear from its definition that ker(f) represents the functor (on S-schemes)

T 7−→ ker (f(T ) : G1(T ) −→ G2(T )) . (2.16)

In particular, ker(f)(T ) ⊂ G1(T ) is a subgroup for every T , and hence (by Yoneda)
ker(f) is again an S-group scheme. It also follows that the natural map (see (2.15))
ker(f) → G1 is a group scheme homomorphism. The multiplication morphism on ker(f)
can be characterized as the unique one that makes the following diagram commute:

ker(f)×S ker(f) //

��

ker(f)

��
G×S G

m // G.

(2.17)

Remark 2.15. Recall that if X → S is a separated morphism, then every section σ :
S → X is a closed immersion. Thus, if G → S is a separated group scheme (e.g. affine
or proper), then the neutral element e is a closed immersion. It follows that if in (2.15)
G2 → S is separated, then ker(f)→ G1 is a closed immersion.

Example 2.16 (Roots of unity). Let S be any and let n ≥ 1 be an integer. The group
scheme µn,S → S of n-th roots of unities is defined by

µn,S := ker ([n] : Gm,S −→ Gm,S) .

Its functor of points is
µn,S(T ) = {ζ ∈ OT (T ) | ζn = 1} .

Since fiber products of affine morphisms are given by simply applying the (relative) spec-
trum construction to the tensor product of rings, we obtain from (2.15) that

µn,S = Spec
(
OS ⊗ 1←pt, OS [t,t−1], t7→tn OS [t, t−1]

)
= Spec (OS [t]/(tn − 1)) .

It follows e.g. from (2.17) that the multiplication morphism on µn,S is still described by
m∗(t) = t⊗ t.

Example 2.17. The n-th roots of unity behave very differently depending on whether or
not n ∈ OS(S)×. Let S = Spec k for a field k and first assume n ∈ k×. Then tn− 1 ∈ k[t]
is a separable polynomial. Hence V (tn − 1) ⊂ A1

k satisfies the Jacobi criterion (Definition
1.3) and thus µn,k is smooth. If there exists a primitive n-th root of unity ζ ∈ k, then

tn − 1 =
∏
i∈Z/n

(t− ζi)

and thus
µn,k

∼−→
∐
i∈Z/n

Spec k. (2.18)

If T is a connected k-scheme, then (2.18) shows that µn,k(T ) ∼= Z/n.
Assume now that char(k) = p and n = pr. Observe that (tp

r − 1) = (t− 1)p
r and thus

µpr,k
∼−→ Spec k[t]/(t− 1)p

r ∼−→ Spec k[ε]/(ε)p
r

(2.19)

is a non-reduced k-scheme. For a k-scheme T , whenever x ∈ OT (T ) satisfies xpr = 0, then
(1 + x)p

r
= 1 + xp

r
= 1, and hence

1 + x ∈ µpr,k(T ).

In particular, µpr,k(T ) can be a large group whose structure depends on OT (and not just
on π0(T ) as in the previous situation.)
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3. Rigidity and abelian varieties

3.1. The rigidity theorem.

Theorem 3.1. (Rigidity) Let k be an algebraically closed field and let X, Y and Z be
integral and finite type k-schemes. Assume further that X is proper and Z separated. Let

f : X ×k Y −→ Z

be a morphism of k-schemes. Assume that there exist rational points y0 ∈ Y (k) and
z0 ∈ Z(k) such that f(X ×k {y0}) = {z0}. Then there exists a k-morphism g : Y → Z
such that f = g ◦ prY :

X ×k Y
f

$$
prY
��
Y

g // Z.

(3.1)

Proof. First we give a candidate for g: Pick any rational point x0 ∈ X(k). (Existence is
ensured by the assumption that k is algebraically closed.) Then define g as the composition

g : Y
∼−→ {x0} ×k Y ↪−→ X ×k Y

f−→ Z

which is the only possibility for g if the theorem indeed holds.
Step 1: Reduction to Y and Z affine. We need to see that f = g ◦ prY . Since Z is

separated, it is enough to check this identity on any schematically dense open U ⊆ X×Y .
Here, recall that U is called schematically dense if the natural map OX → incU,∗OU is
injective. Now we use the following lemma:4

Lemma 3.2 ([8, Tag 05P3]). Let k be an algebraically closed field, and let X and Y be
integral finite type k-schemes. Then X ×k Y is again integral.

The lemma applies to our X ×k Y and hence every open U ⊂ X ×k Y is schematically
dense. It is thus enough to check f = g ◦prY on any open U , and we next make a suitable
choice.

Next, let z0 ∈W ⊆ Z be an open affine neighborhood. Then f−1(Z \W ) ⊆ X×k Y is a
closed subset. By the properness of prY : X×kY → Y , the image prY (f−1(Z \W )) ⊆ Y is
closed. It does not contain y0 by definition ofW and the assumption f(X×k {y0}) = {z0}.
Choose an affine open neighborhood V of y0 such that

y0 ∈ V ⊆ Y \ prY (f−1(Z \W )).

We now choose U in the previous argument as

U := X ×k V.

Replacing Y by V and Z by W from now on, we have reduced to the case that Y and Z
are affine.

Step 2: The case Y and Z affine. Adjunction for morphisms to affine schemes states
that

Mork(X ×k Y, Z)
∼−→ Homk-alg (OZ(Z),OX×kY (X ×k Y )) . (3.2)

Thus in order to prove the equality f = g ◦ prY , it suffices to show that they induce the
same pullback map on global sections. Now we claim that there is a commutative triangle

4The cited reference also includes a separatedness assumption which however is not needed for the
lemma as stated here.

https://stacks.math.columbia.edu/tag/05P3
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with all arrows isomorphisms

O{x0}×kY ({x0} ×k Y ) OX×kY (X ×k Y )
inc∗oo

OY (Y ).

pr∗Y

OO
(3.3)

Assume this claim for a moment. By definition of g, we have

f ◦ inc = g ◦ prY ◦ inc.

Passing to global sections and using that inc∗ is an isomorphism, we obtain f∗ = pr∗Y ◦ g∗
and the proof is complete. It is thus only left to prove the claim.

Step 3: Proof of the claim. The triangle clearly commutes and the projection {x0}×Y →
Y is an isomorphism. It thus suffices to show that pr∗Y is an isomorphism. First we observe
that k ∼→ OX(X). Namely, since X is proper over k and OX coherent, OX(X) is a finite
dimensional k-algebra. AsX is reduced, also OX(X) is reduced. Thus OX(X) is a product
of finite field extensions of k. Since k is algebraically closed, it is even a product of copies
of k. Finally, since X is integral by assumption, in particular connected, k ∼→ OX(X) is
the only possibility.

Next, we show that this implies pr∗Y : OY (Y )
∼→ OX×kY (X ×k Y ). Let X =

⋃r
i=1Xi

be a finite open affine covering. By separatedness of X → Spec k, the intersections Xij =
Xi ∩Xj are again affine. Write Xi = SpecAi and Xij = SpecAij in the following. By the
sheaf property and the fact OX(X) = k, there is an exact sequence

0 −→ k −→
r∏
i=1

Ai
r1−r2−→

r∏
i,j=1

Aij . (3.4)

Here, r1 and r2 denote the two restriction maps. We have assumed Y to be affine, say
Y = SpecB. Since every k-algebra is flat (k is a field), we may apply −⊗k B to (3.4) and
obtain the exact sequence

0 −→ B −→
∏
i=1

Ai ⊗k B
r1−r2−→

r∏
i,j=1

Aij ⊗k B. (3.5)

(Here, we have also used that the indexing set here are finite which allows to interchange
the tensor product with the products.) Since Spec(Ai ⊗k B) = Xi ×k Y and Spec(Aij ⊗k
B) = Xij×k Y , the second exact sequence precisely computes that B ∼→ OX×kY (X×k Y ).
This completes the proof of all remaining claims. �

3.2. Applications. Recall the definition of abelian varieties (Definition 2.2). We begin
with two auxiliary results that pertain to properties of finite type k-schemes.

Lemma 3.3. Let (A,m)/k be an abelian variety and let K/k be a field extension. Then
(K ⊗k A,K ⊗k m) is an abelian variety over K.

Proof. We already know that the base change is a K-group scheme, see (2.6). Moreover,
K ⊗k A is proper over K because this property is stable under base change. Similarly,
K ⊗k A is again smooth over K directly from definitions: If the Jacobi criterion (over k)
holds in a point x ∈ A, then it holds (over K) in every preimage of x in K ⊗k A.

It is only left to show that K ⊗k A is connected. By assumption, A is connected
which means that R := OA(A) contains no idempotents except 0 and 1. Since R is a
0-dimensional k-algebra by the properness of A, this means R has a unique maximal ideal
m. There also exists the neutral element e ∈ A(k) which means that there exists a k-
algebra map R/m → k. This implies k ∼→ R/m, which further implies that K ⊗k R also
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has a unique maximal ideal (whose residue field is K). Finally, by the same argument as
for (3.5),

K ⊗k R
∼−→ OK⊗kA(K ⊗k A)

which shows that K ⊗k A is connected. �

Remark 3.4. The second part of the proof is generalized by [8, Tag 056R]: A connected
k-scheme that has a k-rational point stays connected after base change to every field
extension K/k.

Fact 3.5. Let X be a connected k-scheme of locally finite type. If X is smooth, then X is
integral. In particular, abelian varieties are integral schemes.

Proposition 3.6. Let (A1,m1) and (A2,m2) be abelian varieties over k and let f : A1 →
A2 be a morphism of k-schemes such that f(e1) = e2. Then f is a group scheme homo-
morphism. Here, ei ∈ Ai(k) denotes the neutral element.

Proof. Step 1: The case when k is algebraically closed. Consider the morphism
φ : A1 ×k A1 −→ A2

(x, y) 7−→ f(x · y)f(y)−1f(x)−1.

Here, the notation is meant in the sense that x, y ∈ A1(T ) are arbitrary T -valued points,
and the group operations on the right hand side refer to the group structure on A2(T ).
(Thus we have implicitly used the Yoneda lemma to define φ.)

We see by substitution that φ|A1×k{e1} = {e2}. By Fact 3.5 and since we assumed k to
be algebraically closed, Theorem 3.1 applies and provides a morphism ψ : A1 → A2 such
that φ(x, y) = ψ(y) for all T and all (x, y) ∈ A1(T ). Then we find

φ(x, y) = ψ(y) = φ(e1, y) = e2

for all (x, y), which precisely means that f is a group homomorphism.
Step 2: Reduction to k = k̄. The morphism φ is defined in the same way for general k.

We again need to show that it equals the composition

A1 ×k A1 −→ Spec k
e2−→ A2.

Such an equality can be shown after base change to k̄. (This follows from the fact that
a k-algebra homomorphism B1 → B2 is uniquely determined by its base change k̄ ⊗k
B1 → k̄ ⊗k B2. This fact in turn is obvious from the injectivity Bi → k̄ ⊗k Bi.) It is
easy to see that the base change k̄ ⊗k φ of φ is nothing but the morphism φ defined for
k̄ ⊗k f : k̄ ⊗k A1 → k̄ ⊗k A2. We are done with Lemma 3.3. �

Corollary 3.7. The group structure of an abelian variety is commutative.

Proof. Given A/k, consider the inverse morphism

i : A −→ A, x 7−→ x−1.

The notation here is meant in the sense of the Yoneda Lemma: For any T → Spec k and
any x ∈ A(T ) we have i(x) = x−1.

It is clear that i(e) = e, so Proposition 3.6 applies and states that i is a group homo-
morphism. This means

xy = i(y−1x−1) = i(y−1)i(x−1) = yx

for all T → Spec k and all x, y ∈ A(T ). �

Corollary 3.8. Let h : A1 → A2 be any k-scheme morphism between abelian varieties over
k. Then there exist a rational point x ∈ A2(k) and a group homomorphism f : A1 → A2

such that h = f + x.

https://stacks.math.columbia.edu/tag/056R
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The statement is again meant in the sense of the Yoneda lemma: For every u : T →
Spec k and every y ∈ A1(T ) we have h(y) = f(y) + u∗(x).

Proof. Let x = h(e1). Then f := h − x satisfies f(e1) = e2. Now apply Proposition
3.6. �

4. Kähler differentials and smoothness

Definition 4.1 (Genus of a curve). Let k be a field and let C be a proper, smooth,
geometrically5 connected curve over k. The genus of C is the integer

dimkH
0(C,Ω1

C/k).

The sheaf Ω1
C/k is the so-called sheaf of Kähler differentials which will be introduced

below. Because of the smoothness of C, it is a line bundle that is also called the canonical
bundle. Our aim is to prove the following result:

Proposition 4.2. Let E be an elliptic curve over k. Then E has genus 1.

The genus of a curve controls the arithmetic of its meromorphic functions through
the Riemann–Roch theorem. In particular, it is closely related to how the curve can be
embedded into projective space. In the case of elliptic curves, we will later use Proposition
4.2 to prove that every elliptic curve can be defined as a plane cubic.

4.1. Kähler differentials.

Definition 4.3. Let R be a ring, let A be an R-algebra, and let M be an A-module. An
R-derivation from A toM is an R-linear map δ : A→M such that the Leibniz rule holds:
For all a, b ∈ A,

δ(ab) = aδ(b) + bδ(a). (4.1)

Note that δ(1) = δ(1 · 1) = δ(1) + δ(1), so δ(1) = 0. Then, by the R-linearity of
R-derivations, we obtain for all r ∈ R that

δ(r) = rδ(1) = 0.

Furthermore, if δ1, δ2 : A→M are two R-derivations and if λ1, λ2 ∈ A are scalars, then

λ1δ1 + λ2δ2 : A −→M

a 7−→ λ1δ1(a) + λ2δ2(a)

is again an R-derivation. Thus R-derivations from A to M form an A-module which we
denote by DerR(A,M).

Example 4.4. Assume that A = R[X1, . . . , Xn] is a polynomial ring over R and let
M = A. The partial derivatives

∂

∂Xi
: A −→ A

are R-linear and define R-derivations. Given polynomials f1, . . . , fn ∈ A, the linear com-
bination

t =

n∑
i=1

fi ·
∂

∂Xi
∈ DerR(A,A) (4.2)

5A k-scheme X is said to be geometrically connected, irreducible, integral, regular etc. if the base
change k̄ ⊗k X is connected, irreducible, integral, regular etc. A non-trivial statement is that if X is
geometrically P, then for every field extension K/k, the base change K ⊗k X is P.



16 ANDREAS MIHATSCH

is another derivation. Assume that R = k is a field. Then t should be thought of as the
vector field on Ank whose value in a point x = (x1, . . . , xn) ∈ kn is the tangent vector

n∑
i=1

fi(x1, . . . , xn) · ∂

∂Xi
.

If R is general, then t can be thought of as a fiber-by-fiber vector field for π : AnR → SpecR.
The value of t in a point x ∈ AnR is a tangent vector of the fiber Anκ(π(x)) in x; it is in
particular parallel to the fiber.

Lemma 4.5. Let R be any ring and let A = R[X1, . . . , Xn]. Then the construction of
(4.2) defines an isomorphism of A-modules

An
∼−→ DerR(A,A)

(f1, . . . , fn) 7−→
n∑
i=1

fi · (∂/∂Xi).
(4.3)

Proof. First observe that (∂/∂Xi)(Xj) = δij (Kronecker delta). This shows that

( n∑
i=1

fi · (∂/∂Xi)
)
(Xj) = fj

and hence that (4.3) is injective. Given any derivation δ ∈ DerR(A,A), set fi = δ(Xi).
The Leibniz rule then ensures that δ =

∑n
i=1 fi · (∂/∂Xi), proving the surjectivity. �

Motivated by this lemma, we now try to give a general description of DerR(A,M).

Definition 4.6. Let A be an R-algebra. A universal R-derivation of A is a pair (Ω1
A/R, d)

that consists of an A-module Ω1
A/R and an R-derivation d : A→ Ω1

A/R with the following
universal property: Every R-derivation δ : A → M factors through a unique A-module
homomorphism ϕ : Ω1

A/R →M . As diagram,

A
d //

∀ δ
&&

Ω1
A/R

∃! ϕ
��
M.

(4.4)

Lemma 4.7. A universal derivation Ω1
A/R exists and is unique up to unique isomorphism.

It is called the module of Kähler differentials of A over R.

Proof. The construction is standard: Let Ω̃ be the free A-module generated by symbols
da, for a ∈ A. Let U ⊆ Ω̃ be the A-submodule generated by all elements of the form

d(ra)− rda r ∈ R, a ∈ A
d(a+ b)− da− db a, b ∈ A
d(ab)− adb− bda a, b ∈ A.

Then the map d : A→ Ω̃/U , a 7→ da is an R-derivation by definition. Moreover, for every
R-derivation δ : A→M , there exists a unique A-linear map ϕ̃ : Ω̃→M such that ϕ̃(da) =

δ(a). (Use that Ω̃ is a free A-module.) As δ is a derivation by assumption, ϕ̃(U) = 0 and
hence ϕ̃ factors in a unique way through Ω̃/U . Thus we may set (Ω1

A/R, d) = (Ω̃/U, d) and
obtain a universal derivation. The uniqueness up to unique isomorphism follows from the
universal property. �
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Example 4.8. Extending Example 4.4, let A = R[Xi, i ∈ I] be a polynomial ring over R.
Then

A⊕I
∼−→ Ω1

A/R

(fi)i∈I 7−→
∑
i∈I

fidXi.
(4.5)

In this case, the Leibniz rule ensures that the universal derivation d : A → Ω1
A/R is

described by

df =
∑
i∈I

∂f

∂Xi
· dXi.

Example 4.9. A concrete numerical example for A = Z[X,Y ] is

d(XY + Y 2) = Y dX + (X + 2Y )dY ∈ AdX ⊕AdY.

Assume we are given a commutative square of ring maps

A2 A1
ϕoo

R2

OO

R1.

OO

oo

(4.6)

The composition A1 → A2 → Ω1
A2/R2

defines an R1-derivation of A1. Also extending
scalars from A1 to A2, it factors through a unique A2-linear map

A2 ⊗A1 Ω1
A1/R1

−→ Ω1
A2/R2

a⊗ df 7−→ a · dϕ(f).
(4.7)

In the following lemma, the maps between Kähler differentials are all special cases of
construction (4.7).

Lemma 4.10 (Kähler differential arithmetic). (1) Let A � A/I be a surjection of R-
algebras. Then the natural map Ω1

A/R → Ω1
(A/I)/R fits into an exact sequence

I/I2 f 7→1⊗df−→ A/I ⊗A Ω1
A/R −→ Ω1

(A/I)/R −→ 0. (4.8)

(2) Let S ⊆ A be a subset of an R-algebra A. Then the natural map Ω1
A/R → Ω1

A[S−1]/R

induces an isomorphism

A[S−1]⊗A Ω1
A/R

∼−→ Ω1
A[S−1]/R.

(3) Let A be an R1-algebra and let R1 → R2 be a ring morphism. Then the natural map
induces an isomorphism

R2 ⊗R1 Ω1
A/R1

= (R2 ⊗R1 A)⊗A Ω1
A/R1

∼−→ Ω1
(R2⊗R1

A)/R2
.

(4) Assume that R→ A→ B are ring maps. The natural maps form an exact sequence

B ⊗A Ω1
A/R −→ Ω1

B/R −→ Ω1
B/A −→ 0.

(5) Assume that A1 and A2 are R-algebras and set B = A1 ⊗R A2. The natural maps
induce an isomorphism

B ⊗A1 Ω1
A1/R

⊕B ⊗A2 Ω1
A2/R

∼−→ Ω1
B/R.

Proof. The proofs are not difficult and we refer to [8, Tag 00RM] and [6, §5–§7] for more
details. �

https://stacks.math.columbia.edu/tag/00RM
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Example 4.11. An important observation is that Example 4.8 and Lemma 4.10 (1)
give an expression for the Kähler differentials of any R-algebra A. Namely, choose any
presentation Ã = R[Xk, k ∈ K], A = Ã/I of A as quotient of a polynomial R-algebra.
Then (4.8) implies that (⊕

k∈K
A · dXk

)
/
(
df, f ∈ I

) ∼−→ Ω1
A/R. (4.9)

A related statement which also follows immediately from the Leibniz rule is that if a subset
S ⊂ A generates A as R-algebra, then the differentials {df | f ∈ S} generate Ω1

A/R as
A-module.

Example 4.12 (Relation with the Jacobi matrix). In the case that A is of finite presen-
tation, say A = R[X1, . . . , Xn]/(f1, . . . , fm), (4.9) specializes to the statement that Ω1

A/R

is isomorphic to the cokernel of the Jacobi matrix J = (∂fi/∂Xj)ij ,

Am
J−→ An −→ Ω1

A/R −→ 0. (4.10)

Example 4.13. Consider a prime p 6= 2 and the ring A = Z[
√
p]. We know that Ω1

A/Z
is generated by the differential d√p, and hence is of the form (A/a) · d√p for some ideal
a ⊆ A. How to determine a?

Choose the presentation Z[T ]/(T 2 − p) ∼→ A, where T 7→ √p. We obtain from (4.10)
that

Ω1
A/Z

∼−→ A · dT/2TdT ∼−→ A/(2
√
p) · d√p, (4.11)

meaning a = (2
√
p).

Definition 4.14. Let π : X → S be a morphism of schemes. The uniqueness up to
unique isomorphism of (Ω1

A/R, d), and the compatibility with localizations (Lemma 4.10
(2)), imply that there is a unique quasi-coherent OX -module Ω1

X/S together with a π−1OS-
derivation d : OX → Ω1

X/S such that for all open affines V ⊆ S and U ⊆ π−1(U), the
map

d(U) : OX(U) −→ Ω1
X/S(U)

is a universal OS(V )-derivation. In more down to earth terms, say V = SpecR and
U = SpecA. Then

Ω1
X/S |U = (Ω1

A/R)∼

and the gluing maps are induced from (4.7). The uniqueness up to unique isomorphism
ensures the cocycle condition of that gluing. Given a commutative square

Y
f //

��

X

��
T // S,

there is a unique pullback map f∗ : f∗Ω1
X/S → Ω1

Y/T which is locally induced from (4.7).
In the case Y = T ×S X, Lemma 4.10 (3) implies that

f∗ : f∗Ω1
X/S

∼−→ Ω1
T×SX/T .

4.2. Regularity. We recall the definition of regularity and some related results for later
use. Recall that if (A,m) is a noetherian local ring, then we have the inequality

dimA/m(m/m2) ≥ dim(A).
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Definition 4.15. A local ring (A,m) is said to be regular if it is noetherian and if

dimA/m(m/m2) = dim(A).

A scheme X is said to be regular if all the local rings OX,x are regular.

Easy examples of regular local rings are the power series rings k[[X1, . . . , Xn]], where
k is a field, or R[[X1, . . . , Xn]], where R is a DVR. A slightly less obvious example is
R[[X,Y ]]/(XY − π), where R is a DVR and π ∈ R a uniformizer. In these cases, one may
check regularity directly from the definition. In Theorem 4.18 below, we will see that the
local rings of a smooth variety are also regular local rings.

Lemma 4.16 ([8, Tag 00NP]). Any regular local ring is a domain.

In fact, a regular local ring is a factorial domain, in particular integrally closed.

Lemma 4.17 ([8, Tag 0AFS]). Let A be a regular local ring. Then for every prime ideal
p ⊂ A, the localization Ap is again regular.

4.3. Relation with smoothness. Recall that we defined smoothness of a locally finite
type k-scheme in terms of the Jacobi criterion (Definition 1.3).

Theorem 4.18. Let X be a locally finite type k-scheme and let x ∈ X. The following
conditions are equivalent:
(1) X is smooth in x.
(2) There exists an open neighborhood x ∈ U such that k̄ ⊗k U is regular.
(3) Ω1

X/k is free of rank dimx(X) on an open neighborhood of x.

Example 4.19. It is true that if k̄⊗k U is regular as in (2) above, then U is regular. The
converse need not hold, as the following example shows.

Let k = Fp(t) and K = k(t1/p). Then SpecK is a regular, 0-dimensional scheme.
However, k̄ ⊗k K ∼= k̄[ε]/(εp) is not reduced (and also clearly not regular).

We start with some lemmas. If X is a scheme, F a quasi-coherent OX -module, and
x ∈ X, then we write F(x) for the fiber κ(x)⊗OX,xFx. This notation is not to be confused
with the stalk Fx.
Lemma 4.20. Let A be a finite type k-algebra and let x : A � k be a rational point of
Spec(A) with maximal ideal m. Then

m/m2 ∼−→ Ω1
A/k(x)

f 7−→ df.
(4.12)

Proof. We construct a derivation δ : A → m/m2 as follows. Since κ(x) = k, for every
function f ∈ A we may consider the value f(x) ∈ k and define δ(f) := f − f(x) mod m2.
It is a derivation because

fg − f(x)g(x) = f(x)(g − g(x)) + g(x)(f − f(x)) + (f − f(x))(g − g(x))

and the last summand lies in m2. By the universal property of (Ω1
A/k, d), it factors through

an A-linear map
Ω1
A/k(x) −→ m/m2

df 7−→ (f − f(x)).
(4.13)

This map is surjective because df 7→ f mod m2 for all f ∈ m. On the other hand, we have
df = d(f − f(x)) for every element f ∈ A, so {df | f ∈ m} generate Ω1

A/k as A-module.
Moreover, if f, g ∈ m, then d(fg) ∈ mΩ1

A/k by the Leibniz rule. So

dimk Ω1
A/k(x) ≤ dimk(m/m

2)

and hence (4.13) has to be an isomorphism for dimension reasons. �

https://stacks.math.columbia.edu/tag/00NP
https://stacks.math.columbia.edu/tag/0AFS
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Next, we note some semi-continuity properties in a more abstract setting. Let A be a
ring, n,m ≥ 0 integers, J ∈ Mn×m(A) a matrix, and Ω = coker(J). That is, we consider
an exact sequence

Am
J−→ An −→ Ω −→ 0.

For each point x ∈ SpecA, we can specialize J to obtain a matrix J(x) ∈ Mn×m(κ(x)).
We may also take the fiber Ω(x), which is a finite dimensional κ(x)-vector spaces. Since
κ(x)⊗A − is right exact, we always have the exact sequence

κ(x)m
J(x)−→ κ(x)n −→ Ω(x) −→ 0.

In particular, we always have the relation

rk J(x) + dimκ(x) Ω(x) = n. (4.14)

Now observe that rk J(x) ≤ r if and only if the determinants of all (r+i)×(r+i)-minors of
J(x) vanish at x, where i ≥ 1. (In fact, it is enough to consider all (r+1)×(r+1)-minors.)
This condition defines a closed subset of SpecA. Thus we have proved the following result.

Lemma 4.21 (Semi-continuity). In the above situation, for every r ≥ 0, the two subsets
{x ∈ Spec(A) | rk J(x) ≤ r} and {x ∈ Spec(A) | dimκ(x) Ω(x) ≥ r} are closed.

We now apply this to prove inequalities on the fiber dimensions of Ω1
X/k.

Lemma 4.22. Let U = V (f1, . . . , fm) ⊆ Ank be a closed subscheme of affine space. Let
A = OU (U) and denote by J ∈Mn×m(A) the Jacobi matrix of f1, . . . , fm. Then, for every
point x ∈ U , we have the inequalities

dimκ(x) Ω1
X/k(x) ≥ dimx(U).

rk J(x) ≤ n− dimx(U).
(4.15)

Proof. By (4.10), there is an exact sequence

Am
J−→ An −→ Ω1

A/k −→ 0.

In particular, rk J(x) + dimκ(x) Ω1
A/k(x) = n for all x ∈ U as in (4.14). Hence the two

inequalities in (4.15) are equivalent.
Now apply Lemma 4.21: By semi-continuity, there exists an open neighborhood V ⊆ U

of x such that
dimκ(x) Ω1

A/k(x) ≥ dimκ(y) Ω1
A/k(y)

for all y ∈ V . Moreover, for every y ∈ {x}, we have dimy(U) ≥ dimx(U) because if
Z ⊆ U is an irreducible component that contains x, then it also contains {x}. Since we
are working with finite type algebras over a field, there exists a closed point y ∈ V ∩ {x}
for which we now have

dimκ(x) Ω1
A/k(x) ≥ dimκ(y) Ω1

A/k(y)
?
≥ dimy(U) ≥ dimx(U).

Thus we may henceforth assume that x is a closed point. Next, let x̄ ∈ k̄ ⊗k U be a
preimage of x. Then

Ω1
k̄⊗kA/k̄(x̄) = κ(x̄)⊗κ(x) Ω1

A/k(x)

by Lemma 4.10 (3). Moreover, also dimx̄(k̄⊗k U) = dimx(U), so we can also assume that
k = k̄.

End of proof, assuming x closed and k = k̄. Let m ⊂ A be the maximal ideal defined
by x. We obtain from Lemma 4.20 that

dimκ(x) Ω1
A/k(x) = dimκ(x)(m/m

2) ≥ dim(Am) = dimx(U)
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and the proof is complete. (The inequality in the middle holds for every local noetherian
ring. The last equality holds because x is closed.) �

Proof of (1)⇔ (2) in Theorem 4.18. First assume that (1) holds, i.e. assume that X is
smooth in x. By definition, this means there exists an affine open neighborhood x ∈ U =
SpecA together with a presentation U ∼→ V (f1, . . . , fm) ⊆ Ank such that the Jacobi matrix
J of f1, . . . , fm satisfies

rk J(x) = n− dimx(U).

By (4.14), this is equivalent to dimκ(x) Ω1
A/k(x) = dimx(U). By the same argument as

during the proof of Lemma 4.22, there exists a closed point y ∈ {x} such that

dimκ(y) Ω1
A/k(y) = dimκ(x) Ω1

A/k(x).

By the inequality from Lemma 4.22, necessarily dimy(U) = dimx(U).
Let ȳ ∈ Ū := k̄⊗k U lie above y. Then, letting m̄ ⊂ OŪ ,ȳ denote the maximal ideal, we

find
dimk̄ m̄/m̄

2 = dimk̄ Ω1
Ū/k̄(ȳ)

= dimκ(y) Ω1
U/k(y)

= dimy(U)

= dimȳ(Ū).

(4.16)

Here, the first equality is Lemma 4.20 and the second comes from Lemma 4.10 (3). The
third equality is by construction of y. The final dimension equality was already used in
the previous proof. The conclusion of (4.16) is that Ū is regular in ȳ. This was the main
argument; the remainder is about spreading out this regularity to an open neighborhood
as in (2) of Theorem 4.18.

Spreading out the regularity. By Lemma 4.16, OŪ ,ȳ is a domain. Consider the pullback
map OU,y → OŪ ,ȳ. It is flat because OŪ ,ȳ is a localization of k̄⊗k OU,y, which is flat over
OU,y. Since y is a specialization of every point of SpecOU,y, and since ȳ 7→ y, the following
lemma implies the surjectivity of SpecOŪ ,ȳ → SpecOU,y.

Lemma 4.23 ([8, Tag 00HS]). Assume that A → B is a flat ring map, that p ⊂ p′ are
prime ideals in A, and that q′ ⊂ B is a prime ideal above p′. Then there exists a prime
ideal q ⊂ q′ that lies above p.

In other words, OU,y → OŪ ,ȳ is faithfully flat, and in particular injective. Thus we
deduce that OU,y is an integral domain as well. Then OU,x is also an integral domain
because it is a localization of OU,y.

There exists an open neighborhood x ∈ V ⊆ U that is integral: The closed subscheme
V (N ) defined by the sheaf of nilpotent elements N ⊂ OU does not meet x by reducedness
of OU,x. Hence there is an open neighborhood x ∈ V ′ ⊆ U \ V (N ). Since OU,x is an
integral domain, there exists a unique irreducible component Z ⊆ V ′ that contains x.
Then we set V = V ′ \

⋃
Z′ 6=Z Z

′, where Z ′ runs through the irreducible components of V ′.
For every y ∈ V , the local dimension dimy(V ) equals d = dim(V ) by integrality. Our

assumption was that U is smooth in x, i.e. dimκ(x) Ω1
U/k(x) = d. Using semi-continuity

again, there exists an open neighborhood x ∈ W ⊆ V such that dimκ(y) Ω1
W/k(y) = d for

all y ∈ W . This means that W is smooth. By the previous arguments, the base change
k̄ ⊗k W is regular in all closed points. By the stability of regularity under localization
(Lemma 4.17), we obtain that k̄ ⊗k W is regular, and the proof of (2) is complete.

Step (2) ⇒ (1). Assume that x ∈ U is an open affine neighborhood such that Ū =
k̄ ⊗k U is regular. By Lemma 4.20, this means that dimκ(ȳ) Ω1

Ū/k̄
(ȳ) = dimȳ(Ū) for all

closed points ȳ ∈ Ū . Moreover, since all local rings of Ū are integral domains by the

https://stacks.math.columbia.edu/tag/00HS
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regularity (Lemma 4.16), the function Ū 3 ȳ 7→ dimȳ(Ū) is locally constant. The semi-
continuity of dimκ(ȳ) Ω1

Ū/k̄
(ȳ) together with the inequality from Lemma 4.22 then implies

that dimκ(ȳ) Ω1
Ū/k̄

= dimȳ(Ū) for all points ȳ ∈ Ū . Since the local dimensions of U
and the fiber rank of Ω1

U/k are unchanged by base change from k to k̄, we obtain that
dimκ(y) Ω1

U/k = dimy(U) for all y ∈ U . Using (4.14) again, this precisely means that U is
smooth. �

It is left to prove the equivalence with (3). The implication (3)⇒ (1) is quite straight-
forward: If the stalk Ω1

X/k,x is free of rank dimx(X), then in particular dimκ(x)(Ω
1
X/k(x)) =

dimx(X). After choosing local coordinates, (4.14) implies that the Jacobi criterion holds
in x, i.e. that (1) holds. For the converse direction, we first formulate two commutative
algebra statements.

Lemma 4.24. Let A be a reduced ring and let J : Am → An be an (n ×m)-matrix such
that the rank r = rk J(y) is independent of y ∈ SpecA. Then ker(J) and coker(J) are
locally free A-modules of ranks m− r and n− r, respectively.

Proof. Let x ∈ SpecA be any point. By assumption, there exists an (r × r)-minor J0

of J such that J0(x) ∈ GLr(κ(x)). Let f = det(J0) ∈ A. Then SpecA[f−1] is an open
neighborhood of x. We claim that ker(J)[f−1] and coker(J)[f−1] are free of the claimed
ranks. This will be obvious after a number of change of basis operations on A[f−1]m and
A[f−1]n: First, after a reordering of coordinates, we may assume that J takes the form

J =

(
J0 J12

J21 J22

)
.

Multiplying with diag(J−1
0 , 1n−r) ∈ GLn(A[f−1]) from the left, we may assume that

J0 = 1r. Then row and column operations allow to assume J = diag(1r,K) for some
(n − r,m − r)-matrix K with values in A[f−1]. Our assumption implies that, for all
y ∈ SpecA[f−1],

rk J(y) = r + rkK(y) = r,

i.e. that rkK(y) = 0 for all such y. Since A and hence also A[f−1] are reduced, this
means that all entries of K vanish. �

Corollary 4.25. Let X be a reduced scheme and let F be a quasi-coherent OX-module
that is locally finitely presented. Assume that d = dimκ(x)F(x) is independent of x ∈ X.
Then F is locally free of rank d.

Proof. Given x ∈ X, choose an affine open neighborhood x ∈ U , integers m,n ≥ 0, and a
presentation

O⊕mU
J−→ O⊕nU −→ F|U −→ 0.

Then apply Lemma 4.24. �

Proof of (1), (2)⇒ (3). Assume that X is smooth in x. Let U be an open neighborhood
of x such that k̄ ⊗k U is regular; in particular U is smooth by what was already proved.
Since k̄ ⊗k U is regular, it is reduced, and hence U is reduced. (In fact, U is also regular,
see [8, Tag 045K].) The two functions x 7→ dimx(U) and x 7→ dimκ(x) Ω1

U/k(x) are locally
constant and equal by (2). Then Corollary 4.25 applies and shows that Ω1

U/k is locally
free and of rank dimx(U) near x. �

Here is an interesting consequence: Closed immersions between smooth schemes are
locally defined by codimension many equations. This is completely in line with what we
intuitively expect from the implicit function theorem (Remark 1.5)!

https://stacks.math.columbia.edu/tag/045K
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Corollary 4.26. Let i : Z ↪→ X be the closed immersion of smooth k-schemes defined by
the sheaf of ideals I ⊆ OX . Let c(z) := dimz(X)− dimz(Z) denote the codimension in a
point z ∈ Z.

Then I/I2 is a locally free OZ-module whose rank in z is c(z). In particular, for every
z ∈ Z, there exist an open neighborhood U of z in X and functions g1, . . . , gc(z) ∈ I(U)
such that Z ∩ U = V (g1, . . . , gc(z)).

Proof. Define
K := ker

(
i∗ : i∗Ω1

X/k � OZ/k
)

as the kernel of pullback map of differentials. Since Ω1
X/k and Ω1

Z/k are locally free of
ranks dimz(X) and dimz(Z) near z by Theorem 4.18 (3), the kernel K is locally free of
rank c(z) near z. Lemma 4.10 (1) moreover provides a surjection

I/I2 � K
g 7→ 1⊗ dg.

Thus there exist an open neighborhood U of z in X and functions g1, . . . , gc(z) ∈ I(U)
with

(dg1, . . . , dgc(z)) : O⊕c(z)Z∩U
∼−→ K|Z∩U .

Let Y = V (g1, . . . , gc(z)) ⊆ U be the closed subscheme defined by these functions and note
that Z ∩ U ⊆ Y . By Lemma 4.10 (1), for every z ∈ Z ∩ U , we have that

Ω1
Y/k(z) =

(
Ω1
U/k/(dg1, . . . , dgc(z))

)
(z)

= Ω1
U/k(z)/K(z)

= Ω1
Z/k(z).

Since also dimz(Y ) ≥ dimz(Z), this means that Y is smooth and of the same dimension as
Z in every point z ∈ Z ∩ U . By the integrality of local rings of smooth k-schemes (which
follows from Theorem 4.18 (2)), this means that Z ∩U → Y is the inclusion of a union of
connected components, and the proof is complete. �

5. Invariant differential forms

5.1. Lie groups. Let G be a real Lie group of dimension n with identity element e. We
write OG for the sheaf of smooth functions on G, and Ω1

G for the sheaf of differential
1-forms. Note that Ω1

G is locally free of rank n as OG-module. In fact, we will see in this
section that Ω1

G
∼= O⊕nG and that the global generators can be chosen to be translation

invariant differential forms:

Definition 5.1. Given an element g ∈ G, we denote by `g, rg : G
∼→ G the left and right

translation maps
`g(h) = gh, rg(h) = hg.

A differential form ω ∈ Ω1
G(G) is called left translation invariant if `∗g(ω) = ω for all g ∈ G.

It is called right translation invariant if r∗g(ω) = ω for all g ∈ G.

For every point g ∈ G, we denote by Ω1
G(g) = R ⊗g,OG Ω1

G the fiber of Ω1
G in g. For a

smooth function f ∈ OG(U) defined on an open neighborhood U of g we denote by df(g)
the image of the differential df in Ω1

G(g). (This notation should not lead to confusion
because it would not make sense to first evaluate f in g and then take differential.) If

x1, . . . , xn : U
∼−→ U ′ ⊂ Rn

are coordinate functions on U , then Ω1
U = OUdx1 ⊕ . . . ⊕ OUdxn. In particular, dx1(g),

. . ., dxn(g) provide a basis of Ω1
G(g).
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Example 5.2. (1) Let G = (R,+) with coordinate function x. The invariant differential
forms on G are precisely those of the form λdx, λ ∈ R. Namely, a differential form
f(x)dx ∈ Ω1

G(G) is translation invariant if and only if for all t ∈ R,

(`∗t )(f(x)dx) = f(x+ t)d(x+ t) = f(x+ t)dx
!

= f(x)dx.

That is, we need f(x+ t) = f(x) for all x, t ∈ R, meaning f is constant.
(2) Let G = (R×, ∗) with coordinate x. The invariant differential forms on G are

precisely those of the form λdxx , λ ∈ R. Namely, f(x)dx satisfies

f(xt)d(tx) = tf(xt)dx
!

= f(x)dx

for all t 6= 0 if and only if f is a scalar multiple of the function 1/x.

Proposition 5.3. For every ωe ∈ Ω1
G(e), there exists a unique left translation invariant

differential form ω ∈ Ω1
G(G) such that ω(e) = ωe.

Proof. (1) Uniqueness. In the current manifold context, taking all the fibers ω(g) of a
differential form ω defines an injection

Ω1
G(G) ↪−→

∏
g∈G

Ω1
G(g). (5.1)

Moreover, `∗g : Ω1
G(g)

∼−→ Ω1
G(e). So there is at most one left translation invariant form

with ω(e) = ωe and this form has to be pointwise given by ω(g) = (`∗g)
−1(ωe). We need

to see that the datum
(
(`∗g)

−1(ωe)
)
comes from a smooth form on G under (5.1).

(2) Preparations. Denote by p1, p2 : G×G→ G the two projection maps. Observe that

Ω1
G×G = p∗1Ω1

G ⊕ p∗2Ω1
G. (5.2)

Namely, if x1, . . . , xn : U
∼→ U ′ ⊂ Rn and y1, . . . , yn : V

∼→ V ′ ⊂ Rn are charts, then
x1, . . . , xn, y1, . . . , yn are coordinate functions for U × V and

Ω1
U×V = OG×Gdx1 ⊕ . . .⊕OG×Gdxn︸ ︷︷ ︸

p∗1Ω1
G

⊕OG×Gdy1 ⊕ . . .⊕OG×Gdyn︸ ︷︷ ︸
p∗2Ω1

G

.

Next, for every g ∈ G, there is a diagonal action

δg : G×G ∼−→ G×G
(h1, h2) 7−→ (h1g

−1, gh2).

This is really just the map r−1
g × `g = (r−1

g × id) ◦ (id× `g). The pullback map

(id× `g)∗(Ω1
G×G)

∼−→ Ω1
G×G

preserves the decomposition (5.2) in the sense that it restricts to isomorphisms

(id× `g)∗(p∗iΩ1
G)

∼−→ p∗iΩ
1
G, i = 1, 2.

The same applies to r−1
g × id and hence also to δg. After these preparations, we can prove

the proposition.
(3) Existence. Starting with ωe ∈ Ω1

G(e), choose an open neighborhood U of e and a
differential form η ∈ Ω1

G(U) such that η(e) = ωe.6 The preimage m−1(U) ⊆ G × G is
stable under δg for every g ∈ G because h1h2 = h1g

−1gh2 for all (h1, h2). Let

m∗(η) = η1 + η2

6In fact, since we are dealing with smooth forms on real manifolds, we may directly take U = G.
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be the decomposition into components obtained from (5.2). Sincem◦δg = m for all g ∈ G,
and since δ∗g preserves (5.2), both η1 and η2 are δg-invariant. Now consider the twisted
diagonal

τ : G −→ G×G, τ(h) = (h−1, h)

and define ω = τ∗(η2). Observe that for all g ∈ G, the following diagram commutes

G
`g //

τ
��

G

τ
��

G×G
δg // G×G.

(5.3)

Hence `∗g(ω) = ω for all g ∈ G, meaning ω is left translation invariant. It is left to show
that ω(e) = ωe.

Consider for this the map ε : {e}×G ↪→ G×G. On the one hand, for every η1 ∈ p∗1Ω1
G,

the pullback differential form ε∗(η1) vanishes. Thus, we obtain on an open neighborhood
of e that

ε∗(η2) = ε∗(η1 + η2) = ε∗(m∗(η)) = η. (5.4)
On the other hand, we can make this pullback very explicit: Let x1, . . . , xn be coordinates
on G near e. Composing with the two projections, we have coordinates xi ◦ pj for G×G
near (e, e). In these, η2 near (e, e) takes the form

η2 =
n∑
i=1

fid(xi ◦ p2) (5.5)

for smooth functions f1, . . . , fn defined near (e, e). Now note that p2 ◦ τ = idG = p2 ◦ ε,
meaning that

τ∗d(xi ◦ p2) = dxi = ε∗d(xi ◦ p2).

Since τ(e) = ε(e) also fi(τ(e)) = fi(ε(e)) for all i = 1, . . . , n. So (5.5) implies that
(τ∗(η2))(e) = (ε∗(η2))(e). Combining with (5.4), this means

ωe = η(e)
(5.4)
= (ε∗(η2))(e) = (τ∗(η2))(e) = ω(e)

and the proof is complete. �

Example 5.4. We explain the previous proof in a non-trivial example. Consider G =
SL2(R) with coordinate functions xij , i, j ∈ {1, 2}. (These are related by x11x22−x12x21 =
1 because we are dealing with the special linear group.) Let us denote by yij = xij ◦ p1

and zij = xij ◦ p2 the coordinate functions on G×G. The multiplication map is described
by (

y11 y12

y21 y22

)
·
(
z11 z12

z21 z22

)
=

(
y11z11 + y12z21 . . .

. . . . . .

)
. (5.6)

The twisted diagonal map is given by

τ

((
x11 x12

x21 x22

))
=

((
x22 −x12

−x21 x11

)
,

(
x11 x12

x21 x22

))
. (5.7)

Now consider the form ωe = dx11(e). An extension to all of G is given by η = dx11. The
formula in (5.6) shows that

m∗(η) = m∗(dx11) = d(y11z11 + y12z21)

= z11dy11 + z21dy12︸ ︷︷ ︸
η1

+ y11dz11 + y12dz21︸ ︷︷ ︸
η2

.

We obtain from (5.7) that the following form is left invariant:

ω = τ∗(η2) = x22dx11 − x12dx21.
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Evaluating the coefficients of ω at the identity element x11 = x22 = 1, x12 = x21 = 0, we
recover ωe = dx11 as expected.

5.2. Invariant differentials of group schemes. Let π : G→ S be a group scheme over
S with unit section e : S → G. We have defined the sheaf of Kähler differentials Ω1

G/S in
the previous section. It is a quasi-coherent OG-module. We first explain what it means a
differential form to be translation invariant.

Definition 5.5. (1) Let T be an S-scheme and let g ∈ G(T ) be a T -valued point of G.
Denote by GT = T ×S G the base change group scheme over T . We call the morphism

`g : GT
∼−→ GT , h 7−→ gh

left translation by g. The notation here is meant in the sense of the Yoneda Lemma. That
is, `g is the unique morphism such that for every T -scheme T ′ → T and every T ′-valued
point h ∈ GT (T ′) = G(T ′), we have `G(h) = gh.

(2) Let ω ∈ Ω1
G/S(G) be a differential form. For every S-scheme T , let ωT denote the

pullback p∗G(ω) ∈ Ω1
GT /T

(GT ), where pG : GT → G is the projection. We call ω left
translation invariant if, for every T → S and every g ∈ G(T ),

`∗g(ωT ) = ωT . (5.8)

Of course, there are also the right translation rg : GT
∼→ GT and the notation of ω being

right translation invariant. These behave in the exact same way, so we will formulate all
our results only for left translation.

Lemma 5.6. A differential form ω ∈ Ω1
G/S(G) is left translation invariant in the sense

of Definition 5.5 if and only if
m∗(ω) = p∗2(ω),

where m, p2 : G×S G −→ G denote the multiplication and second projection, respectively.

Proof. First assume ω is translation invariant. Apply Definition 5.5 to the datum (T, g) :=
(G, id). By definition, `id is the morphism

G×S G
`id = (id,m) //

p1
##

G×S G

p1
{{

G

(5.9)

and (5.8) states that

m∗(ω) = (id,m)∗(p∗2(ω)) = `∗g(ωT )
!

= ωT = p∗2(ω)

which we needed to prove.
We now make a general observation. Consider T → S, ω ∈ Ω1

G/S(G), and g ∈ G(T ). Let
u : T ′ → T be a further morphism and use u to also denote the base change u : GT ′ → GT .
If (5.8) holds for (T, g), then by base change also

`u∗g(ωT ′) = u∗(`∗g(ωT )) = u∗(ωT ) = ωT ′

which means that (5.8) also holds for (T ′, g ◦ u). But this observation applies to every
(T, g)! Namely, any such g can be factored as

T
g−→ G

id−→ G.

Thus if (5.8) holds for (G, id), i.e. if m∗(ω) = p∗2(ω), then (5.8) holds for every (T, g)
which means that ω is translation invariant. The proof is complete. �
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The argument just given is typical in algebraic geometry and called reduction to the
universal case. The morphism `id = (id,m) in (5.9) is called the universal translation. It
is universal in the following sense: Given (T, g), the following diagram is cartesian.

T ×S G
g×id //

`g
��

G×S G

(id,m)
��

T ×S G
g×id // G×S G.

That is, every left translation morphism is a pullback of the universal left translation.

Proposition 5.7. There exists an isomorphism

γ : π∗e∗Ω1
G/S

∼−→ Ω1
G/S (5.10)

which is characterized as follows. Assume that ω ∈ (e∗Ω1
G/S)(U) is a section on an open

U ⊆ X. Then γ(π∗ω) ∈ Ω1
G/S(π−1U) is the unique left translation invariant differential

form with e∗(γ(π∗ω)) = ω.

Proof. This can be proved with exatly the same construction as for Proposition 5.3. We
refer to [1, §4.2] for details. The argument we give here is slightly different and implicitly
takes the perspective of descent theory. Also, we will only explain why there is an isomor-
phism π∗e∗Ω1

G/S
∼→ Ω1

G/S and not give the relation with the characterization in terms of
invariant differential forms.

Consider again the universal translation

G×S G
`=(id,m) //

p1 $$

G×S G

p1zz
G.

(5.11)

It is an automorphism of the G-scheme G ×S G, where the structure morphism is p1. In
particular, pullback defines an isomorphism of sheaves

ϕ = `∗ : `∗Ω1
G×SG/G

∼−→ Ω1
G×SG/G.

By Lemma 4.10 (3), we have Ω1
G×SG/G = p∗2Ω1

G/S . Thus ϕ is an isomorphism of OG×SG-
modules

ϕ : `∗p∗2Ω1
G/S

∼−→ p∗2Ω1
G/S .

Now consider ε = (id, e ◦ π) : G → G ×S G. Then p2 ◦ ε = e ◦ π while p2 ◦ ` ◦ ε = id. It
follows that ε∗(ϕ) is an isomorphism

ε∗(ϕ) : Ω1
G/S

∼−→ π∗e∗Ω1
G/S

of the kind we wanted to construct. �

Remark 5.8. Let k = k̄ be an algebraically closed field and G a reduced k-group scheme
of finite type. Then ω ∈ Ω1

G/k(G) is translation invariant if and only if it is invariant
under translation by all rational points G(k). If G is an algebraic group such as GLn,k,
SO(V )k, Sp2g,k etc., then the same formulas as in the Lie group setting apply.

Remark 5.9. Let k be any field and let G be an arbitrary k-group scheme. Write
Γ(G,Ω1

G/k)
G for the G-invariant forms. Then one can show

Γ(k̄ ⊗k G,Ω1
k̄⊗kG/k̄)

k̄⊗kG = k̄ ⊗k Γ(G,Ω1
G/k)

G

Γ(G,Ω1
G/k)

G = Γ(G,Ω1
G/k) ∩ Γ(k̄ ⊗k G,Ω1

k̄⊗kG/k̄)
k̄⊗kG.

(5.12)
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In many cases, this allows to reduce the computation of invariant differential forms to
algebraically closed fields.

Remark 5.10. Differential forms of degree i are defined by Ωi
G/S :=

∧i
OG Ω1

X/S . Every-
thing we have said and proved above also applies to forms of degree i.

5.3. Applications.

Corollary 5.11. Let A be an abelian variety over k of dimension g. Then Ωi
A/k is free of

rank ( gi ).

Proof. Abelian varieties are smooth schemes by definition. By Theorem 4.18, this implies
(equivalent, in fact) that Ω1

A/k is a vector bundle of degree g = dim(A). Hence Ωi
A/k

is a vector bundle ( gi ). The pullback e∗Ωi
A/k is then a vector bundle of that rank over

Spec k, and in particular free. Thus π∗e∗Ωi
A/k is free of rank ( gi ). By Proposition 5.7, it

is isomorphic to Ωi
A/k and the proof is complete. �

Corollary 5.12. Let A be an abelian variety over k and let ω ∈ H0(A,Ωi
A/k) be a differ-

ential form on A. Then ω is translation invariant.

Proof. Let us first note a lemma which we have essentially already proved in §3.2.

Lemma 5.13. Let X be a proper, smooth, geometrically connected scheme over a field k.
Then k ∼→ OX(X).

Proof. The base change k̄ ⊗k X is proper, smooth, and connected. Thus Ok̄⊗kX(k̄ ⊗k X)

is a 0-dimensional, reduced k̄-algebra with a unique maximal ideal. The only possibility
is k̄ ∼→ Ok̄⊗kX(k̄⊗k X). Since taking global sections commutes with flat base change (see
the argument around (3.5)), also k̄⊗kOX(X)

∼→ Ok̄⊗kX(k̄⊗kX). Thus k ∼→ OX(X). �

By Corollary 5.11, Ωi
A/k is free of rank ( gi ), where g = dim(A). By Lemma 5.13,

this means dimH0(A,Ωi
A/k) = ( gi ). By Proposition 5.7, the subspace of translation

invariant differential forms has dimension dimk(e
∗Ωi

A/k) = ( gi ), and hence has to be equal
to H0(A,Ωi

A/k). �

6. Elliptic curves are cubics

Let k be a field. In this section, by curve over k, we mean a proper, smooth, geometri-
cally connected k-scheme C of dimension 1. Note that any such C is integral. By Lemma
5.13, k ∼→ H0(C,OC). By Theorem 4.18, C is a normal scheme.

6.1. Meromorphic functions and divisors. Let C be a curve over k and let η ∈ C
be the generic point. The local ring OC,η is a field by integrality, and called the field of
meromorphic functions on C. (It is equal to κ(η).) It is of transcendence degree 1 over k.
We denote byMC the constant sheaf

C ⊇ U 7−→ OC,η.

It is a quasi-coherent OC-module. Let U ⊆ C be an open subset and x ∈ U be a closed
point. By normality, the local ring OC,x is a DVR. Let

ordx :MC(U) −→ Z ∪ {∞}

be the corresponding valuation on OC,η. Concretely, if tx ∈ OC,x is a generator of the
maximal ideal, and if f ∈ tnxO×C,x, then ordx(f) = n. We also put ordx(0) =∞.
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Definition 6.1. (1) The group of divisors on U is the free abelian group generated by
the closed points of U , i.e.

Div(U) =
⊕

x∈U closed

Z · [x].

(2) The divisor of a meromorphic function f ∈MC(U) is defined as

div(f) =
∑

x∈U closed

ordx(f) · [x].

A divisor D ∈ Div(U) is called principal if there exists a meromorphic function f with
D = div(f).

It is clear that this defines a group homomorphism

div :MC(U)× −→ Div(U). (6.1)

Note that ordx(f) ≥ 0 for all x ∈ U is equivalent to f ∈ OC(U). Thus the kernel of
(6.1) is precisely OC(U)×, because a function f ∈ OX(U) on an open U of a scheme
X is invertible if and only if all its stalks are invertible. We next consider functoriality
properties of divisors.

Lemma 6.2. Let ϕ : C1 → C2 be a non-constant morphism of curves over k. Then ϕ is
a finite morphism. The pushforward ϕ∗(OC1) is a locally free OC2-module.

Proof. Morphisms between proper schemes are proper, so ϕ is proper. Hence ϕ(C1)
is closed. It is also connected since C1 is connected. Since C2 is irreducible and 1-
dimensional, the only closed connected subsets of C2 are C2 = {η} and individual closed
points. We have excluded the second possibility, so ϕ(C1) = C2.

Next, for every closed point y ∈ C2, the fiber ϕ−1
1 (y) ⊆ C1 is closed. The closed subsets

of C1 are either finite or all of C1. The second case is excluded by the previous argument,
so the fibers of ϕ are finite. In this situation, the following, extremely useful statement
applies and yields that ϕ is finite.

Proposition 6.3 ([8, Tag 02LS]). Let f : X → S be a morphism of schemes. Then f is
finite if and only if it is proper and has finite fibers.

Thus ϕ∗(OC1) is a coherent OC2-module. It is torsion free because both C1 and C2 are
integral and because the map OC2,η2 → OC1,η1 is injective. (This map is the field extension
κ(η2)→ κ(η1) that corresponds to the morphism ϕ : C1 → C2 under the equivalence from
[5, §24].) By the structure theorem for finitely generated modules over DVRs or Dedekind
rings, ϕ∗(OC1) is locally free as OC2-module. �

Since C2 is connected, the rank of ϕ∗(OC1) as vector bundle is constant. It is called
the degree deg(ϕ) of ϕ and equals the degree [κ(η1) : κ(η2)] of the function field extension
corresponding to C1 → C2.

Let x ∈ C1 and consider the map of local rings

ϕ∗ : OC2,ϕ(x) −→ OC1,x.

It is a finite extension of DVRs. As such, there are a residue field extension degree
fx := [κ(x) : κ(ϕ(x))] and a ramification index ex defined by

mϕ(x)OC1,x = (mx)ex .

Corollary 6.4 (to Proposition 6.3). Let ϕ : C1 → C2 be a non-constant morphism of
curves over k. Then for every y ∈ C2, the fiber ϕ−1(y) has cardinality deg(ϕ) in the sense
that ∑

x∈ϕ−1(y)

exfx = deg(ϕ).

https://stacks.math.columbia.edu/tag/02LS


30 ANDREAS MIHATSCH

Next, a non-constant morphism ϕ : C1 → C2 provides pushforward and pullback maps
for divisors,

ϕ∗ : Div(C1) −→ Div(C2), ϕ∗ : Div(C2) −→ Div(C1). (6.2)
Pushforward is defined by ϕ∗([x]) = fx · [ϕ(x)]. Pullback is given by

ϕ∗([y]) =
∑

x∈f−1(y)

ex · [x].

Definition 6.5. The degree of a divisor D =
∑
nx[x] ∈ Div(C) is the integer

deg(D) =
∑

x∈C closed

nx · [κ(x) : k].

Proposition 6.6 (Properties of the divisors). (1) Let ϕ : C1 → C2 be a non-constant
morphism of curves over k and let Di ∈ Div(Ci). Then

deg(ϕ∗(D1)) = deg(D1), deg(ϕ∗(D2)) = deg(ϕ) · deg(D2), ϕ∗(ϕ
∗(D2)) = deg(ϕ) ·D2.

(2) Let f ∈MC(C) be a meromorphic function on C. Then deg(div(f)) = 0.

We leave the proof as an exercise but give the following hints: Part (1) can be proved
from definitions and Corollarly 6.4. Part (2) can be deduced from part (1) as follows.
Consider P1

k = A1
k ∪ {∞} with variable t. It is clear that div(t) = [0]− [∞] has degree 0.

Now apply the next lemma.

Lemma 6.7. (1) For every non-constant meromorphic function f on C, there exists a
unique non-constant morphism ϕ : C → P1

k such that ϕ∗(t) = f . This defines a bijection

κ(η) \ k ∼−→ Mork(C,P1
k) \ k.

(2) Let ϕ : C1 → C2 be a non-constant morphism of curves over k and let f2 ∈ κ(η2) be a
meromorphic function on C2. Then

div(ϕ∗(f2)) = ϕ∗(div(f2)).

6.2. Divisors and line bundles. The theory of algebraic curves relies on the study
of their meromorphic functions. We already know that the only meromorphic functios
f on C with ordx(f) ≥ 0 for all closed points x ∈ C are the constant functions k =
H0(C,OC). (This also follows from Lemma 6.7; a non-constant meromorphic function
defines a surjective morphism C → P1

k and hence has a pole.) Thus, in order to obtain
non-trivial meromorphic functions, we need to allow some flexibility with poles which is
encapsulated in the next definition.

Definition 6.8. Let D ∈ Div(C) be a divisor, say D =
∑

x∈C nx[x]. Let OC(D) ⊂ MC

be the subsheaf

OC(D)(U) = {f ∈MC(U) | ordx(f) ≥ −nx for all x ∈ U}. (6.3)

Note that OC(D) is a line bundle on C. Concretely, let U = SpecA ⊆ C be an affine
open subset. Then

a =
∏

x∈U closed

m−nxx ⊂ κ(η) = Frac(A) (6.4)

is a fractional ideal of the Dedekind ring A, and OC(D)|U = OU · a. We call a divisor
D =

∑
x∈C nx[x] effective and write D ≥ 0 if nx ≥ 0. By definition,

D effective ⇐⇒ OC(−D) ⊆ OC .
In this case, OC(−D) is an ideal sheaf and defines a closed subscheme V (OC(−D)). It is
the unique finite closed subscheme Z ⊂ C such that for all closed points x ∈ C,

lenOC,x(OZ,x) = nx.
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In this way, there are bijections

{Effective D} ∼←→ {Non-zero ideal sheaves I ⊂ OC}
∼←→ {Finite Z ⊂ C}.

Extending (6.4), we also obtain

Div(C)
∼−→ {OC-line bundles L ⊂MC}

D 7−→ OC(D).
(6.5)

Lemma 6.9. The map D 7→ OC(D) is compatible with multiplication and inversion of
fractional ideals in the sense that

OC(D1 +D2) = OC(D1) · OC(D2), OC(−D) = OC(D)−1. (6.6)

Here, for a line bundle L ⊆MC , we defined

L−1 = {f ∈MC | fL ⊆ OC}.
Moreover, the multiplication map defines an isomorphism

OC(D1)⊗OC OC(D2)
∼−→ OC(D1 +D2). (6.7)

Proof. This follows from (6.4) and the properties of fractional ideals over Dedekind rings.
�

Definition 6.10 (Picard group). Let Pic(C) denote the group of isomorphism classes of
line bundles on C. The group structure is given by the tensor product.

Theorem 6.11. Taking the isomorphism class of OC(D) defines a surjective group ho-
momorphism

OC(−) : Div(C) −→ Pic(C)

D 7−→ [OC(D)].
(6.8)

Its kernel is precisely the subgroup {div(f) | f ∈MC(C)} of principal divisors.

Proof sketch. The group homomorphism property is (6.7). Let L be any line bundle on
C. Let U ⊆ C be an open such that L|U ∼= OU . Then we can define an embedding

L|U
∼→ OU ↪−→MU .

Because of the integrality of C, there exists a unique extension to an embedding L ↪→M.
Thus L ∼= OC(D) for some divisor D, see (6.5). This proves the surjectivity of (6.8).

Assume that OC(D) ∼= OC . This means there exists a meromorphic function f ∈
Γ(C,OC(D)) ⊂ MC(C) that generates OC(D) in the sense OC(D) = OC · f . Then
D = div(f). �

Corollary 6.12. There exists a unique definition of the degree of a line bundle that fits
into the diagram

Div(C)

deg
%%

// // Pic(C)

deg
��
Z.

Proof. Theorem 6.11 states that Div(C) → Pic(C) is surjective and has kernel precisely
the principal divisors. By Proposition 6.6 (2), principal divisors have degree 0. �

Example 6.13. Consider C = P1
k with coordinate function t and let x 6= ∞ be a closed

point. It corresponds to a prime ideal (p) ⊂ k[t]. Observe that
n∑
i=0

ait
i = (t−1)−n

n∑
i=0

ait
n−i
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which implies that deg∞(p) = deg(p). Thus

div(p) = [x]− deg(p) · [∞]

and hence OP1(x) ∼= OP1([κ(x) : k] · [∞]). We hence obtain that L ∼= OP1(deg(L) · [∞])
for every line bundle on P1 which means that

deg : Pic(P1
k)

∼−→ Z.

6.3. Cech Cohomology.

Motivation 6.14. Let L be a line bundle on a curve C. The main problem is to determine
the space of global sections Γ(C,L). If we choose a divisor D with L ∼= OC(D), this
problem is equivalent to finding all meromorphic functions on C whose pole orders are
bounded by D. The main idea now is as follows. Consider the simplest possible case,
namely D = [x] for a rational point x ∈ C(k). There is an exact sequence of sheaves

0 −→ OC −→ OC([x]) −→ ix,∗k −→ 0.

(The first map here is the inclusion OC ⊂ OC([x]) which comes by definition (6.3). For
the second map, we have chosen a basis for the skyscraper sheaf OC([x])/OC concentrated
at x.) Taking global sections is left exact, so we obtain an exact sequence

0 −→ k −→ Γ(C,OC([x]))
α−→ k (6.9)

and in particular find dimk Γ(C,OC([x])) ≤ 2. Equality holds if and only if α is surjective.
So how can we decide whether or not α has this property? The systematic answer is given
by continuing (6.9) to a long exact sequence of cohomology groups. The purpose of this
section is to introduce this concept.

Let X be a quasi-compact and separated scheme. Let X = U1 ∪ . . . ∪ Um be an open
affine covering of X. We set U = (Ui)1≤i≤m. For every subset I ⊆ {1, . . . ,m}, the
intersection UI :=

⋂
i∈I Ui is again affine by the separatedness.

Definition 6.15. Let F be a quasi-coherentOX -module. Set Ci(U ,F) =
∏
|I|=i+1 Γ(UI ,F).

The Cech complex of F (for the given open covering U) is the complex

C•(U ,F) : 0 −→ C0(U ,F)
d0

−→ C1(U ,F)
d1

−→ C1(U ,F) −→ . . . (6.10)

with differential defined as follows. Given (fI)|I|=i+1 ∈ Ci(U ,F), the J = {j0, . . . , ji+1}-
component of di(fI) is given by(

di(fI)
)
J

=
i+1∑
r=0

(−1)rfJ\{jr}|UJ .

The i-th Cech cohomology group of F is defined as the i-th cohomology group of the Cech
complex of F . It can be shown to be independent of U . We denote it by

H i(X,F) = ker(di)/Im(di−1).

Remark 6.16. Cohomology of quasi-coherent sheaves can more generally be defined in
terms of derived functors, see e.g. [6]. The two definitions agree for separated and quasi-
compact schemes, [8, Tag 01XD].

We now give some examples.

Example 6.17. The 0-th cohomology group is

H0(X,F) = ker

 ∏
1≤i≤m

F(Ui) −→
∏

1≤i<j≤m
F(Ui ∩ Uj)


which equals F(X) by the sheaf axiom.

https://stacks.math.columbia.edu/tag/01XD
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Example 6.18. Consider the open covering P1
k = Spec k[t] ∪ Spec k[t−1]. The Cech

complex for OP1(n · [∞]) becomes

0 −→ k[t]⊕ tnk[t−1] −→ k[t, t−1] −→ 0

(f, g) 7−→ g − f.
(6.11)

The global sections of OP1(n · [∞]) are given by the kernel and equal

H0(P1,OP1(n · [∞])) =

{⊕n
i=0 k · ti if n ≥ 0

0 otherwise.

The first cohmology group of OP1(n · [∞]) is given by the cokernel

H1(P1,OP1(n · [∞])) =

{
0 if n ≥ −1⊕−1

i=n+1 k · ti otherwise.

Lemma 6.19. Assume that X has a covering by n affines. Then, for every quasi-coherent
OX-module F ,

H i(X,F) = 0, i ≥ n.

Proof. Clear because if U = {U1, . . . , Un} is an affine open covering of X, then Ci(U ,F) =
0 for all i ≥ n. �

Example 6.20. Assume that X is affine and F any. Then H i(X,F) = 0 for i ≥ 1.

Example 6.21. Assume that X is a closed subscheme of the n-dimensional projective
space PnR over an affine scheme SpecR. Then X is covered by the affines D+(Ti) ∩ X,
where T0, . . . , Tn are the coordinates on Pn. Hence H i(X,F) = 0 for i ≥ n+ 1.

The following provides a much stronger statement. Recall that the support of a sheaf
F on X is defined by

Supp(F) = {x ∈ X | F|U 6= 0 for every open neighborhood U of x}.

It is a closed subset of X.

Theorem 6.22 (Grothendieck, [8, Tag 02UZ]). Assume that X is noetherian and that
dim(Supp(F)) ≤ d. Then H i(X,F) = 0 for all i ≥ d+ 1.

For the proof, one first has to compare our definition of cohomology with the derived
functor definition for abelian sheaves. Then one can apply the noetherian induction argu-
ment as in [8, Tag 02UZ]. We will only use this result for the next corollary:

Corollary 6.23. Let C be a curve over some field k. Then, for every quasi-coherent
OC-module F ,

H i(C,F) = 0, i 6= 0, 1.

6.4. The long exact sequence. Given a complex of abelian groups (or in any abelian
category)

K• : . . . −→ Ki−1 di−1

−→ Ki di−→ Ki+1 −→ . . . ,

we denote by H i(K•) := ker(di)/Im(di−1) its i-th cohomology group. Recall the following
important and simple principle from homological algebra. Assume we are given a short
exact sequences of complexes

0 −→ A•
α•−→ B•

β•−→ C• −→ 0.

https://stacks.math.columbia.edu/tag/02UZ
https://stacks.math.columbia.edu/tag/02UZ
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That is, assume we are given homomorphisms αi : Ai → Bi and βi : Bi → Ci such that
the below diagram commutes and has exact columns.

0

��

0

��

0

��
. . . // Ai−1 //

αi−1

��

Ai //

αi
��

Ai+1 //

αi+1

��

. . .

. . . // Bi−1 //

βi−1

��

Bi //

βi

��

Bi+1 //

βi+1

��

. . .

. . . // Ci−1 //

��

Ci //

��

Ci+1 //

��

. . .

0 0 0

(6.12)

Then there is a straightforward diagram chase that defines a connection morphism δi :
H i(C•)→ H i+1(A•). These connect to a long exact sequence

. . .
δi−1

−→ H i(A•)
αi−→ H i(B•)

βi−→ H i(C•)
δi−→ H i+1(A•)

αi+1

−→ H i+1(B•)
βi+1

−→ . . . (6.13)

Exercise 6.24. If you have not done so before, then carry out the construction of δ• and
prove the exactness of (6.13).

Proposition 6.25. Let 0→ A α→ B β→ C → 0 be an exact sequence of quasi-coherent OX-
modules. Then there are natural connection homomorphisms δi : H i(X, C)→ H i+1(X,A)
that define a long exact sequence

. . .
δi−1

−→ H i(X,A)
αi−→ H i(X,B)

βi−→ H i(X, C)
δi−→ H i+1(X,A)

αi+1

−→ H i+1(X,B)
βi+1

−→ . . . . (6.14)

Proof. Let U be an open affine covering of X as in Definition 6.15. Recall that for an
affine scheme Y , the global sections functor F 7→ Γ(Y,F) is exact. Applying this to each
of the affine schemes UI in Definition 6.15 and taking products, we obtain exact sequences

0 −→ Ci(U ,A)
α−→ Ci(U ,B)

β−→ Ci(U , C) −→ 0.

(The indicated morphisms could more precisely be written as Ci(U , α) and Ci(U , β),
viewing Ci(U ,−) as a functor from sheaves to abelian groups.) These define an exact
sequence of complexes

0 −→ C•(U ,A)
α−→ C•(U ,B)

β−→ C•(U , C) −→ 0.

Now we apply the construction from (6.12) and (6.13). �

Let X, U and F be as in Definition 6.15. If X is a scheme over SpecR for some ring
R, then C•(U ,F) is a complex of R-modules. Hence H i(X,F) is an R-module for every
i ≥ 0.

Theorem 6.26. Let X → SpecR be a proper scheme over a noetherian ring R. Let F be
a coherent7 OX-module. Then H i(X,F) is a finitely generated R-module for every i ≥ 0.

7Since R is noetherian and X finite type over R, also X is noetherian. Then coherent OX -modules are
the same as locally finitely generated quasi-coherent OX -modules.
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Proof for curves C → Spec k. We leave the general case to the AG 2 lecture, see [6, The-
orem 14.2]. Here, we give an argument for curves over fields. It is not completely self-
contained but illustrates some properties of coherent sheaves on curves.

Let F be a coherent OC-module. We need to show that H1(C,F) is a finite-dimensional
k-vector space.8 There is a coherent subsheaf Ftor ⊆ F whose sections Ftors(U) on an
open U are the torsion elements of F(U). Since Supp(Ftors) is finite, we know by direct
computation or from Theorem 6.26 that H1(C,Ftors) = 0. Passing to the cohomology
exact sequence for

0 −→ Ftors −→ F −→ F/Ftors −→ 0,

we have reduced to showing that H1(C,F/Ftors) = 0. Note that E = F/Ftors is torsion-
free. Let ϕ : C → P1

k be any non-constant morphism. We have seen (Lemma 6.2) that ϕ
is necessarily finite. Thus ϕ∗(E) is a torsion-free coherent OP1

k
-module. By normality of

P1
k, it is locally free. By the classification of vector bundles on P1

k (this is where the proof
is not self-contained), there exist integers a1, . . . , ar ∈ Z, unique up to ordering, such that

ϕ∗(E)
∼−→

r⊕
i=1

OP1
k
(ai).

By Example 6.18, we obtain that

H1(P1, ϕ∗(E)) =
r⊕
i=1

H1(P1,OP1
k
(ai))

is a finite-dimensional k-vector space. It is only left to apply the next lemma. �

Lemma 6.27. Let ϕ : X → Y be an affine morphism of quasi-compact, separated schemes.
Let F be a quasi-coherent OX-module. Then H i(X,F) = H i(Y, ϕ∗(F)) for every i ≥ 0.

Proof. Let V = {V1, . . . , Vm} be an open affine covering of Y . Since ϕ is affine by assump-
tion, ϕ−1(V) = {ϕ−1(V1), . . . , ϕ−1(Vm)} is an open affine covering of X. By definition
of pushforward and since ϕ−1(

⋂
i∈I VI) =

⋂
i∈I ϕ

−1(Vi) for all sets of indices I, we have
Ci(V, ϕ∗(F)) = Ci(ϕ−1(V),F). The lemma now follows from Definition 6.15. �

So far, our discussion has been mostly formal. Using the vanishing result Theorem 6.22,
we have learnt that we can extend (6.9) into an exact sequcen

0 −→ k −→ Γ(C,OC([x]))
α−→ k −→ H1(C,OC) −→ H1(C,OC([x])) −→ 0.

We next have to understand how to control the occurring H1-terms. This will be the topic
of the next section.

6.5. Riemann–Roch and Serre duality.

Definition 6.28. Let X be a proper k-scheme and let F be a coherent OX -module. The
Euler–Poincaré characteristic of F is the integer

χ(F) :=

dimX∑
i=0

(−1)i hi(F), hi(F) = dimkH
i(X,F).

Lemma 6.29. Let 0 → E → F → G → 0 be a short exact sequence of coherent OX-
modules. Then

χ(F) = χ(E) + χ(G).

8Theorem 6.26 also makes the non-trivial statement thatH0(X,F) is a finitely generatedR-module. We
have already used this statement for R = k when looking at the global section OA(A) of abelian varieties
during the proof of Lemma 3.3. The argument we give for H1(C,F) here also applies to H0(C,F).
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Proof. By Proposition 6.25, there is a long exact cohomology sequence

0 −→ H0(X, E) −→ H0(X,F) −→ H0(X,G) −→ . . .

. . . −→ HdimX(X, E) −→ HdimX(X,F) −→ HdimX(X,G) −→ 0. (6.15)

Now apply the next lemma. �

Lemma 6.30. Let . . . → V i di→ V i+1 → . . . be an exact sequence of finite-dimensional
k-vector spaces with only finitely many non-zero terms. Then∑

i∈Z
(−1)i dim(V i) = 0.

Proof. For every i ∈ Z, we have dim(V i) = dim(Im(di)) + dim(ker(di)). By exactness of
the sequence, we also have dim(Im(di)) = dim(ker(di+1)). Taking the alternating sum,
we obtain a term-by-term cancellation. �

Theorem 6.31 (Riemann–Roch). Let C be a curve over k and let L be a line bundle on
C. Then

χ(L) = χ(OC) + deg(L).

Proof. Assume thatD is an effective divisor and let Z = V (OC(−D)) be the corresponding
finite closed subscheme of C. In particular, there is an exact sequence of coherent OX -
modules

0 −→ OC(−D) −→ OC −→ OZ −→ 0

and thus χ(OC(−D)) = χ(OC)− χ(OZ). Since Z is finite, H1(X,OZ) = 0 and then

χ(OZ) = h0(OZ) = deg(D).

We find χ(OC(−D)) = χ(OC)−deg(D) as claimed. For a general divisor D, we can write
D = D+−D− with effective divisors D+ and D−. We have already seen χ(OC(−D−)) =
χ(OC)− deg(D−). Set Z+ = V (OC(−D+)). Tensoring the exact sequence

0 −→ OC(−D+) −→ OC −→ OZ+ −→ 0

with OC(D), we obtain an exact sequence

0 −→ OC(−D−) −→ OC(D) −→ OC(D)⊗OX OZ+ −→ 0.

The rightmost term is a locally free OZ+-module of rank 1. Since Z+ is finite, it is free
(i.e. isomorphic to OZ+). We get

χ(OC(D)) = χ(OC(−D−)) + deg(D+) = χ(OC) + deg(D).

�

The significance of the Riemann–Roch theorem is that it ensures the existence of global
sections of line bundles of sufficiently high degree (depending on the curve). Namely,

h0(L) ≥ h0(L)− h1(L)
Thm. 6.31

= 1− h1(OC) + deg(L)

where the right hand side is positive as soon as deg(L) ≥ h1(OC). This reasoning gets
extra powerful once we also take control of h1(OC) and h1(L) with Serre duality:

Theorem 6.32 (Serre duality, [6, Theorem 17.11]). Let X be a proper smooth d-dimensional
scheme over a field k. Let ωX/k := Ωd

X/k denote its line bundle of degree d forms. Then
for every vector bundle E on X and every i ≥ 0, there is a perfect pairing

H i(X, E)×Hd−i(X, E∨ ⊗ ωX/k) −→ k.
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Definition 6.33. Let C be a curve. By Serre duality, H1(C,OC)
∼→ H0(C,Ω1

C/K)∨. The
integer

g(C) := h1(OC) = h0(Ω1
C/k)

is called the genus of C. Observe that χ(OC) = 1 − g(C), so Riemann–Roch can be
rewritten as

χ(L) = 1− g(C) + deg(L). (6.16)

Corollary 6.34. Let C be a curve of genus g. Then deg(Ω1
C/k) = 2g − 2.

Proof. By Serre duality, h1(Ω1
C/K) = h0(OC) = 1. Then by the weak Riemann–Roch

Theorem, we find
deg(Ω1

C/k) = h0(Ω1
C/k)− h

1(Ω1
C/k)− χ(OC)

= g − 1− (1− g)

= 2g − 2.

�

Example 6.35. (1) The genus of P1
k is 0. This follows from Example 6.18 where we

have computed g(P1
k) = h1(OP1) = 0. One may also compute directly (exercise) that

Ω1
P1
∼= OP1(−2). Then the degree formula from Corollary 6.34 also implies g(P1

k) = 0.
(2) Let E/k be an elliptic curve. We have shown in §5.3 that Ω1

E/k
∼= OE . Hence

g(E) = h0(Ω1
E/k) = h0(OE) = 1.

Proposition 6.36. Let F ∈ k[X,Y, Z] be a homogeneous polynomial of degree d and let
X = V+(F ) ⊆ P2

k be the closed subscheme defined by F . Then χ(OX) = 1−(d−1)(d−2)/2.
In particular, if X is a smooth curve, then g(X) = (d− 1)(d− 2)/2.

Proof. The ideal sheaf defining X is a line bundle on P2 isomorphic to OP2(−d). (Recall
that, in general, Z ∼→ Pnk via r 7→ OPn(r).) So there is an exact sequence

0 −→ OP2(−d) −→ OP2 −→ OX −→ 0

and hence χ(OX) = χ(OP2) − χ(OP2(−d)). Now we may simply substitute the general
result for the cohomology of the line bundles OPnk (d) to finish the proof, see e.g. [6,
Propositions 13.3 and 13.4]. Another argument would be as follows. Consider the exact
sequence

0 −→ OP2(−1) −→ OP2 −→ OP1 −→ 0.

For every d ∈ Z, we may tensor it by OP2(d) while also using that OP2(d)|P1
∼= OP1(d) to

obtain an exact sequence

0 −→ OP2(d− 1) −→ OP2(d) −→ OP1(d) −→ 0.

It follows that
χ(OP2(d))− χ(OP2(d− 1)) = χ(OP1(d))

= 1 + d.

The second equality is from Riemann–Roch for P1
k or from Example 6.18. Now assume that

we know by a small computation that h1(OP2) = h2(OP2) = 0 and hence that χ(OP2) = 1.
Then we get by induction that

χ(OP2(d)) =
(d+ 1)(d+ 2)

2
.

Setting d = −deg(F ) proves the proposition. �

Proposition 6.36 also gives an obstruction for embedding curves into P2
k. For example

no smooth curve of genus 2 can be embedded into P2
k.
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6.6. Projective embeddings of curves. Recall from [5, Theorem 10.7] that the functor
of points description of Pn is

Pn(S) =

{
(L, α)

∣∣∣∣ L a line bundle on S
α : On+1

S � L a surjection

}
/ ∼= .

Here, (L, α) and (L′, α′) are isomorphic if there exists an isomorphism γ : L ∼→ L′ with
α′ = γ ◦ α.

Theorem 6.37. Let C be a curve of genus g, and let L be a line bundle on C.
(1) If deg(L) ≥ 2g − 1, then h1(L) = 0 and, in particular,

h0(L) = 1− g + deg(L).

(2) If deg(L) ≥ 2g, then L is globally generated. Any choice of k-basis s0, . . . , sn ∈
H0(C,L) hence defines a morphism

[s0 : . . . : sn] : C −→ Pnk . (6.17)

(3) If deg(L) ≥ 2g + 1, then the map (6.17) is a closed immersion.

Proof. (1) A general statement is that if M is a line bundle on C with deg(M) < 0,
then h0(M) = 0. Namely, if f ∈ Γ(C,OC(D)) is a non-zero meromorphic function, then
div(f) ≥ −D which implies that 0 ≤ deg(D). Another argument is as follows: A non-zero
global section s ∈ Γ(C,L) defines an injective map s : OC → L. We obtain an exact
sequence

0 −→ OC
s−→ L −→ L/OC −→ 0

where the rightmost term is finite. Then

deg(L) = χ(L)− χ(OC) = h0(L/OC) ≥ 0.

After these generalities, let us consider a line bundle L with deg(L) ≥ 2g − 1. By Serre
duality, h1(L) = h0(Ω1

C/k ⊗ L
−1). By assumption,

deg(Ω1
C/k ⊗ L

−1) = 2g − 2− deg(L) < 0

and hence h1(L) = h0(Ω1
C/k ⊗ L

−1) = 0 as was to be shown.
(2) Being globally generated means that the natural map

OC ⊗k Γ(C,L) −→ L (6.18)

is surjective. Equivalently, for every closed point x ∈ C, there exists a global section
s ∈ Γ(C,L) whose image s(x) ∈ L(x) is non-zero. This may be rephrased in terms of
exact sequences. Given x ∈ C, consider the natural sequence

0 −→ OC(−[x]) −→ OC −→ ix,∗κ(x) −→ 0.

Tensoring with L, we obtain an exact sequence

0 −→ L(−[x]) −→ L −→ ix,∗L(x) −→ 0.

Here, by definition, L(D) := OC(D) ⊗OC L. From the long exact cohomology sequence,
we obtain that Γ(C,L)→ L(x) is surjective if and only if

H1(C,L(−[x])) −→ H1(C,L) (6.19)

is injective. After these generalities, we give the proof of (2). First observe that (6.18)
can be checked after the faithfully flat extension k̄ ⊗k −. That is, we may assume k
algebraically closed. Then, using the assumption deg(L) ≥ 2g, for every closed point
x ∈ C,

deg(L(−[x])) = deg(L)− 1 ≥ 2g − 1.

It follows from (1) that h1(L(−[x])) = 0, so (6.19) is injective, which is what we needed
to show.
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(3) Let L be a globally generated line bundle on C, let s0, . . . , sn ∈ Γ(C,L) be a basis,
and let ϕ = [s0 : . . . : sn] : C → Pnk be the so-defined morphism. Being a closed immersion
can be checked after faithfully flat base change, so we may assume k = k̄. Also observe
that if ϕ is an injective map of sets, then it is a closed immersion of topological spaces by
properness. Our first aim is to show prove this injectivity.

The points of Pn(k) are in bijection with the n-dimensional subspaces of Γ(C,L).
Namely, to [x0 : . . . : xn] associate all those

∑n
i=0 aisi such that

∑n
i=0 xiai = 0. In

this description, a closed point x ∈ C (recall κ(x) = k since we assumed k = k̄) gets
mapped to the subspace

ϕ(x) = {s ∈ Γ(C,L) | L(x) 3 s(x) = 0}.
Let x 6= y be two closed points on C. We see that ϕ(x) 6= ϕ(y) if and only if there exists
a section s ∈ Γ(C,L) such that s(x) = 0 but s(y) 6= 0.

Now we use the assumption deg(L) ≥ 2g + 1. By (1) applied to L, L(−[x]) and
L(−[x]− [y]), we see that

h0(L(−[x])) = h0(L)− 1, h0(L(−[x]− [y])) = h0(L)− 2.

In other words, there exists a section s ∈ Γ(C,L) with s(x) = 0 but s(y) 6= 0, which is
what we wanted to show.

In order to see that ϕ is a closed immersion of schemes, we additionally need to show
that for every closed point x ∈ C, the map of local rings OPnk ,ϕ(x) → OC,x is surjective.
Since the residue fields of x and ϕ(x) are both k by our assumption k = k̄, this is equivalent
to mϕ(x) → mx being surjective. Since ϕ is finite (Proposition 6.3) and the involved rings
noetherian, mx is a finite OPnk ,ϕ(x)-module. By Nakayama’s Lemma, surjectivity follows
once we prove that mϕ(x) → mx/mϕ(x)mx is surjective. The target is a cyclic module
because OC,x is a DVR, so it suffices to prove that mϕ(x) → mx/m

2
x is surjective.

After a change of basis, we may assume that s0(x) 6= 0 while s1(x) = . . . = sn(x) = 0.
Then locally near x, the morphism ϕ is described as Spec of the k-algebra map

ϕ∗ : k[σ1, . . . , σn] −→ OC,x, σi 7−→ si/s0 ∈ mx.

Thus mϕ(x) → mx/m
2
x is surjective if and only if there exists i ∈ {1, . . . , n} with ϕ∗(σi) /∈

m2
x, which means that si /∈ Γ(C,L(−2[x]).
Now we use again that deg(L) ≥ 2g + 1. Just as before, we obtain from (1) that

h0(L(−2[x])) = h0(L(−[x]))− 1,

meaning there exists i ∈ {1, . . . , n} with si /∈ Γ(C,L(−2[x])) as was to be shown. �

Corollary 6.38. Let E be an elliptic curve. Then there exists a cubic homogeneous
polynomial F ∈ k[X,Y, Z] and an isomorphism

E
∼−→ V+(F ) ⊆ P2

k.

Proof. Let e ∈ E(k) denote the neutral element. Recall from Example 6.35 that g(E) = 1.
Apply Theorem 6.37 to the line bundle L = OE(3[e]), which has degree 3 = 2g(E) + 1.
Part (1) states that h0(L) = 3. Part (3) states that any choice of basis s0, s1, s2 ∈ Γ(E,L)
provides a closed immersion

ϕ = [s0 : s1 : s2] : E ↪−→ P2
k.

By Proposition 6.36, the homogeneous polynomial F such that ϕ(E) = V+(F ) has degree
3. �

Here is a more constructive variant: Let L = OE([e]) which has degree 1. Theorem 6.37
(1) states that h0(L) = 1, meaning Γ(C,L) = k. The theorem furthermore states that
h0(L⊗2) = 2. Hence there exists a non-constant meromorphic function x ∈ Γ(E,L⊗2) \ k.



40 ANDREAS MIHATSCH

We have orde(x) = 2 since x /∈ Γ(C,L). By the same reasoning, there exists a meromorphic
function y ∈ Γ(E,L⊗3)\Γ(E,L⊗2). In particular, orde(y) = 3. In this way, we have chosen
a basis

1, x, y ∈ Γ(E,L⊗3). (6.20)

Now consider the products

1, x, y, x2, xy, x3, y2 ∈ Γ(E,L⊗6).

These define 7 elements of a 6-dimensional vector space. Hence there exists a non-trivial
linear combination

u0y
2 + a1xy + a3y = a0x

3 + a2x
2 + a4x+ a6. (6.21)

The monomials y2 and x3 are the only ones with pole order 6 at e, the others all have
smaller pole order at e. So necessarily u0, a0 ∈ k×. Scaling x and y by u0/a0, we obtain
choices for x, y for which u0 = a0 = 1. We obtain that E is isomorphic to the projective
curve defined by an equation of the form9

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (6.22)

If char(k) 6= 2, then we may replace y by y − (a1x + a3)/2 to arrange a1 = a3 = 0. If
char(k) 6= 3, then we may also replace x by x − a2/3 to assume a2 = 2. In this way, we
may bring (6.22) into the simplified form

y2 = x3 + ax+ b. (6.23)

We have now proved that every elliptic curve can be described as the (closure in P2
k of the)

vanishing locus of a general Weierstrass equation (6.22). If char(k) 6= 2, 3, then it suffices
to consider simplified Weierstrass equations (6.23). Note that for the chosen coordinates
1, x, y in (6.20), e = [0 : 1 : 0] because orde(y) > orde(x), orde(1).

7. Marked cubics are elliptic curves

We have now shown that any elliptic curve is a curve of genus 1 (Proposition 4.2),
and that any curve of genus 1 that has a rational point is a cubic plane curve (Corollary
6.38). We also know that every smooth plane cubic is of genus 1 (Proposition 6.36). The
following result will complete the cycle.

Theorem 7.1. Let E/k be a curve of genus 1 and let e ∈ E(k) be a rational point. Then
there is a unique way to make E into a group scheme with identity element e.

We already proved uniqueness in §3.2. Namely, let (A,m1) be an abelian variety over
k with identity e ∈ A(k), and let m2 : A ×k A → A be another group scheme structure
that also has identity e. The identity map idA : A → A preserves e. By Corollary 3.8, it
is a group scheme homomorphism (A,m1)→ (A,m2). This means m1 = m2.

7.1. The group structure on E(k). Let (E, e) be as in Theorem 7.1. We first explain
how to define a group structure on E(k). The construction of the group structure on E(S)
will use the exact same ideas, but requires the setup of additional machinery.

Corollary 7.2. (1) Let E/k be a curve of genus 1 and let L be a line bundle on E with
deg(L) ≥ 1. Then h1(L) = 0 and h0(L) = deg(L).
(2) Let E/k be a curve of genus 1 and let e ∈ E(k) be a rational point. Given a line
bundle L of degree d on E, there exists a unique rational point z ∈ E(k) such that L ∼=
OE([z] + (d− 1)[e]).

9The ai in (6.21) and (6.22) are not the same.
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Proof. Part (1) is a special case of Theorem 6.37 (1). For part (2), consider a line bundle
L of degree 1. By (1), there exists a non-zero global section s ∈ Γ(E,L), unique up to
scaling by k×. Since deg(L) = 1 and since the Euler characteristic is additive in exact
sequences (Lemma 6.29), the cokernel

coker[s : OE −→ L]

is a skyscraper sheaf of length 1. This means it is of the form iz,∗k for a (unique) rational
point z ∈ E(k). Twisting the exact sequence

0 −→ OE
s−→ L −→ iz,∗k −→ 0

by L−1, we see that L−1 ∼= OE(−[z]). Equivalently, L ∼= OE([z]). Uniqueness of z is the
observation that this procedure recovers z when applied to the line bundle OE([z]). In
this way, we have shown (2) for line bundles of degree 1. For a general line bundle L, we
apply the previous reasoning to L ⊗OE([e])⊗(1−deg(L)). �

Construction 7.3. Let x, y ∈ E(k) be two rational points. The line bundle L = OE([x]+
[y]− [e]) has degree 1. By Corollary 7.2, there exists a point z ∈ E(k) with L ∼= OE([z]).
We define x+ y := z.

Let Pic0(E) ⊆ Pic(E) denote the subgroup of isomorphism classes of line bundles of
degree 0.

Proposition 7.4. The map x 7→ OE([x]− [e]) defines a bijection

E(k)
∼−→ Pic0(E).

By definition, the group structure on E(k) is the one compatible with this bijection.

Proof. As explained in Construction 7.3, every line bundle L of degree 1 is of the form
OE([x]) for a unique rational point x ∈ E(k). Shifting by the fixed point e ∈ E(k), we find
that every line bundle of degree 0 is of the form OE([x]− [e]) for a unique x ∈ E(k). This
proves the claimed bijection. Tensoring OE([x] + [y] − [e]) ∼= OE([x + y]) by OE([e])−1,
we find

OE([x]− [e])⊗OE([y]− [e]) ∼= OE([x+ y]− [e]) (7.1)
which shows the compatibility with group structures. �

In other words, the group structure on E(k) is defined by identifying it with Pic0(E).
Our aim in this section is to upgrade the definition of Pic0(E) to a group scheme Pic0

E ,
and to construct an isomorphism E

∼→ Pic0
E . The group structure on E is then defined by

pullback from that of Pic0
E .

7.2. Cohomology and base change. We formulate the general problem. Let X →
SpecA be a separated morphism with X quasi-compact, and let F be a quasi-coherent
OX -module. Let further U be a finite affine covering of X. Recall that we defined the
cohomology groups of F as the cohomology groups of the Cech complex:

H i(X,F) := H i(C•(U ,F)).

Now consider an A-algebra B and the Cartesian square

XB
//

��

X

��
SpecB // SpecA.

The fiber product of affines is affine, so UB = {B⊗AU | U ∈ U} is an affine open covering
of XB. Moreover, denoting by FB = B ⊗A F the pullback of F to XB, we find

C•(UB,FB) = B ⊗A C•(U ,F). (7.2)
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In general, if K• is a complex of A-modules, then there is a natural map of complexes of
A-modules K• → B ⊗A K•. It induces a map in cohomology H i(K•) → H i(B ⊗A K•).
Extending scalars to B, we obtain a natural map

B ⊗A H i(K•) −→ H i(B ⊗A K•).
We are interested in this construction for (7.2) in which case we obtain a natural morphism

B ⊗A H i(X,F) −→ H i(XB,FB). (7.3)

Problem 7.5. The map (7.3) is called the base change morphism of cohomology. The
general task is to understand the properties of this map in dependence on X, F and A→
B. In particular, the problem is to decide under which conditions (7.3) is an isomorphism.

Example 7.6 (Flat base change). Assume that A→ B is flat. It is well-known that then
B ⊗A H i(K•)

∼→ H i(B ⊗A K•) for every complex of A-modules K•. In particular, for all
X and F

B ⊗A H i(X,F)
∼−→ H i(XB,FB).

This argument was already used for H0 around (3.5). In particular, we see that taking
cohomology is local on the base in the sense that for every u ∈ A,

A[u−1]⊗A H i(X,F)
∼−→ H i(A[u−1]⊗A X,A[u−1]⊗A F). (7.4)

Definition 7.7. Identity (7.4) allows to glue cohomology. Let f : X → S be a quasi-
compact separated morphism, and let F be a quasi-coherent OX -module. The i-th higher
direct image (Rif∗)(F) of F is the quasi-coherent OS-module such that for every open
affine SpecA ⊆ S,

Rif∗F|SpecA = H i(X|SpecA,F|SpecA)∼,

and where the gluing maps are given by (7.3).

Example 7.8 (The universal degree 0 line bundle on an elliptic curve). Let E be an
elliptic curve over a field k with identity element e. Set S = E and ES = S ×k E. Let
δ : S → ES be the diagonal, and let

γ : S
(id,e)−→ ES

be the constant map e. Then δ and γ are sections of the separated morphism ES → S, and
hence closed immersions. Let ∆,Γ ⊆ ES denote their image closed subschemes. Both are
of codimension 1 in the smooth k-scheme ES . By Corollary 4.26, they are locally defined
by a single non-zero equation. In other words, the defining ideal sheaves I∆ and IΓ are
line bundles on ES . Set L = I−1

∆ ⊗ IΓ and let π : ES → S denote the projection map.
Our aim is to study the base change properties of the pushforward π∗(L). Concretely, let
s : Specκ→ S be a κ-valued point where κ/k is a field extension. We want to understand
the natural map

(π∗L)(s) −→ H0(Eκ,L(s)) (7.5)
in dependence on the point s.
Analysis of the situation. The fiber L(s) := κ ⊗OS L is a line bundle on the

base change elliptic curve Eκ = κ ⊗k E. How to describe it? First, ⊗-products and
pullbacks always commute, so we have L(s) = I∆(s)−1 ⊗ IΓ(s). Next, it is clear that
IΓ(s) = OEκ(−[e]) because IΓ is by definition the pullback OS ⊗k OE(−[e]). Finally,
consider the exact sequence

0 −→ I∆ −→ OES −→ O∆ −→ 0.

The projection π|∆ : ∆ → S is an isomorphism, in particular flat. A local computation
then shows that the following natural surjection is, in fact, an isomorphism:

I∆(s) = OEκ ⊗q−1OES
q−1I∆

∼−→ I∆(s).
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Here, q : Eκ −→ E denotes the projection. So we obtain that I∆(s) = OEκ(−[s]) and
finally

L(s) ∼= OEκ([s]− [e]).

Note/Recall that a degree 0 line bundle OC(D) on a curve C has a non-zero global section
f (a meromorphic function on C) if and only if D = div(f) is a principal divisor. We have
seen in Proposition 7.4 that OEκ([s]− [e]) ∼= OEκ if and only if s = e. So H0(Eκ,OEκ([s]−
[e])) 6= 0 if and only if s = e.
Conclusion. On the one hand, apply the above to the generic point s = Specκ(η)→ S,

which is unequal e. Using Example 7.6, we see that

(π∗L)η
Ex. 7.6

= π∗(Lη)

= H0(Eκ(η),OEκ(η)
([s]− [e]))

= 0.

(7.6)

Since OES is stalk-by-stalk a torsion-free OS-module, we also know that the pushforward
π∗L is a torsion-free OS-module. We have just seen (π∗L)η = 0, so we conclude π∗L = 0.

On the other hand, consider the point s = e : Spec k → S. Then L(s) = OE([e]− [e]) =
OE . In particular, the natural map

0 = (π∗L)(e) −→ H0(E,L(e)) ∼= k

is not an isomorphism.

We will come back to Example 7.8 repeatedly below. Let us now state the technical
result that is at the heart of most cohomology and base change considerations for proper
morphisms. Recall that a complex K• of A-modules is called perfect

(1) if Ki 6= 0 only for finitely many i ∈ Z and
(2) if each Ki is a finitely generated projective A-module.

Theorem 7.9. Let A be a noetherian ring and let X be a proper A-scheme. Let F be
a coherent OX-module that is flat over A. Then there exists a perfect complex K• that
represents the cohomology of F in the sense that for every A-algebra B,

H i(B ⊗A K•)
∼−→ H i(XB,FB). (7.7)

Moreover, let d = maxs∈SpecA dim(SuppF(s)). Then K• can be chosen such that Ki 6= 0
only for i ∈ [0, d].

The two assumptions X proper and F flat over A are crucial for the statement. Exam-
ple/Exercise: Consider X = SpecFp → SpecZ with F = OX and show that there is no
perfect complex of Z-modules that represents cohomology in the sense of (7.7).

Proof sketch. Choose a finite affine open covering U of X. The Cech complex C•(U ,F) is
a complex of A-modules that represents cohomology in the sense that for all A→ B,

H i(XB,FB) = H i(B ⊗A C•(U ,F)).

This was noted in (7.2). Moreover, C•(U ,F) is concentrated in the finitely many degrees
[0, |U | − 1]. Theorem 6.26 also states that it has finitely generated cohomology groups.
Using only these properties, there is an inductive construction (starting from the highest
degree) of a perfect complex K• together with a quasi-isomorphism

K•
∼−→ C•(U ,F).

(Recall that a map of complexes K• → C• is a quasi-isomorphism if it induces isomor-
phisms of all cohomology groups.) By the flatness of F over A, all terms Ci(U ,F) are flat
A-modules (i.e. acyclic for every B ⊗A −). This implies that for every A-algebra B,

B ⊗A K•
∼−→ B ⊗A C•(U ,F)
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is a quasi-isomorphism as well and in particular that

H i(B ⊗A K•)
∼−→ H i(XB,FB)

as desired. Now one may use Theorem 6.22 to cut down K• to be concentrated in degrees
[0,maxs∈SpecA dim(SuppF(s))]. �

Example 7.10. Consider again Example 7.8. Let e ∈ SpecA ⊆ S be an affine open
neighborhood of e. Theorem 7.9 states that there exists a two term complex K0 → K1 of
finite projective A-modules such that for every point s : Specκ→ SpecA,

H0(Eκ,L(s)) = ker[κ⊗A K0 −→ κ⊗A K1]

H1(Eκ,L(s)) = coker[κ⊗A K0 −→ κ⊗A K1].

We know that h0(L(s)) and h1(L(s)) are non-zero only for s = e in which case both equal
1 by Serre duality. Using that A is a Dedekind domain, this implies that d is injective with
cokernel a cyclic module A/mr

e for some r ≥ 1. With an additional argument, one can
show that r = 1. Gluing this result for H1 over all of S, we find that the first cohomology
of L is a skyscraper sheaf,

(R1π∗)(L)
∼−→ ie,∗(k).

7.3. General applications.

Corollary 7.11 (The Euler characteristic is locally constant). Let X → S be a proper
morphism to a locally noetherian scheme, and let F be an OS-flat coherent OX-module.
Then the fiber-wise Euler characteristic

S −→ Z, s 7−→ χ(F(s))

is locally constant.

Proof. Local constancy can be proven locally. So we may assume S = SpecA for a
noetherian ring A. Let K• be a perfect complex of A-modules that represents cohomology
of F in the sense of Theorem 7.9. Then, for all s ∈ S,

χ(s) =
∑
i∈Z

(−1)i dimκ(s)H
i(X(s),F(s))

=
∑
i∈Z

(−1)i dimκ(s)H
i(κ(s)⊗A K•)

=
∑
i∈Z

(−1)i rkOS,s(K
i
s).

The rank of a finite projective module is locally constant, so the argument is complete. �

Definition 7.12. A morphism π : X → S is said to be smooth if it is flat, locally of finite
presentation and if for every s ∈ S, the fiber π(s) : X(s)→ Specκ(s) is smooth.

If π is smooth, then Ω1
X/S is a locally free OX -module. Its rank in a point x ∈ X equals

the local dimension dimx(X(π(x))) of the fiber of x.

Let P by some type of algebraic variety object. A general philosophy in algebraic
geometry is that a family of objects of type P parametrized by a scheme S is a flat
morphism to S that is fiber-by-fiber of type P. We give some examples.

Definition 7.13. Let S be a scheme.
(1) A curve over S is a proper smooth morphism π : X → S with 1-dimensional geomet-
rically connected fibers.
(2) An elliptic curve over S is a proper smooth S-group scheme (E,m) with 1-dimensional
connected fibers.
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(3) An abelian scheme over S is a proper smooth S-group scheme (A,m) with connected
fibers.

Example 7.14. A typical case is when the base S provides the parameters for a system
of equations. Here is the example of the universal plane curve of degree d. Consider the
polynomial ring R = Z[aijk, i+ j + k = d] and set S = SpecR. Define

X := V+

(∑
i,j,k aijk x

iyjzk
)
⊂ P2

S , π : X −→ S. (7.8)

There exist maximal open subschemes Ssm ⊆ Sflat ⊆ S such that the restrictions

π|Sflat
: X|Sflat

−→ Sflat, π|Xsm : X|Ssm −→ Ssm

are flat resp. smooth. These can be defined as follows. In general, the locus on X where
a morphism π : X → S of locally finite presentation is OS-flat (resp. smooth) is open. If
π is additionally proper, then Sflat and Ssm can be set as

Sflat = S \ π(Xnon−flat), Ssm = S \ π(Xnon−smooth).

In the case of (7.8), Sflat is simply the open subscheme
⋃
i,j,kD(aijk) where at least one of

the parameters is invertible. This follows e.g. from [8, Tag 00MF]. The locus Ssm ⊆ Sflat

is the open subscheme over which the Jacobi criterion holds. In conclusion, we obtain a
family of curves

π|Ssm : X|Ssm −→ Ssm (7.9)
in the sense of Definition 7.13 (1).

By Proposition 6.36, every fiber of (7.9) is a curve of genus (d − 1)(d − 2)/2. This
constancy of the fiber-wise genus is a completely general phenomenon:

Corollary 7.15. Let S be locally noetherian10 and let π : X → S be a family of curves in
the sense of Definition 7.13.
(1) The fiber-wise genus g(X(s)), s ∈ S, is locally constant.
(2) Let L be a line bundle on X. The fiber-wise degree deg(L(s)), s ∈ S, is locally constant.

Proof. By definition, π is proper and flat. So Corollary 7.11 applies with F = OX and
shows that χ(OX(s)), s ∈ S, is locally constant. By Riemann–Roch, g(X(s)) = 1 −
χ(OX(s)) and the proof of (1) is complete. Similary, the fiber-wise Euler characteristic
χ(L(s)) is locally constant and hence deg(L(s)) = χ(L(s))−1+g(X(s)) is locally constant
as well. �

Proposition 7.16 (Extending Theorem 6.37). Let S be locally noetherian and let π : X →
S be a family of curves of fiber-wise genus g. Let L be a line bundle on X of fiber-wise
degree d.
(1) If d ≥ 2g − 1, then R1π∗(L) = 0 and the push forward π∗L is a vector bundle of
rank 1 − g + d. Moreover, its formation commutes with base change in the sense that
(π∗L)T

∼→ π∗(LT ) for all T → S.
(2) If d ≥ 2g, then L is locally on S globally generated in the sense that the adjoint
morphism π∗π∗L → L is surjective. In particular, it defines a morphism11

X −→ P(π∗L).

(3) If d ≥ 2g + 1, then this morphism is a closed immersion.

10Corollary 7.15, Proposition 7.16, Lemma 7.18 and Theorem 7.20 hold true without noetherian
assumption.

11For a scheme S with vector bundle E , the projective bundle P(E) → S is defined to represent the
functor of line bundle quotients of E . That is, P(E)(u : T → S) = {u∗E �M |M line bundle on T}/ ∼=.

https://stacks.math.columbia.edu/tag/00MF
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Proof. All claims are local on S. So assume S = SpecA. Let d : K0 → K1 be a two term
complex of finite projective A-modules that represents cohomology of L in the sense of
Theorem 7.9. Assume d ≥ 2g−1. By Riemann–Roch (see Theorem 6.37 (1)), h1(L(s)) = 0
for all s ∈ S. This means that

κ(s)⊗A K0 −→ κ(s)⊗A K1

is surjective for all s ∈ S. By Nakayama’s Lemma, this is equivalent to K0 → K1 being
surjective which means (R1π∗)(L) = coker(d) = 0. Since K1 is projective, there exists a
splitting K0 ← K1 which means that K• is isomorphic to

ker(d)⊕K1 pr−→ K1.

Hence π∗(L) = ker(d) is projective as claimed. Moreover, for every A-algebra B,

B ⊗A [ker(d)⊕K1 −→ K1] = ker(idB ⊗ d)⊕ (B ⊗A K1)
pr−→ (B ⊗A K1)

which means that push forward of L commutes with base change. This proves (1).
Now assume d ≥ 2g and consider the adjoint morphism π∗π∗L → L. By Nakayama, it

is surjective if for every point s ∈ S, the map

(π∗π∗L)(s) −→ L(s) (7.10)

of vector bundles on the fiber X(s) is surjective. We interchange the order of operations:

(π∗π∗L)(s)
∼−→ π(s)∗

(
(π∗L)(s)

) ∼−→ π(s)∗
(
π(s)∗(L(s))

)
.

The first equality here just rewrote the pullback using the commutativity of the diagram

X(s) //

π(s)

��

X

π

��
Specκ(s) // S.

The second equality used part (1). In this way, (7.10) identifies with the natural map

OX(s) ⊗κ(s) H
0(X(s),L(s)) −→ L(s)

which is surjective by Theorem 6.37 (2). This proves (2).
Part (3) follows from Theorem 6.37 (3). Namely, a morphism of proper S-schemes is a

closed immersion if and only if it is a closed immersion fiber-by-fiber. �

7.4. Application to elliptic curves.

Definition 7.17. Let π : E → S be a family of curves of genus 1 and let e ∈ E(S) be a
section. Define

PicE : (Sch/S)op −→ (Ab)

T 7−→
{

(L, γ)

∣∣∣∣L line bundle on ET
γ : OT

∼−→ e∗L

}
/ ∼= .

Here, ET := T ×S E. An isomorphism of two pairs (L, γ), (L′, γ′) is an isomorphism of
line bundles α : L ∼→ L′ such that α ◦ γ = γ′. The group structure is given by the tensor
product. Denote by

PicdE ⊆ PicE

the subfunctor of line bundles that are fiber-wise of degree d. Note that Pic0
E is again

valued in abelian groups.
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We consider PicE and the PicdE as contravariant functors and currently do not need any
further properties. But we will often use a more convenient description: Let M be any
line bundle on ET . Then one can define the pair

[M] :=
(
L =M⊗ (π∗e∗M)−1, can : OT

∼−→ e∗L
)
∈ PicE(T ).

In this way, there is an isomorphism (check this)

Pic(ET )/π∗(Pic(T ))
∼−→ PicE(T ). (7.11)

We have discussed in §6 how to pass between finite closed subschemes of curves, divisors,
and line bundles. Next, we explain these concepts in more generality. An effective Cartier
divisor on a schemeX is a closed subscheme Z ⊂ X that is locally defined by the vanishing
of a single non-zero divisor equation. Equivalently, Z has the property that its defining
ideal sheaf IZ is a line bundle. In this situation, we define

OX([Z]) = I−1
Z .

If D =
∑r

i=1 ni[Zi] is a finite formal linear combination of effective Cartier divisors, then
we extend this definition by

OX(D) =
r⊗
i=1

OX([Zi])
ni .

We are mainly interested in the effective Cartier divisors that come from sections of families
of curves.

Lemma 7.18. Let S be a locally noetherian scheme, let π : X → S be a family of curves,
and let x ∈ X(S) be a section. Then the graph Γx = x(S) is an effective Cartier divisor.

Proof. Sections of separated morphisms are closed immersions so Γ := Γx ⊆ X is indeed
a closed subscheme. Let I be the defining sheaf of ideals. For every s ∈ S, the fiber
Γ(s) ⊂ X(s) is a finite closed subscheme of a normal curve and hence locally defined by a
single equation that is not a zero-divisor. By Nakayama’s Lemma, I is locally defined by
a single equation. The non-zero divisor property follows from the next lemma. �

Lemma 7.19 ([8, Tag 00MF]). Let A → B be a flat and local ring homomorphism of
noetherian local rings. Denote by m the maximal ideal of A. Suppose that f ∈ B is not a
zero-divisor in B/mB. Then B/fB is flat over A, and f is not a zero-divisor in B.

Coming back to a pair (E, e)/S as in Definition 7.17, Lemma 7.18 in particular defines
the line bundle OE([Γe]) which is fiber-wise of degree 1. For example, we see that for
every d ∈ Z,

Pic0
E
∼−→ PicdE , [M] 7−→ [M⊗OE([Γe])

⊗d].

Theorem 7.20. Let E → S be a family of curves of genus 1 and let e ∈ E(S) be a section.
After restriction to locally noetherian schemes, there is an isomorphism of functors

E
∼−→ Pic0

E

E(T ) 3 x 7−→ [OET ([Γx]− [Γe])].
(7.12)

In particular, if S is locally noetherian, then there exists a unique structure of S-group
scheme on E such that (7.12) becomes an isomorphism of group-valued functors. Its
identity section is e.

Remark 7.21. The group scheme structure on E with identity e is, in fact, unique. This
can be proved with a strengthened version of the rigidity theorem from §3.1.

https://stacks.math.columbia.edu/tag/00MF
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Proof. Let T → S be a locally noetherian scheme. Twisting by OET ([Γe]) like during the
proof of Proposition 7.4, we need to see that for every line bundle L on ET that is fiber-wise
of degree 1, there exists a unique T -valued point x : T → E such that [L] = [OET ([Γx])].
Here, Γx ⊂ ET denotes the graph of x. Working with ET → T instead of E → S, we
may and will assume during the proof that S = T . (In particular, we assume S locally
noetherian.)

By Proposition 7.16 (1), π∗(L) is a line bundle on S. Consider the adjunction map
γ : π∗π∗L → L. It is a map of line bundles on E and we claim that it is injective. (Equiv-
alently, γ is locally after trivialization given by multiplication with a non-zero divisor.)

By Proposition 7.16 (1) again, the formation of γ commutes with base change. So for
every s ∈ S, the fiber (π∗π∗L)(s)→ L(s) can be identified with the map

OE(s) ⊗κ(s) H
0(E(s),L(s)) −→ L(s).

We know this map to be injective. By Lemma 7.19, this implies the claimed properties of
γ.

Let Z = V (γ) ⊂ E be the vanishing locus of γ. The defining ideal sheaf I is isomorphic
to π∗π∗L ⊗ L−1. In particular,

[OE([Z])] = [I]−1 = [L]

and it is left to show that Z = Γx for a (necessarily unique) section x ∈ E(S).
Lemma 7.19 implies that Z is flat over S. Moreover, the map π : Z → S is set-

theoretically a bijection which can be checked fiber-wise and follows from the assumption
that L is of degree 1. In particular, π is both quasi-finite and proper, and hence finite
(Proposition 6.3). By flatness of π, the formation of I commutes with base change (Home-
work sheet 7, Problem 2) in the sense that for every s ∈ s, there is an exact sequence

0 −→ I(s) −→ OE(s) −→ (π∗OZ)(s) −→ 0.

Since I(s) has degree −1, additivity of the Euler characteristic implies that Z(s) ∼=
Specκ(s).

Recall that being flat coherent on a locally noetherian scheme is the same as being
locally free. We have just seen that π∗OZ has these properties and moreover that it
has fibers of dimension 1. Since it is also a coherent OS-algebra (not just a coherent
OS-module), we have OS

∼→ π∗OZ . This means that π : Z
∼→ S is an isomorphism.

The inverse x = π−1 : S → E defines the desired section. This shows that (7.12) is an
isomorphism.

Now assume that S itself is locally noetherian. Then E and E×SE are locally noetherian
as well, and E ×S E is a fiber product in the category of locally noetherian S-schemes.
Applying the Yoneda lemma in the category of noetherian S-schemes constructs a group
scheme structure on E such that (7.12) becomes an isomorphism of group-valued functors.

�

7.5. Complements. In the previous sections, we have changed perspective and started
to consider families of elliptic curves E → S or abelian varieties A → S. In this section,
we extend (without proofs) our main results from the case of fields to general bases.

Theorem 7.22. (Rigidity v2.0) Let f : X → Y be a morphism of S-schemes. Assume
• S is connected and there exists a point s ∈ S such that f(s) factors through a morphism

Specκ(s)→ Y ,
• p : X → S is proper, flat, of finite presentation, and surjective with OS

∼→ p∗OX ,
• q : Y → S is separated and locally of finite presentation.
Then there exists a morphism g : S → Y such that f = g ◦ p.
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The proof follows the same ideas as that of Theorem 3.1. We require the following
technical input for its application.

Lemma 7.23 ([8, Tag 0E0L]). Let f : X → S be a morphism of schemes.
• Assume that f is proper, flat, of finite presentation, and surjective.
• Assume that the fibers of f are geometrically reduced and geometrically connected.
Then OS

∼→ f∗OX , and this also holds after every base change.

This can be deduced from Theorem 7.9; we refer to the reference. Note that Lemma
7.23 in particular applies to families of abelian varieties or products thereof. The following
corollaries can then be obtained with the ideas from §3.2.

Corollary 7.24 (Commutativity). Let A → S be an abelian variety in the sense of
Definition 7.13. Then A is a commutative S-group scheme.

So we will usually write + for the group operation on a family of abelian varieties, and
0 for its neutral element.

Corollary 7.25. Let A1 and A2 be abelian varieties over S and let f : A1 → A2 be a
morphism of S-schemes with f(0) = 0. Then f is a group scheme homomorphism.

In particular, the group structure we defined on a family (E, e) of genus 1 curves with
section (see Theorem 7.20) is uniquely determined.

Corollary 7.26 (Rigidity for homomorphisms). Let A1 and A2 be two abelian varieties
over S. Let f, g : A1 → A2 be two homomorphisms of S-group schemes. Then the set
S0 = {s ∈ S | f(s) = g(s)} is open and closed in S. Moreover, the two maps

f |S0 , g|S0 : S0 ×S A1 −→ S0 ×S A2

agree.

In particular, if S is connected and if there exists a point s ∈ S such that f(s) = g(s),
then already f = g.

https://stacks.math.columbia.edu/tag/0E0L
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Part 2. Arithmetic of elliptic curves

The aim of this part is to prove various fundamental results about elliptic curves, such as:
• We will show that the n-torsion E[n] of an elliptic curve is a finite group scheme of
degree n2.
• We will see that End(E) is an order in a finite-dimensional skew-field of characteristic

0.
• We will classify the possibilities for this skew-field: They are Q, an imaginary-quadratic
extension of Q, or a quaternion division algebra over Q.
Along the way, we will introduce important concepts such as the Tate module and the
Rosati involution.

8. Elliptic curves over C

8.1. Description by lattices. There is an analytification functor

{Smooth C-schemes} −→ {Smooth complex manifolds}
X 7−→ X(C).

(8.1)

Its construction is as follows. If X ⊆ AnC is a smooth affine scheme embedded into affine
space, then X(C) ⊆ Cn has a unique structure as a smooth complex submanifold. (The
Jacobi criterion holds in the algebraic sense for X, so it holds in the analytic sense for
X(C).) This construction is functorial. Namely, if f : X → Y is a morphism of affine
smooth C-schemes and if X ⊆ AnC and Y ⊆ AmC are embeddings, then there exists an
extension of f to a morphism ϕ : AnC → AmC . Passing to C-points, we obtain a diagram

X(C)
f(C) //

� _

��

Y (C)� _

��
Cn

ϕ(C) // Cm

where ϕ(C) is holomorphic because it is given by polynomials. It follows that f(C) is holo-
morphic. In particular, if f is an isomorphism, then f(C) is biholomorphic which shows
that the complex manifold sturcture on X(C) does not depend on the chosen embedding
X ⊆ AnC. Moreover, the functoriality allows to glue the construction from the affine to the
general case. Analytification has various nice properties of which we mention a few:
• If X ⊆ PnC is a projective variety defined by the vanishing of homogeneous polynomials
F1, . . . , Fr ∈ C[T0, . . . , Tn], thenX(C) ⊆ Pn(C) is the submanifold defined by the vanishing
of the same polynomials. For example, the analytification of a complex algebraic curve
(in the sense of this course) is a compact Riemann surface.
• X is connected if and only if X(C) is connected.
• X is proper if and only if X(C) is compact.
• Analytification restricts to an equivalence

{Curves over C} −→ {Compact connected Riemann surfaces} . (8.2)

This is a non-trivial theorem whose proof requires some functional analysis, see [3, §14].
For curves of genus 1, there is a much simpler proof using the Weierstrass ℘-function.
• Analytification is a faithful functor. It is fully faithful when restricted to proper C-
schemes.

In particular, if A/C is an abelian variety, then A(C) is a compact connected complex
Lie group and, for abelian varieties A1, A2 over C,

HomC-group scheme(A1, A2) = Homcomplex Lie group(A1(C), A2(C)).
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Theorem 8.1. Let X be a compact connected complex Lie group of dimension g. Then
there exists a lattice Λ ⊂ Cg such that Cg/Λ ∼→ X.

Proof sketch following [4, p. 1–2]. First, conjugation preserves the identity e ∈ X and
hence defines a holomorphic homomorphism ad : X → GLC(V ) to the general linear group
of the tangent space V = TeX at e. Since GLC(V ) is affine and X compact connected,
this map is constant so X is commutative.

Next, consider the exponential map exp : TeX → X which is defined for every complex
Lie group. Since X is commutative, it is a group homomorphism. Its image contains a
neighborhood of e and any such neighborhood generates X as group, so exp is surjective.
Since exp is even biholomorphic near the identity, we findX = V/Λ for a discrete subgroup
Λ ⊂ V . Any discrete subgroup of a finite-dimensional real vector space with compact
quotient is a lattice, completing the proof. �

Complex Lie groups of the form X = V/Λ are called complex tori. (Here, V is a finite-
dimensional C-vector space and Λ ⊂ V a lattice.) They always satisfy X ∼= (R/Z)2g as
real Lie group, where g = dimC(V ), but the complex structure is an additional piece of
information.

Consider the case g = 1. Any complex torus of the form C/Λ is a compact connected
Riemann surfaces of genus 1, and hence of the form E(C) for an elliptic curve E/C by
(8.2). This is exceptional: In higher dimensions, there exist complex tori that are not the
C-points of an abelian variety. More precisely, a complex torus X is the analytification of
an abelian variety if and only if it is a projective complex manifold.

8.2. Arithmetic of complex tori.

Corollary 8.2. Let X be a complex torus of dimension g. Then X[n] ∼= (Z/nZ)2g.

Proof. Clear, since X ∼= (R/Z)2g as group. �

Consider two complex tori Xi = Vi/Λi, i = 1, 2. The quotient maps Vi � Vi/Λi are
universal coverings in the sense of topology. Taking the neutral elements 0 ∈ Vi as base
point, it follows that for every homomorphism of complex Lie groups f : X1 → X2, there
exists a unique lifting to a C-linear map f̃ : V1 → V2. It satisfies f̃(Λ1) ⊆ Λ2. Conversely,
any C-linear map f̃ such that f̃(Λ1) ⊆ Λ2 descends to a map f : X1 → X2. In this way,

Homcomplex Lie group(X1, X2) = {f ∈ HomC(V1, V2) | f(Λ1) = Λ2}
= {f ∈ HomZ(Λ1,Λ2) | idR ⊗ f is C-linear}
= HomZ(Λ1,Λ2) ∩HomC(V1, V2).

(8.3)

The intersection in the last line is taken in HomR(V1, V2).

Proposition 8.3. (1) Let gi = dimC(Xi). Then Hom(X1, X2) is a torsion-free Z-module
of rank ≤ 2g1g2.
(2) Assume that X = C/Λ is a 1-dimensional complex torus. Then End(X) either equals
Z or is isomorphic to an order in an imaginary quadratic field.

Proof. (1) HomC(V1, V2) is a vector space of real dimension 2g1g2. Thus

Hom(X1, X2) = Hom(Λ1,Λ2) ∩HomC(V1, V2)

is a torsion-free Z-module of rank ≤ 2g1g2.
(2) In the 1-dimensional case, we are looking at

End(X) = EndZ(Λ) ∩ C ⊂ EndR(Λ).
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If this intersection is larger than Z, then it is a subring of C that is of rank 2 as Z-module.
This means it is an order in a quadratic field extension of Q that embeds into C, as
claimed. �

Example 8.4. Theorem 8.1 together with (8.2) allows to describe the isomorphism classes
of complex elliptic curves. Namely, C/Λ1

∼→ C/Λ2 if and only if there exist α ∈ C× with
αΛ1 = Λ2. In other words,

{Ellipt. curves/C}/iso. ∼−→ {Lattices Λ ⊂ C}/C×. (8.4)

How can we describe the right hand side? The idea is to first overparametrize the set of
lattices by considering the set of triples (Λ, τ1, τ2) where (τ1, τ2) is a Z-basis for Λ. The
product C× ×GL2(Z) acts on such triples by

α · (Λ, τ1, τ2) = (αΛ, ατ1, ατ2),
(
a b
c d

)
· (Λ, τ1, τ2) = (Λ, aτ1 + bτ2, cτ1 + dτ2).

The set of possible choices of basis for a fixed lattice form a simply transitive GL2(Z)-
orbit, so taking the quotient for the GL2(Z)-action recovers (8.4). However, we may also
first take the quotient by C×. Let H± = C \ R be the union of upper and lower complex
half-plane. Consider the map

{(Λ, τ1, τ2)} −→ H±, (Λ, τ1, τ2) 7−→ τ1/τ2.

This map is the quotient by C× (check this). In this way, we have constructed a diagram

GL2(Z)\{Triples (Λ, τ1, τ2)}/C×
∼=

(τ1,τ2)7→τ1/τ2
//

∼=
��

GL2(Z)\H±

{Lattices Λ ⊂ C}/C×.

Tracing through the upper arrow, the remaining GL2(Z)-action on H± is by Moebius
transformations, (

a b
c d

)
· τ =

aτ + b

cτ + d
. (8.5)

In conclusion, we have constructed a bijection

{Ellipt. curves/C}/iso. ∼−→ GL2(Z)\H±. (8.6)

In particular, this computation explains in a precise sense how to parametrize all complex

Figure 2. The image shows the upper half plane {Im(τ) > 0}. The
subset F = {−1/2 ≤ Re(τ) ≤ 1/2} ∩ {|τ | ≥ 1} is a fundamental domain
for the GL2(Z)-action on H±. (This is the upper part of the red area.)
The remaining areas show GL2(Z)-translates of F .
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structures on R2/Z2 up to isomorphism. It also allows to get some intuition for the
distribution of the endomorphism rings End(E) when varying E. Namely, let τ ∈ H±, let
Λ = Z + Z · τ be the generated lattice, and let E = C/Λ be the so-defined elliptic curve.
Assume there exists an element α ∈ C \Z such that αΛ ⊆ Λ. Then α = α(1) = aτ + b for
two integers a, b ∈ Z. Since α /∈ Z by assumption, a 6= 0. Since also α(τ) = aτ2 + bτ has
to lie in Λ, the element τ has to satisfy a quadratic polynomial over Q and we find

Q⊗Z End(E) = Q(α) = Q(τ). (8.7)

Conversely, if Q(τ) is a quadratic extension of Q, then E acquires additional endomor-
phisms and (8.7) holds (check this). In this way, we see that there exist only countably
many isomorphism classes of elliptic curves over C that have endomorphism ring larger
than Z. The uncountable complement has End(E) = Z.

9. Torsion of elliptic curves

9.1. Isogenies. Let E,E1 and E2 be elliptic curves over a scheme S. We write End(E)
and Hom(E1, E2) for endomorphisms and homomorphisms as S-group schemes. Note that
these are abelian groups by

(φ+ ψ)(x) = φ(x) + ψ(x), T → S, x ∈ E(T ), resp. x ∈ E1(T ).

Moreover, End(E) becomes a (non-commutative) ring with multiplication

(φψ)(x) = φ(ψ(x)), T → S, x ∈ E(T ).

A homomorphism φ : E1 → E2 is called an isogeny if it is finite and flat.

Lemma 9.1. Assume that φ : E1 → E2 is an isogeny. Then φ is finite locally free in the
sense that φ∗(OE1) is a finite and locally free quasi-coherent OE2-module.

Proof. Both E1, E2 are of finite presentation over S by definition. This implies that φ is of
finite presentation. By assumption, φ is an isogeny, so we obtain that φ∗(OE1) is a locally
finitely generated, flat, quasi-coherent OE2-algebra that is locally of finite presentation as
algebra. As shown in [8, Tag 02K9], this is equivalent to φ∗(OE1) being locally of finite
presentation as OE2-module. �

Lemma 9.2. Let φ : E1 → E2 be any homomorphism. Then φ is an isogeny if and
only if for every s ∈ S, the fiber φ(s) is non-zero. (This is meant in the sense that
φ(s) : E1(s)→ E2(s) is not the 0-map.)

Proof. If φ is an isogeny, then it is finite by definition, so φ(s) is non-constant for every
s ∈ S. Conversely, assume φ(s) = 0 for every s ∈ S. The fibers E1(s) and E2(s) are
proper smooth connected curves, so this implies that φ(s) is finite and flat for every s
(Lemma 6.2). The statement now follows from the so-called fiber criterion for flatness (see
below). �

Proposition 9.3 (Fiber criterion for flatness [8, Tag 039E]). Let f : X → Y be a mor-
phism of S-schemes. Assume
(1) X and Y are locally of finite presentation over S,
(2) X is flat over S,
(3) for every s ∈ S, the morphism f(s) : X(s)→ Y (s) is flat.
Then f is flat.

Remark 9.4. If S is connected, then Lemma 9.2 and Corollary 7.26 together imply that
φ is an isogeny already if there exists a single point s ∈ S such that φ(s) 6= 0.

https://stacks.math.columbia.edu/tag/02K9
https://stacks.math.columbia.edu/tag/039E
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Assume that φ : E1 → E2 is an isogeny. The degree of φ is defined as the rank of
φ∗(OE1) as vector bundle on E2. It is a locally constant function on E2. The fibers of
E2 → S are all connected, so we may (and will) view it as a locally constant function on
S. Note that the degree is multiplicative. That is, if φ : E1 → E2 and ψ : E2 → E3 are
isogenies, then

deg(φψ) = deg(φ) deg(ψ). (9.1)

Recall that the kernel of φ is defined by the Cartesian diagram

ker(φ) //

��

E1

φ

��
S

0 // E2.

Being finite and locally free with degree function deg(φ) is stable under pullback, so
ker(φ)→ S is a finite locally free S-group scheme of degree deg(φ).

Also recall that [n] : E → E denotes the multiplication-by-n endomorphism and that
E[n] = ker([n]). Our next major result is the following theorem.

Theorem 9.5. Let E/S be an elliptic curve. Then [n] : E → E is an isogeny of degree
n2. In particular ker[n] is a finite locally free S-group scheme of degree n2.

By Lemma 9.2, Theorem 9.5 reduces to the case S = Spec k for a field k. There are
then at least two proofs: The first is purely algebraic and relies on the so-called Theorem
of the cube; we refer to [4]. The second, which we present here, uses the analytic results
from §8 when char(k) = 0 and a spreading out argument to extend to char(k) > 0.

9.2. Proof of Theorem 9.5 in characteristic 0. Step 1: Reduction to finitely generated
fields. Let E be an elliptic curve over a field k with char(k) = 0. We have seen (Theorem
6.37 or Corollary 6.38) that elliptic curves are projective. Hence there exists a subfield
k′ ⊆ k that is finitely generated over Q together with a curve E′/k′ of genus 1 such that
there exists an isomorphism γ : k⊗k′E′

∼→ E. After fixing such an identification, E′(k′) ⊆
E′(k) = E(k). Enlarging k′, we may assume that also 0 ∈ E′(k′). (Concretely, fix a cubic
equation F such that E = V+(F ). Also pick x, y, z ∈ k such that 0 = [x : y : z] ∈ P2(k).
Then take k′ ⊆ k as the subfield generated over Q by the coefficients of F and x, y, z.) By
Theorem 7.20, there exists a unique elliptic curve structure with neutral element 0 on E′.
Then γ is an isomorphism of elliptic curves and we have

γ : k′ ⊗k E′[n]
∼−→ E[n].

In this way, we have reduced Theorem 9.5 for E/k to Theorem 9.5 for E′/k′.

Step 2: The finitely generated case. If k is finitely generated over Q, then there exists an
embedding k → C. Since

C⊗k E[n]
∼−→ (C⊗k E)[n],

it suffices to prove the claim for k = C. By Corollary 8.2, we know E[n](C)
∼→ (Z/nZ)⊕2.

We claim that E[n] is an étale group scheme.
End of Step 2 assuming this claim. E[n] being étale means that E[n] = SpecA for a

finite-dimensional k-algebra that is a product of fields. Then

deg(E[n]) = dimk(A)
A étale

= # Homk-alg(A,C) = (E[n])(C) = n2.
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9.3. Proof that E[n] is étale in characteristic 0. We prove a more general statement:

Proposition 9.6. Let G → S be a finite locally free group scheme. Assume that G is
n-torsion in the sense that gn = e for every g ∈ G(T ). Also assume that n ∈ O×S . Then
G is finite étale.

Proof. By assumption, G is flat over S. It is left to see that the fibers of G are étale which
reduces us to the case S = Spec k. By Theorem 4.18, we need to see that Ω1

G/k = 0.
This can be shown after base change to k̄ so we may assume all closed points of G to
be rational. By a translation argument using the group structure, we really only need
to see that the stalk Ω1

G/k,e vanishes (e denotes the neutral element). This follows from
the classical statement (which we will prove in the following) that the pullback map
[n]∗ : Ω1

G/k(e)→ Ω1
G/k(e) is multiplication by n.12

Lemma 9.7. Let X/k be a finite type k-scheme and let x ∈ X(k) be a rational point.
Then there are bijections

Morx(Spec k[ε]/(ε)2, X)
∼−→ (mx/m

2
x)∨

∼−→ Derk(OX,x, k)
∼−→ (Ω1

X/k)(x)∨.

Proof. We have seen this in §4 and only briefly recall how the maps were defined. Given
a k-scheme morphism

φ : Spec k[ε]/(ε)2 −→ X

with image x, we map it to

ϕ := φ∗|mx/m2
x

: mx/m
2
x −→ kε

∼−→
ε7→1

k.

We send ϕ to the derivation

δ : [f 7−→ ϕ(f − f(0))] ∈ Derk(OX,x, k).

A derivation δ gets mapped to

[dh 7−→ δ(h)] ∈ HomOX,x(Ω1
X/k,x, k).

�

Definition 9.8. The tangent space TxX of X in x is defined as the vector space(s) from
Lemma 9.7. If G/k is a finite type group scheme, then we set Lie(G) := TeG. Taking the
tangent space is a covariant functor: If f : X → Y is a morphism of finite type k-schemes
and x ∈ X(k) a rational point, then we denote by

df : TxX −→ Tf(x)Y

the map that is dual to pullback f∗ : Ω1
Y/k(y)→ Ω1

X/k(x).

Lemma 9.9. Let G/k be a finite type group scheme. Let [n] : G→ G denote the morphism
g 7→ gn (in the Yoneda Lemma sense). Then d[n] : Lie(G) → Lie(G) is multiplication by
n.

Proof. Clearly, for any (X,x) and (Y, y) over k,

TxX ⊕ TyY
∼−→ T(x,y)(X ×k Y ).

Consider the diagonal ∆ : G→ G×k · · ·×kG = Gn. On the one hand, for every v ∈ Lie(G),

d∆(v) = (v, . . . , v) ∈ T(e,...,e)(G
n) = Te(G)⊕n.

On the other hand,
dm : T(e,e)(G×k G) −→ Te(G)

(v, w) 7−→ v + w
(9.2)

12Here, [n] : G→ G denotes the n-th power map g 7→ gn, g ∈ G(T ). If G is commutative, then it is a
group scheme homomorphism. In general, it is just a morphism of S-schemes.



56 ANDREAS MIHATSCH

because m|e×kG = m|G×ke = idG. Combining these two statements concludes the proof.
�

We come back to our setting of a finite locally free group scheme G/k of degree n with
char(k) - n. On the one hand, Deligne’s result (if G is commutative) or [7, Corollary 2.2]
(for general G) state that G is n-torsion. So d[n] = 0. On the other hand, Lemma 9.9
states that d[n] = n ∈ k×. The only possibility is Lie(G) = 0, which means that G is étale
as explained before. �

Example 9.10. Let G = GLn,k be the general linear group scheme over k. Then

Lie(G) = More(Spec k[ε]/(ε2), G)

= {1 + εX | X ∈Mn(k)} ⊆ GLn(k[ε]/(ε2)).

Lemma 9.9 generalizes the identity

(1 + εX)n = 1 + nεX.

The example also illustrates another description of the Lie algebra, namely

Lie(G) = ker
(
G(k[ε]/(ε2)) −→ G(k)

)
.

9.4. Proof of Theorem 9.5 in positive characteristic. Assume now that p = char(k) >
0 and that E/k is an elliptic curve.

Lemma 9.11. There exists a local ring (R,m) together with a ring map R/m→ k and an
elliptic curve Ẽ/SpecR with the following two properties.
(1) For the special fiber, we have k ⊗R Ẽ ∼= E.
(2) Q⊗Z R 6= 0, meaning SpecR has a point in characteristic 0.

Proof. Choose a Weierstrass equation (6.22) that defines E/k; let ai ∈ k denote its coef-
ficients. Consider the polynomial ring R0 = Z[t1, t2, t3, t4, t6] and the specialization map

R0 −→ k, ti 7−→ ai.

Let p ⊂ R0 be its kernel (a prime ideal) and set R = R0,p. Then R is a local ring together
with a map R/m→ k as desired. Define the R-scheme

Ẽ = V+(Y 2Z + t1XY + t3Y Z
2 −X3 − t2X2Z − t4XZ2 − t6Z3) ⊂ P2

R.

Then Ẽ → SpecR is flat with 1-dimensional fibers (Lemma 7.19). Moreover, k ⊗R Ẽ is
smooth, meaning the special fiber of Ẽ is smooth. Being smooth is an open condition, so
Ẽ → SpecR is smooth (R is local). Moreover, [0 : 1 : 0] ∈ P2

R(R) lies on Ẽ and extends
0E because this is a property of Weierstrass equations. By Theorem 7.20, Ẽ is an elliptic
curve over SpecR. As a localization of a polynomial ring over Z, the ring R is torsion-free
and, in particular, SpecR has points in characteristic 0. �

Let Ẽ → SpecR be as in Lemma 9.11. Observe that SpecR is connected because R is
a local ring. We deduce from Lemmas 9.2 and 9.1, together with Theorem 9.5 for fields
of characteristic 0, that [n] : Ẽ → Ẽ is an isogeny of degree n2. Specializing this along
R → k, we have proved the same statement for E/k, and our proof of Theorem 9.5 is
complete. �

9.5. Finite Étale group schemes. Proposition 9.6 together with Theorem 9.5 states
that for every elliptic curve E/S and every integer n ∈ O×S , E[n] is a finite étale S-group
scheme of degree n2. What else can we say about E[n]? If S = SpecC, then Corollary 8.2
states that E[n](C) ∼= (Z/nZ)⊕2. Our aim in this section is to formulate a generalization
for arbitrary base S. The precise statement will be that every finite étale group scheme is
locally in the étale topology a constant group scheme.
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Let G→ S be a finite étale group scheme. Then G is, in particular, finite, flat, and of
finite presentation over S. As during the proof of Lemma 9.1, [8, Tag 02K9] implies that
G→ S is finite locally free.

Example 9.12 (Constant group schemes). Let Γ be a finite group and S a scheme.
Consider the disjoint union ΓS :=

∐
γ∈Γ S and write Sγ ⊆ ΓS for the copy indexed by γ.

The S-scheme structure is given by the identity mapping on each copy of S. Then ΓS
becomes an S-group scheme with multiplication m that is copy by copy given as

m|Sγ1×SSγ2
= [Sγ1 ×S Sγ2 = S

id−→ Sγ1γ2 ].

ΓS is called the constant S-group scheme with fiber Γ. If T is a connected S-scheme, e.g.
T = Spec k for a field k, then directly from the definition

Γ
∼−→ ΓS(T ). (9.3)

In general, ΓS represents the functor (on S-schemes)

T 7−→ Cont(|T |,Γ) (9.4)

where Γ has the discrete topology.

Example 9.13 (Kernels of étale isogenies). Let E1 and E2 be elliptic curves over a scheme
S. Let φ : E1 → E2 be an isogeny such that deg(φ) ∈ O×S is invertible on S. Then φ and
ker(φ)→ S are étale.

Proof. The kernel ker(φ) → S is the base change of φ along 0 : S → E2. Being étale is
stable under base change, so it suffices to prove that φ is étale.

We already have that φ is finite by definition of isogeny, so the lemma only adds that
φ is smooth. This means that φ is flat with smooth fibers. Flatness is also part of the
definition of isogeny, so we really only need to see that φ has smooth fibers. This can be
shown fiber-wise over S.

So let φ : E1 → E2 be an isogeny of elliptic curves over a field k with char(k) - deg(φ).
The last conditions says that char(k) - [OE1,η1 : OE2,η2 ] and hence this field extension
is étale. In other words, φ is generically étale. The locus where a morphism is smooth
is open, so there exists an open subset U ⊆ E1 such that φ|U is smooth. Since φ is a
group homomorphism, for every x ∈ E(k) also φ|x+U is smooth. Finally, smoothness can
be shown after base change to k̄ where the translates x + k̄ ⊗k U , x ∈ E1(k̄) cover all of
k̄ ⊗k E1, and we win. �

Example 9.14 (Roots of unity). Let S be a scheme and let n ≥ 1 be such that n ∈ O×S .
Then µn,S = SpecOS [x]/(xn−1) is a finite étale S-group scheme. Set U = µn,S and define

ζ := (x mod (xn − 1)) ∈ OU (U).

The base change µn,U = U ×S µn,S is a U -group scheme and ζ defines a U -group scheme
homomorphism

Z/nZ
U
−→ µn,U . (9.5)

Concretely, (9.5) is given on T -valued points of U with T connected by

Z/nZ
U

(T )
(9.3)
= Z/nZ 3 i 7−→ ζi ∈ µn(U).

For general T and in terms of (9.4), the morphism (9.5) is given by

[f : |T | → Z/nZ] 7−→ ζf ∈ µn(T ).

Exercise 9.15 (Generalizing construction (9.5)). Let G be an S-group scheme, Γ a finite
group, and φ : Γ→ G(S) a group homomorphism. Show that there exists a unique group
scheme homomorphism ΓS → G that restricts to φ on Γ ⊆ Cont(|S|,Γ).

https://stacks.math.columbia.edu/tag/02K9
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The point of these definitions is that Example 9.14 is a completely general phenomenon:
Every finite étale group scheme is étale locally a constant group scheme.

Theorem 9.16. Let G→ S be a finite étale group scheme. Then there exist a decomposi-
tion S =

∐
i∈I Si into open and closed subschemes, finite groups Γi, finite étale surjections

Ti → Si, and group scheme isomorphisms

ΓiTi
∼−→ Ti ×S G.

Conversely, if G is a group scheme such that a set of such data exists, then G is a finite
étale group scheme.

Proof. The converse direction follows immediately from étale descent for the property
“finite étale” and the étale covering

∐
i∈I Ti → S; we mentioned it here only for complete-

ness and will not go into details. In order to prove the other direction, we start with some
intermediate statements.

Lemma 9.17. Let f : X → Y be a morphism of finite étale S-schemes. Then f is finite
étale.

Proof. It is clear that f is finite. Following Definition 7.12, we need to see that f is flat
and fiber-wise étale. Both X and Y are flat over S. For every s ∈ S, the fibers X(s) and
Y (s) are spectra of finite étale κ(s)-algebras. It is clear that any map between such is flat,
even étale. We conclude with the fiber criterion for flatness Proposition 9.3. �

Proposition 9.18. Let X → S be finite étale of degree n. There exist a finite étale
surjection T → S and an isomorphism of T -schemes

∐n
i=1 T

∼→ T ×S X.

Proof. The statement is clear if n = 1; in this case, X ∼→ S and we may take T = S. If
n ≥ 2, then consider U = X and the base change to U ,

XU = U ×S X −→ U.

It is finite étale of degree n because this property is stable under base change. The diagonal
∆ : U → XU defines a section as U -scheme. Both U and XU are finite étale U -schemes,
so Lemma 9.17 implies that ∆ is finite étale. We now need an important statement about
flat morphisms.

Proposition 9.19 ([8, Tag 01UA]). A flat morphism of locally finite presentation is open.

Applying this proposition, we obtain that ∆ is open. As finite (hence proper) morphism
it is also closed. So ∆(U) ⊂ XU is an open and closed subset which means there is an
isomorphism U t Y ∼→ XU where Y → U is finite étale of degree n − 1. By induction,
there exists a finite étale surjective T → U such that

∐n−1
i=1 T

∼→ T ×U Y . The composition
T → U → S then satisfies XT

∼=
∐n
i=1 T , and the proof is complete. �

Proof of Theorem 9.16. Let f : G → S be a finite étale group scheme. The rank of
f∗OG as OS-module is locally constant. Writing S as a disjoint union, we may assume it
to be constant, say equal to n. By Proposition 9.18, there exists a finite étale surjective
morphism T → S with GT ∼=

∐n
i=1 T . Fixing such an isomorphism, the group structure

is given by maps

mij : T = Ti ×T Tj −→
n∐
i=1

T.

For each 1 ≤ i, j, k ≤ n, the preimage m−1
ij (Tk) ⊂ T is open and closed. In this way, we

find for each group structure Γ on {1, . . . , n} an open and closed subset

TΓ =
⋂

1≤i,j≤n
m−1
ij (Ti•Γj)

https://stacks.math.columbia.edu/tag/01UA
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over which the group structure is that of ΓTΓ
, and T =

∐
Γ TΓ. It is only left to construct

from this a decomposition of S.
Let p : T → S denote the map to S. For each Γ, the map TΓ → S is finite étale. So by

Proposition 9.19, p(TΓ) ⊂ S is open and closed. Let Γ1, . . . ,Γr be an enumeration of the
possible group structures on {1, . . . , n}. For 1 ≤ i ≤ r, define

Si = p(TΓi) \
⋃

1≤j<i
p(TΓj ).

Then the theorem is proved with S =
∐r
i=1 Si, the given Γi, and Ti = p−1(Si). �

Corollary 9.20. Let E be an elliptic curve over S and let n ≥ 1 lie in O×S . Then there
exist a finite étale surjection T → S and an isomorphism Z/nZ⊕2

T

∼→ E[n]T .

Proof. By Proposition 9.6, the kernel E[n] is étale. Theorem 9.16 states that there exist
a finite étale surjective T → S, a decomposition T =

∐r
i=1 Ti, finite (in this case abelian)

groups Γi, and isomorphisms ΓiTi
∼→ E[n]Ti . We know that for all divisors d | n, the

d-torsion E[n][d] = E[d] is of degree d2. So the only possibility is Γi ∼= (Z/nZ)⊕2, and the
proof is complete. �

9.6. Deligne’s Theorem. Let Γ be a finite group of order n and let g ∈ Γ be an element.
Then gn = e, i.e. Γ is n-torsion. We end this section with a short discussion of the folklore
conjecture that an analogous statement holds for finite locally free group schemes:

Conjecture 9.21 (Grothendieck). Let G→ S be a finite locally free group scheme. Then
G is n-torsion.

Using our previous results, we can confirm the conjecture for finite étale group schemes:

Corollary 9.22. Let G be a finite étale S-group scheme of degree n. Then G is n-torsion.

Proof. The claim is that the map [n] : G → G, g 7→ gn, is identical to the composition
G→ S

e→ G. This can be shown after a faithfully flat base change. By Theorem 9.16, G
is locally after a surjective étale base change a constant group scheme. The claim is clear
for constant group schemes, and we win. �

Conjecture 9.21 is also known when G is commutative (see below) or when S = Spec k
for a field, see [7].

Theorem 9.23 (Deligne). A commutative finite locally free group scheme of degree n is
n-torsion.

Corollary 9.24. Let G → S be a commutative finite locally free group scheme of degree
n. Suppose that n ∈ O×S . Then G is étale.

Proof. By Deligne’s Theorem, G is n-torsion. The statement now follows from Proposition
9.18. �

Corollary 9.25. Let φ : E1 → E2 be an isogeny of degree n. Then ker(φ) ⊆ E1[n].

Proof. Apply Deligne’s Theorem to the kernel ker(φ), which is finite locally free of degree
n. �

10. Endomorphism rings

10.1. Factorization of isogenies. Consider a diagram of abelian groups with exact up-
per row

K

0   

// M

φ2

��

φ1 // // Q //

ψ~~

0

N.
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If φ1 is a cokernel of K →M and if φ2|K = 0, then there exists a unique map ψ : Q→ N
with φ2 = ψφ1. We now prove that the same applies to elliptic curves.13

Proposition 10.1. Let E, E1 and E2 be elliptic curves over S. Let φ1 : E → E2 and
φ2 : E → E2 be isogenies that fit into the diagram

ker(φ1)

0 ##

// E

φ2

��

φ1 // E1

ψ}}
E2.

In other words, assume ker(φ1) ⊆ ker(φ2). Then there exists a unique isogeny ψ : E1 → E2

such that φ2 = ψφ1.

Proof. For simplicity, we only give the proof when S = Spec k for a field. Consider the
diagram

E ×E1 E
p,q // E

φ2

��

φ1 // E1

E2

(10.1)

where p and q denote the two projections. All its arrows are finite and locally free. Let
x ∈ E be any point. Recall that for any finite subset Z ⊂ X of a curve over a field, the
complement X \ Z is affine. (This can be deduced from Theorem 6.37.) Let U2 ⊆ E2 be
any affine open subset containing φ2(φ−1

1 (φ1(x))). The set

U1 = E1 \ φ1(φ−1
2 (E2 \ U2))

is also open affine. Note that φ2(x) ∈ U2 and φ1(x) ∈ U1, so if we vary x, then these open
sets cover E1 and E2. Moreover, φ−1

1 (U1) ⊆ φ−1
2 (U2) by construction. Let U2 = SpecR,

U1 = SpecA, and φ−1
1 (U1) = SpecB. Restricting (10.1) to U1, U2, and passing to pullback

maps on rings of functions, we obtain the diagram

B ⊗A B B
p∗,q∗oo A

φ∗1oo

R.

φ∗2

OO (10.2)

The pullback φ∗1 is injective because φ1 is flat and surjective. Our task is to show that
φ∗2(R) ⊆ A. We know that the sequence

0 −→ A −→ B
p∗−q∗−→ B ⊗A B

is exact (use the fully faithfulness, [6, Proposition 3.2]). Thus we would like to see that
p∗ ◦ φ∗2 = q∗ ◦ φ∗1. This will finally use our assumption ker(φ1) ⊆ ker(φ2).

Using the Yoneda lemma, we check on T -valued points that there is an isomorphism

γ : ker(φ1)×S E
∼−→ E ×E1 E

(t, y) 7−→ (t+ y, y)

(x− y, y)←−p (x, y).

Then we obtain (again for T -valued points)

φ2(p(γ(t, y))) = φ2(t+ y)
(?)
= φ2(y) = φ2(q(t, y))

13The deeper reason for this phenomenon is that an isogeny is a cokernel in the category of fppf-sheaves
on S-schemes.
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where (?) holds by ker(φ1) ⊆ ker(φ2). Hence φ2 ◦ p = φ2 ◦ q, and we obtain that ψ
exists. Since ψ(0) = 0 by construction, ψ is a group homomorphism and the proof is
complete. �

Lemma 10.2. Let S be connected, and let E φ1→ E1
φ2→ E2 be two homomorphisms with

φ2 ◦ φ1 = 0. Then φ1 = 0 or φ2 = 0. In particular, End(E) has no zero divisors.
Variant: Let φ1 : E → E1 be an isogeny and let φ2, φ

′
2 : E1 → E2 be two homomorphisms

such that φ2 ◦ φ1 = φ′2 ◦ φ1. Then φ2 = φ′2.

Proof. Assume φ1 and φ2 are both non-zero. By rigidity using that S is connected (Corol-
lary 7.26), this means they are both isogenies. This is equivalent to being surjective. A
composition of surjective maps is surjective, so φ2◦φ1 is then also an isogeny, in particular
non-zero. This proves the first part.

The variant follows by applying the first part to φ2 − φ′2. �

Corollary 10.3. Let φ : E1 → E2 be an isogeny of degree n. Then there exists a unique
isogeny φ∗ : E2 → E1, called its dual, such that

φ∗ ◦ φ = [n]E1 , φ ◦ φ∗ = [n]E2 .

Proof. By Deligne’s Theorem (Theorem 9.23), ker(φ) is n-torsion. This means ker(φ) ⊆
E[n]. Proposition 10.1 implies that there exists an isogeny φ∗ with φ∗ ◦ φ = [n]E1 . Then

φ ◦ φ∗ ◦ φ = φ ◦ [n]E1

(?)
= [n]E2 ◦ φ

where (?) is due to the fact that [n] commutes with every group homomorphism. The
cancellation law from Lemma 10.2 implies that also φ ◦ φ∗ = [n]E2 . �

Definition 10.4. Let S be a quasi-compact scheme, and let E, E1, E2 be elliptic curves
over S. We define

Hom0(E1, E2) = Q⊗Z Hom(E1, E2), End0(E) = Q⊗Z End(E).

Its elements are called quasi-homomorphisms resp. quasi-endomorphisms. An element
that is fiber-wise non-zero is called a quasi-isogeny.

Corollary 10.5. Let E be an elliptic curve over a field. Then End0(E) is a skew-field of
characteristic 0.

Proof. This means nφ 6= 0 for all φ 6= 0 and φψ 6= 0 whenever φ, ψ 6= 0. These statements
follow from Lemma 10.2 and Theorem 9.5. �

10.2. The Rosati involution. Corollary 10.3 constructed a bijection (set 0∗ = 0)

Hom(E1, E2) −→ Hom(E2, E1), φ 7−→ φ∗.

It is clear from its construction that deg(φ) = deg(φ∗), that (φ∗)∗ = φ and that (φψ)∗ =
ψ∗φ∗. We would like to show more properties, especially that φ is a group homomorphism.
To this end, we next introduce the Rosat involution φ 7→ φ† and show φ∗ = φ†.

Construction 10.6. Recall that Pic0
E → S is our notation for the Picard functor of E.

Also recall that we proved in Theorem 7.20 that Pic0
E is representable and that there is a

group scheme isomorphism14

λE : E
∼−→ Pic0

E

E(T ) 3 x 7−→ [OET ([Γx]− [Γe])].
(10.3)

14see again Footnote 10
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Assume that φ : E1 → E2 is a homomorphism and that [L] ∈ Pic0
E2

(T ). Then pullback
defines a point [φ∗T (L)] ∈ Pic0

E1
(T ) which defines an S-group scheme homomorphism (use

Yoneda)
φ∨ : Pic0

E2
−→ Pic0

E1
.

Taking compositions, we obtain a group scheme homomorphism

φ† := λ−1
E1
◦ φ∨ ◦ λE2 ∈ Hom(E2, E1). (10.4)

Definition 10.7. The isomorphism λE in (10.3) is called the polarization of E. The map
φ† in (10.4) is called the Rosati adjoint of φ.

Theorem 10.8. (1) The Rosati adjoint φ† and the dual homomorphism φ∗ are equal. In
particular, (φ†)† = φ.
(2) The Rosati adjoint is a group homomorphism, meaning

(φ+ ψ)∗ = φ∗ + ψ∗.

Proof. (1) We need to see φ† ◦ φ = [deg(φ)]. By the rigidity theorem in the form of
Corollary 7.26, we can check this fiber-wise. Thus assume E1 and E2 are elliptic curves
over an algebraically closed field k and let φ : E1 → E2 be an isogeny. It is enough to check
that φ† ◦ φ = [deg(φ)] on the k-valued points E1(k).15 So let x ∈ E1(k) be a k-rational
point. Then

φ†(φ(x)) = λ−1
E1

(φ∨(λE2(φ(x))))

= λ−1
E1

(φ∗OE2([φ(x)]− [e]))

= λ−1
E1

(OE1([ker(φ) + x]− [ker(φ)])).

Here, ker(φ)+x denotes the x-translate of the finite subscheme ker(φ) ⊂ E1. By definition
of λE1 , we are now looking for the unique point y ∈ E1(k) such that

OE1([ker(φ) + x]− [ker(φ)])
∼−→ OE1([y]− [e]). (10.5)

Recall the fundamental relation of addition from (7.1). By induction, it extends to the
following relation. Given divisors D+ =

∑
P∈E(k) nP [P ] and D− =

∑
P∈E(k)mP [P ] with

deg(D+) = deg(D−),
OE([D+]− [D−])

∼−→ OE([Q]− [e])

where Q is the E-sum E-
∑

P (nP −mP )P meaning the sum with respect to the elliptic
curve addition law. We apply this with D+ = [ker(φ) +x] and D− = [ker(φ)] as in (10.5).
As divisor,

[ker(φ)] = dimkOker(φ),e ·
∑

y∈ker(φ)(k)

[y].

Thus we obtain the E-sum

Q = dimk Oker(φ),e ·E E-
∑

y∈ker(φ)(k)

(y +E x−E y)

= dimk Oker(φ),e · | ker(φ)(k)| ·E x

= [deg(φ)](x).

In other words, φ†(φ(x)) = [deg(φ)](x) as was to be shown.
(2) We now prove that (φ + ψ)† = φ† + ψ†. It is clear that λ−1

E1
◦ − and − ◦ λE2 are

linear, so we really need to show that (φ + ψ)∨ = φ∨ + ψ∨. Again by rigidity, we may
prove this identity fiber-wise over S and hence assume we are working over an algebraically

15 A morphism of reduced finite type schemes over an algebraically closed field k is uniquely determined
by its restriction to k-points.
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closed field k. It again suffices to show (φ+ψ)∗(L) = φ∗(L)⊗ψ∗(L) for k-rational points
L ∈ Pic0

E2
(k) = Pic0(E2), see Footnote 15.

Consider the map
α : φ ◦ p1 + ψ ◦ p2 : E1 ×k E1 −→ E2.

Given a degree 0 line bundle L ∈ Pic0(E2), define

M = α∗L ⊗ p∗1φ∗L−1 ⊗ p∗2ψ∗L−1.

We need to see that the restrictionM|∆
∼→ OE1 . In fact, it even holds thatM ∼→ OE1×kE1 .

Namely, view E1 ×k E1 as an E1-scheme via the first projection and view M as an E1-
valued point [M] ∈ Pic0

E1
(E1). Its fiber over some y ∈ E1(k) is

M(y) = ψ∗t∗φ(y)L ⊗ ψ
∗L−1 = ψ∗(t∗φ(y)L ⊗ L

−1)

where tφ(y) : E2 → E2 is the translation map z 7→ z + φ(y). But since L is of degree 0,
there exists a point Q ∈ E2(k) with L ∼= λE2(Q) = OE2([Q] − [e]). Then we may again
use the fundamental relation (7.1) and see

M(y) = ψ∗(OE2([Q− φ(y)]− [−φ(y)]− [Q] + [e]))
(7.1)∼= ψ∗(OE2) = OE1 .

So we see thatM(y) is trivial for every closed point y ∈ E1. As E1 is reduced, this means
that the morphism [M] : E1 → Pic0

E1
is constant equal to the neutral element [OE1 ]. By

definition of Pic0
E1

, see (7.11), this means that there exists a line bundle N on E1 with
M∼= p∗1N . Looking at the restriction to E1 ×k {e}, we find

N = e∗M = e∗(φ∗L ⊗ φ∗L−1) = OE1 .

In conclusion,M is trivial. This implies that the restriction

∆∗(M) = (φ+ ψ)∗(L)⊗ φ∗(L)−1 ⊗ ψ∗(L)−1

is trivial, and the proof of the theorem is complete. �

Next, we discuss some applications. These will be purely arithmetic, no algebraic
geometry involved. Let E be an elliptic curve over a field k. Recall that End(E) has no
zero-divisors and is Z-torsion free (Corollary 10.5). By Theorem 10.8, the Rosati involution
on End(E) = Hom(E,E) is an involution in the sense that

∗2 = id, (x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗.

These three properties give the usual definition of an involution on a (not necessarily
commutative) ring.

Proposition 10.9. The Rosati involution on End(E) has the following properties.
(1) For every x ∈ End(E), the endomorphism tr(x) = x + x∗ lies in Z. It is called the
trace of x. In particular, the subring Z[x] ⊂ End(E) generated by x is stable under ∗.
(2) If x /∈ Z, then Z[x] is an order in an imaginary-quadratic extension of Q. In particular,
End(E)∗=id = Z.
(3) More precisely, x is a zero of the following quadratic equation with coefficients in Z

(T − x)(T − x∗) = T 2 − tr(x)T + deg(x). (10.6)

If x /∈ Z, then tr(x)2 − 4 deg(x) < 0, so Q(x) is an imaginary-quadratic extension.

Proof. Let x, y ∈ End(E) be two endomorphisms. By Theorem 10.8,

deg(x+ y) = (x+ y)∗(x+ y)

= x∗x+ (x∗y + xy∗) + y∗y

= deg(x) + tr(xy∗) + deg(y).
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Since deg(x + y), deg(x) and deg(y) all lie in Z, we obtain that tr(xy∗) ∈ Z. Apply this
with y = 1 (meaning y = idE) to obtain that tr(x) ∈ Z. Then x∗ = tr(x)−x ∈ Z[x]. This
implies that Z[x] is ∗-stable and we have proved (1).

Next, it is clear that x is a zero of (10.6). Namely,

x2 − (x+ x∗)x+ x∗x = x2 − x2 − x∗x+ x∗x = 0.

For every p/q ∈ Q, q 6= 0, we have(
p

q

)2

− tr(x)

(
p

q

)
+ deg(x) =

deg(p− qx)

q2
≥ 0.

So λ2−tr(x)λ+deg(x) ≥ 0 for every λ ∈ R, which means that either T 2−tr(x)T +deg(x)
has a double zero in R or defines an imaginary-quadratic extension of Q. The first case
happens if and only if x = x∗. Then 2x = tr(x) ∈ Z and hence x ∈ Q. But x is also
integral over Z because it is a zero of T 2 − tr(x)T + deg(x), and so even x ∈ Z. This
proves (2) and (3). �

Corollary 10.10. Assume that End(E) is commutative. Then K := End0(E) equals Q
or an imaginary-quadratic extension of Q.

Proof. If End(E) is commutative, then K is a field by Corollary 10.5. Then ∗ ∈ Aut(K)
is a field automorphism. Moreover, Proposition 10.9 established that K∗=id = Q. So K is
either Q or a quadratic extension. By Proposition 10.9 again, such a quadratic extension
has to be imaginary. �

Corollary 10.11. Assume that End(E) is non-commutative. Then B := End0(E) is a
quaternion algebra over Q and the Rosati involution equals the main involution of B. By
definition this means that there exist a, b ∈ Q× as well as i, j, k ∈ B such that

B = Q⊕Qi⊕Qj ⊕Qk
with

i2 = a, j2 = b, ij = −ji = k

and
i∗ = −i, j∗ = −j, k∗ = −k.

Moreover, B is definite in the sense that

R⊗Q B ∼= H (Hamilton quaternions).

Finally, End(E) ⊂ B is a lattice.

Proof. Since B is non-commutative, B 6= Q. Let x ∈ B \ Q and set K = Q(x). This is
a quadratic extension of Q. The Rosati involution preserves K by Proposition 10.9 and
hence agrees with the Galois conjugation of K/Q. Choose i ∈ K× with i∗ = −i and set
a = i2 ∈ Q×.

Next, B can be viewed asK-vector space via left-multiplication or via right-multiplication.
In this way, B becomes a K ⊗Q K-module,

(x⊗ y) · α := xαy.

As ring, K ⊗Q K ∼= K ×K, so we obtain a decomposition B = B0 ×B1 with

B0 = {α ∈ B | xα = αx ∀x ∈ K}, B1 = {α ∈ B | xα = αx∗ ∀x ∈ K}. (10.7)

For every α ∈ B0, the ring K(α) is a finite commutative Q-algebra without zero-divisors,
meaning a finite field extension. Since ∗ preserves K(α) (Proposition 10.9) and satisfies
K(α)∗=id = Q, it has to be a quadratic extension of Q. So we see that K(α) = K, and
hence that B0 = K.

Our assumption is that B is non-commutative. So K ( B, meaning B1 6= 0. For any
two non-zero j1, j2 ∈ B1, the definition of B1 by (10.7) implies that j1j2 ∈ K. This means
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that B1 is a 1-dimensional K-vector space via left-multiplication. Let j ∈ B1 be any
generator and set k = ij. Then

ji
Def. of B1= (i∗)j = −ij

as required.
Consider next the Rosati involution. For x ∈ K, we have

(j∗)x = ((x∗)j)∗ = (jx)∗ = (x∗)(j∗)

which means that j∗ ∈ B1. Write j∗ = cj with c ∈ K. Then

j = (j∗)∗ = (cj)∗ = j∗c∗ = cjc∗
j∈B1
= c2j

implies that c2 = 1. Since B∗=id = Q, the case c = 1 is excluded. This means c = −1. As
j was fixed arbitrarily, also k∗ = −k. Alternatively, we directly see that

(ij)∗ = j∗i∗ = −ji∗ = −ij.
Moreover, j∗ = −j implies that

b := j2 = −j∗j ∈ Q×.
At this point, we have shown that B is a quaternion division algebra and that ∗ is its
main involution. The fact that End(E) ⊂ B is a lattice will be shown in Lemma 10.15. It
is then only left to prove that R ⊗Q B ∼= H. Observe for this that a, b < 0 because Q(i)
and Q(j) have to be imaginary quadratic extensions of Q (Proposition 10.9). Then

i′ =
√
−a⊗ i, j′ =

√
−b⊗ j, k′ = i′j′

give a standard Hamilton quaternion basis for R⊗Q B. �

10.3. The Tate module. In §8, we studied elliptic curves over C in terms of Z-lattices.
This technique (obviously) does not extend to fields of characteristic p. However, there is a
substitute called the `-adic Tate module which we will introduce next. As an application,
we will obtain a remarkable refinement of Corollary 10.11.

Definition 10.12. Given E/k and an integer ` 6= char(k), we define the `-adic Tate
module of E as

T`(E) := lim
← n≥1E[`n](k̄).

The transition maps here are given by multiplication by `,

[`] : E[`n+1] −→ E[`].

By Theorem 9.5, it is free of rank 2 as Z`-module. We also set V`(E) = Q` ⊗Z` T`(E)
which is a 2-dimensional Q`-vector space. It is called the rational Tate module of E.

Any homomorphism φ : E1 → E2 restricts to a compatible family of homomorphisms
φ[`n] : E1[`n]→ E2[`n] between `n-torsion group schemes, and so defines a Z`-linear map
T`(φ) : T`(E1)→ T`(E2). In other words, T`(−) is a covariant functor from elliptic curves
over k to Z`-modules.

Theorem 10.13. Let E1 and E2 be elliptic curves over k. Then the natural map

Z` ⊗Z Hom(E1, E2) −→ Hom(T`(E1), T`(E2))

is injective.

Remark 10.14. Note that this is stronger than just saying that Hom(E1, E2)→ Hom(T`(E1), T`(E2))
is injective. For example, V = Q(

√
2) ⊂ R is a 2-dimensional Q-subvector space, but

R⊗Q V → R is not injective.

Lemma 10.15. The Z-module Hom(E1, E2) is finitely generated.
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Proof. We have seen in Corollaries 10.10 and 10.11 that End0(E2) is a finite-dimensional
Q-vector space. By Proposition 10.1 and Lemma 10.2, Hom0(E1, E2) is either 0 or a
one-dimensional End0(E2)-vector space. In particular, V = Hom0(E1, E2) is a finite-
dimensional Q-vector space and we win once we can show that L = Hom(E1, E2) ⊂ VR =
R⊗Q V is discrete.

Consider the degree map deg : L → Z≥0 and note that it only takes positive values
(except deg(0) = 0). By Theorem 10.8 (2), there exists a symmetric bilinear form β :
L× L→ Z such that deg(x) = β(x, x), namely

β(x, y) = x∗ ◦ y. (10.8)

We may uniquely extend β to an R-bilinear form VR × VR → R by β(λ ⊗ x, µ ⊗ y) =
λµβ(x, y). This form is positive definite because deg |L is positive definite. We find that

L ∩ {x ∈ VR | β(x, x) < 1} = {0},

and hence that L is discrete in VR. �

Remark 10.16. The statement that (10.8) is bilinear, and the overall argument of Lemma
10.15, really require Theorem 10.8 (2). Just knowing that deg(nφ) = n2 deg(φ) (which
follows directly from definitions) is not enough and does not allow to define deg in a
meaningful way to VR.

Proof of Theorem 10.13. First observe that there is an isomorphism (natural in E)

T`(E)/`nT`(E)
∼−→ E[`n](k̄)

(. . . , x3, x2, x1) 7−→ xn.

Also note that because L = Hom(E1, E2) is finitely generated by Lemma 10.15, i.e. ab-
stractly isomorphic to Zr for some r ≥ 1, the tensor product Z` ⊗Z Hom(E1, E2) co-
incides with its `-adic completion L`. Now consider some φ̃ that lies in the kernel of
L` → Hom(T`(E1), T`(E2)). We can assume that φ is not divisible by ` in L`. Let φ ∈ L
be an approximation in the sense that φ − φ̃ ∈ `L`. But then both φ̃ and φ − φ̃ restrict
to zero on E1[`]. Proposition 10.1 then implies that φ is divisible by ` in L. Then φ̃ is
divisible by ` in L` — contradiction! �

We can now complete our classification of End0(E). Recall that by Proposition 8.3 (2),
the case End0(E) non-commutative can only occur when char(k) = p > 0.

Corollary 10.17. Assume that char(k) = p > 0 and that End(E) is non-commutative
like in Corollary 10.11; set B = End0(E). Then for every ` 6= p,

Q` ⊗Q B ∼= M2(Q`).

That is, B is the (up to isomorphism) unique quaternion division algebra over Q that is
non-split at p and ∞.

Proof. For every ` 6= p, consider the the action of B` on the rational Tate module V`(E).
By Theorem 10.13, it is faithful, meaning induced from an injective map of Q`-algebras

B` 7−→ EndQ`(V`(E)) ∼= M2(Q`).

Both sides here are 4-dimensional Q`-vector spaces, so the map is an isomorphism. The
uniqueness statement follows from the classification of central simple algebras over number
fields, which is part of class field theory. �

Here are two interesting results to conclude this section.
(1) Let E be an elliptic curve over a field k of char(k) = p such that End0(k̄⊗k E) is non-
commutative. Such elliptic curves are called supersingular. Then there exists an elliptic
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curve E0 over Fp2 such that k̄ ⊗k E ∼= k̄ ⊗Fp2 E0. In this sense all supersingular elliptic
curves are defined over Fp2 .
(2) The mass formula of Deuring–Eichler states that the number of supersingular elliptic
curves is given by ∑

{E supersing}/∼

1

|Aut(E)|
=
p− 1

24
. (10.9)

Here, the sum runs over all isomorphism classes of supersingular elliptic curves over F̄p.
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Part 3. Moduli Spaces

11. The classification problem

11.1. The j-invariant.

Problem 11.1. Classify elliptic curves up to isomorphism over an algebraically closed
field.

This problem follows a familiar pattern: Given an interesting type of structure, classify
all its objects up to isomorphism.

Definition 11.2. Let E be an elliptic curve over a field k of characteristic 6= 2, 3. Let
y2 = x3 + ax + b be a simplified affine Weierstrass equation for E. Then its j-invariant
j(E) ∈ k is defined as

j(E) := −1728
4a3

∆
, ∆ = −(4a3 + 27b2).

The j-invariant can also be defined for elliptic curves in characteristics 2 and 3. Then
the formula will be in terms of the coefficients of a general Weierstrass equation (6.22).
The factor 1728 = 27 · 64 is added for consistency with this more general formula.

Lemma 11.3. The j-invariant j(E) is well-defined, meaning only depends on the isomor-
phism class of E and not on the choice of simplified Weierstrass equation.

Before giving the proof, let us fix a convention for Weierstrass equations. For any choice
of two non-zero elements

x ∈ Γ(E,OE(2[e])) \ k, y ∈ Γ(E,OE(3[e])) \ Γ(E,OE(2[e])), (11.1)

we have seen in (6.21) that there exists a non-trivial linear relation amongst 1, x, y, x2, xy, x3

and y2. This relation is unique up to scaling by k×. By convention, we normalize it to be
monic in y2. That is, there is we consider the unique relation of the form

y2 + a1xy + a3y = a0x
3 + a2x

2 + a4x+ a6. (11.2)

satisfied by x, y, and we call it the Weierstrass equation defined by x and y.

Proof of Lemma 11.3. The choice of x and y in (11.1) is unique up to linear transforma-
tions of the form

x = ux′ + p

y = vy′ + qx′ + r
(11.3)

where x′, y′ are as in (11.1), where u, v ∈ k× and where p, q, r ∈ k. Now assume that
x and y are such that their Weierstrass equation is simplified. Substituting (11.3) in
y2 = x3 + ax + b leads to terms of the form 2vqx′y′ and 2vry′. If we insist that the
Weierstrass equation for x′ and y′ is again simplified, then this implies q = r = 0. Then
we also obtain that p = 0 for otherwise there would be the non-zero term 3u2p(x′)2.
Finally, we find u3 = v2. In summary, this argument proves that the choice of x and y in
(11.1) with simplified Weierstrass equation is unique up to the scaling operation

x′ = ux, y′ = vy, u, v ∈ k×, u3 = v2. (11.4)

Rescaling
(vy)2 = (ux)3 + a(ux) + b

by v−2 = u−3 (in order to be monic in y2) shows that x′ and y′ give the Weierstrass
equation

(y′)2 = (x′)3 + u−2ax′ + u−3b. (11.5)



ELLIPTIC CURVES AND THEIR MODULI SPACES 69

The identity
(u−2a)3

4(u−2a)3 + 27(u−3b)2
=

a3

4a3 + 27b2

now shows that the definition of j(E) is independent of the chosen simplified Weierstrass
equation. �

Theorem 11.4. Let k be a field. The j-invariant defines a surjective map

j : {Ellipt. curves/k}/ ∼ −� k. (11.6)

If k is algebraically closed, then this map is also injective. That is, two elliptic curves
E,E′ over k are isomorphic if and only if j(E) = j(E′).

Proof. We stick to char(k) 6= 2, 3 and use Definition 11.2.
Surjectivity. Taking (a, b) = (0, 1) and (a, b) = (1, 0) constructs elliptic curves with

j(E) = 0 and j(E) = 1. It is left to prove that for any j 6= 0, 1, we can solve the equation

− 1728
4a3

−(4a3 + 27b2)
= j (11.7)

with a, b ∈ k. (Note that the denominator−(4a3+27b2) is the discriminant ∆ of x3+ax+b.
Thus for any choices a, b with ∆ 6= 0, the equation y2 = x3 + ax + b defines an elliptic
curve.) Rewriting (11.7) gives

1728 · 4a3

27b2
=

j

1− j
. (11.8)

Take any a, b 6= 0. Scaling both by λ ∈ k× scales a3/b2 by λ. This shows that (11.8) has
a solution.

Injectivity. Short preparation. Now assume that k is algebraically closed. Let a, b be
the coefficients of a simplified Weierstrass equation. They cannot both be zero. Assume
a 6= 0. Since k is algebraically closed and char(k) 6= 2, there exists a square root u of
a. Scaling as in (11.4) and (11.5), we may assume a = 1. Assume otherwise that b 6= 0.
Since k is algebraically closed and char(k) 6= 3, there exists a cubic root of b. Scaling as
before, we may assume that b = 1.

Injectivity. Final argument. Now consider E,E′ over k with j(E) = j(E′). Let a, b
resp. a′, b′ be the coefficients of simplified Weierestrass equations for E and E′. If a = 0,
then j(E) = 0 and hence a′ = 0. If b = 0, then j(E) = 1 and hence b′ = 0. Thus in all
cases, at least a, a′ or b, b′ are both non-zero. By the above preparation, we may assume
a = a′ = 1 or b = b′ = 1. Then our assumption

4a3

4a3 + 27b2
=

4(a′)3

4(a′)3 + 27(b′)2

implies that {
b2 = (b′)2 if a = a′ = 1

a3 = (a′)3 if b = b′ = 1.

In the first case, we may scale by u ∈ {±1} in (11.5) as needed to arrange b = b′. In the
second case, we may scale with u a third root of unity to arrange a = a′. In both cases,
we find that E and E′ can be defined by the same Weierstrass equation, meaning that
E ∼= E′. �

Corollary 11.5 (Field of definition). Let E be an elliptic curve over a field k. Then
k0 = Q(j(E)) resp. k0 = Fp(j(E)), depending on char(k), is the smallest subfield over
which E can be defined in the following sense. There exists an elliptic curve E0 over k0

such that k ⊗k0 E0
∼= E.



70 ANDREAS MIHATSCH

Proof. If k0 ⊆ k is a subfield and E0/k0 and elliptic curve with k ⊗k0 E0
∼= E, then

j(E) = j(E0) ∈ k0. This explains the “smallest” assertion. The existence is by Theorem
11.4. �

Example 11.6. Let k0 ⊆ k be a field extension and let E0, E
′
0 be elliptic curves over k0

such that k ⊗k0 E0
∼= k ⊗k0 E

′
0. Then it is not necessarily the case that E0

∼= E′0. The
j-invariant on the other hand can be computed after base change, so j(E0) = j(E′0). This
phenomenon spells out the (possible) failure of the injectivity of (11.6) for fields that are
not algebraically closed.

Consider for example a square-free integer D ≥ 2 and the two Weierstrass equations
(over Q)

y2 = x3 + ax+ b, Dy2 = x3 + ax+ b.

Over Q(
√
D), there is the substitution y′ =

√
Dy that transforms one into the other.

Thus the elliptic curves defined by by the two equations are isomorphic over Q(
√
D) and

in particular have the same j-invariant. On the other hand, one may check that there are
no substitutions of the form (11.3) over Q that transform one Weierstrass equation into
(a Q×-multiple of) the other.

11.2. Moduli spaces. We would like to go beyond a simple classification of isomorphism
classes over algebraically closed fields. Let us first briefly recall the Yoneda formalism.
Consider a functor

F : (Sch)op −→ (Set) (11.9)
and a schemeM. Denote by hM the functor of points ofM.

Lemma 11.7 (Yoneda). There is a bijection between natural transformations hM → F
and F (M) given by

Mor(hM, F )
∼−→ F (M)

γ 7−→ γ(idM)

[(S
u→M) 7−→ u∗α]←−p α.

(11.10)

Definition 11.8 (Fine moduli space). The functor F is called representable if there exists
a schemeM and a natural isomorphism γ : hM → F . In this caseM is said to represent
F and is called a fine moduli space for F . The element α = γ(idM) ∈ F (M) is called the
universal object.

Consider now the functor of isomorphism classes of elliptic curves
E`` : (Sch)op −→ (Set)

S 7−→ {Ellipt. curves E over S}/ ∼ .
(11.11)

In an ideal world, this functor would be representable by a scheme M, which would be
the moduli space we are interested in. The universal object would be an elliptic curve E
overM (up to isomorphism) that would be universal in the sense that for ever scheme S
and every elliptic curve E/S, there exists a unique morphism u : S →M such that

E ∼= u∗E .
However, reality is more interesting than this rosy picture. For starters, an easy argu-
ment shows that E`` cannot be representable. Namely, for every scheme M and every
field extension k0 ⊆ k, the pullback map M(k0) → M(k) is injective. (More generally,
M(A)→M(B) is injective for every faithfully flat ring map A→ B.) But Example 11.6
explained that the map

E``(k0) −→ E``(k)

need not be injective. So E`` cannot be representable. There are now different ways to
proceed:
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(1) One may insist on working with a representable functor, which requires one to modify
E``. The standard approach for this is to add level structure to its definition.

(2) If one instead desires to work with E`` directly, then one may relax the notion of fine
moduli space. There is a definition of coarse moduli space that can be understood as the
best approximation of E`` by a scheme.

(3) Finally, one can extend the formalism from schemes to stacks. Then one can make
sense of the statement that E`` is representable by a Deligne–Mumford stack.

Our aim for the remainder of the course is to explain (1) and (2) which are also prereq-
uisites for (3).

12. Weierstrass Moduli

Let p : E → S be an elliptic curve oven S. Define ωE := e∗Ω1
E/S which is a line

bundle on S. It is called the Hodge bundle of E. Recall that we constructed a natural
isomorphism (Proposition 5.7)

p∗ωE
∼−→ Ω1

E/S .

Applying the pushforward p∗, we find

ωE
∼−→ p∗p

∗ωE
∼−→ p∗Ω

1
E/S .

The first isomorphism here is because OS
∼−→ p∗OE (Lemma 7.23). In this way, there is

a bijection
{Generators π ∈ Ω1

E/S(E)} ←→ {Generators π̄ ∈ ωE(S)}
π 7−→ e∗(π).

(12.1)

Definition 12.1. The Weierstrass moduli problem is the functor

W : (Sch/Z[1/6])op −→ (Set)

S 7−→
{

(E, π)

∣∣∣∣ E ellipt. curve over S
π ∈ Γ(E,Ω1

E/S) generator

}
/ ∼ .

Here, (E, π) ∼= (E′, π′) if there exists an isomorphism γ : E → E′ of elliptic curves over S
such that γ∗(π′) = π.

Remark 12.2. A global section π ∈ Γ(E,Ω1
E/S) is a generator if and only if for every

s ∈ S, the fiber π(s) is a generator of Ω1
E(s)/κ(s).

Theorem 12.3. The functor W is representable by the affine scheme SpecR where

R = Z[1/6][a, b][∆−1], ∆ = 4a3 + 27b2,

with universal elliptic curve given by

E = V+(Y 2Z −X3 − aXZ2 − bZ3) ⊂ P2
R (12.2)

and universal generator the unique π ∈ Γ(E ,Ω1
E/R) such that

π|E∩D+(Z) = −dx
2y

glued with − dy

3x2 + a
. (12.3)

Here, the two charts D(3x2 + a) and D(y) cover E ∩D+(Z) because E is smooth (Jacobi
criterion). Moreover, the two differential forms glue because

0 = d(y2 − x3 − ax− b) = 2ydy − (3x2 + a)dx.
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Remark 12.4. (1) Theorem 12.3 cannot be extended to characteristics 2 and 3. Namely,
it states implicitly that pairs (E, π) have no automorphisms which does not hold over the
primes 2, 3. For example, [−1]∗(π) = −π = π in characteristic 2.

(2) By definition, if (E, π) ∈ W(S), then ωE ∼= OS and Ω1
E/S
∼= OE . This can provide an

obstruction for a family of elliptic curves to occur in W.

Proof. Let S be a scheme with 6 ∈ OS(S)×. We need to show that given a pair (E, π)
over S, there are unique a, b ∈ OS(S) with ∆ ∈ OS(S)× such that (E, π) is given by the
formulas (12.2) and (12.3).

The condition ∆ ∈ OS(S)× is automatic in the following sense. Assume we have found
a, b ∈ OS(S)× such that (12.2) defines an elliptic curve over S that is isomorphic to E.
Then ∆ ∈ OS(S)× by the Jacobi criterion.

Step 1: Trivializing Ln/Ln−1. In order to find a, b, we proceed in the same way as
we did over fields (see the discussion around (6.23)). Let Γ = e(S) be the graph of the
identity section and consider the line bundle L = OE([Γ]). Recall that it is defined as the
dual I−1 = Hom(I,OE), where Γ = V (I). Clearly there is a chain of inclusions

OE ⊃ I ⊃ I2 ⊃ . . . .
Passing to the dual gives a chain of inclusions

OE ⊂ L ⊂ L2 ⊂ . . . .
This is a more abstract variant of a statement that is obvious for curves over fields: If D
and D′ are divisors on a curve C and if D′ is effective, then OC(D) ⊆ OC(D+D′) by the
definition in terms of meromorphic functions (Definition 6.8). Observe that for all n ∈ Z,

Ln/Ln−1 = Ln/(Ln ⊗ I) = Ln ⊗ (OE/I) = Ln|Γ. (12.4)

Namely, vector bundles are flat. So tensoring with a line bundle is an exact operation that
commutes with inclusions and quotients. Next, note that there is a canonical isomorphism

I/I2 ∼−→ ωE , f 7−→ df. (12.5)

Namely, for all u ∈ OE ,
d(uf) = udf + fdu ≡ udf mod I · Ω1

E/S

which shows that (12.5) really is a map of OE-modules. Let π̄ = e∗(π) ∈ ωE be the
generator defined by π, compare (12.1). Using (12.4), we obtain trivializations Ln/Ln−1 =

OS · π̄⊗(−n).
Step 2: Pushforwards. Consider now the structure map p : E → S and the pushforwards

p∗(Ln). For n ≥ 1, this is a vector bundle of rank n on S (Theorem 6.37). Each short
exact sequence

0 −→ Ln−1 −→ Ln −→ Ln/Ln−1 −→ 0

gives rise to a long exact sequence

0 −→ p∗(Ln−1) −→ p∗(Ln) −→ Ln/Ln−1 −→ R1p∗Ln−1 −→ . . . .

If n ≥ 2, then R1p∗(Ln−1) = 0 by Theorem 6.37. So we obtain short exact sequences

0 −→ p∗(Ln−1) −→ p∗(Ln) −→ ω
⊗(−n)
E −→ 0.

For n = 1, we have a natural map

OS = p∗OE −→ p∗L.
Both source and target are line bundles, and the map is surjective fiber-wise over every
s ∈ S. It is hence an isomorphism. In summary, we find inclusions

0 ⊂ OS = p∗L ⊂ p∗(L2) ⊂ p∗(L3) ⊂ . . . (12.6)

with successive quotients OS , ω−2
E , ω−3

E , . . ..
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Step 3: Choosing x and y locally. Despite all the successive quotients in (12.6) being
trivial (powers of π̄ trivialize the ωnE), it is not clear that the vector bundles p∗(Ln) are
trivial. For this reason, we now work locally and restrict to S affine. Then the maps

Γ(S, p∗(Ln)) −→ Γ(S, ω−nE )

are surjective. So we may pick x0 ∈ Γ(S, p∗(L2)) and y0 ∈ Γ(S, p∗(L3)) such that

x0 ≡ π̄−2 mod OS(S), y0 ≡ π̄−3 mod Γ(S, p∗(L2)). (12.7)

Then 1, x0 and y0 give a trivialization of p∗(L3) and, by Theorem 6.37, define a closed
immersion

E ↪−→ P(p∗(L3)∨)
∼−→

1,x0,y0

P2
S .

The sections 1, x0, y0, x
2
0, x0y0, x

3
0 define a trivialization O⊕6

S
∼−→ p∗(L6). (This can be

checked fiber-wise for all s ∈ S.) Since also y2
0 ∈ Γ(E,L6), we obtain unique coefficients

a0, a2, . . . , a6 ∈ OS(S) such that

y2
0 + a1x0y0 + a3y0 = a0x

3
0 + a2x

2
0 + a4x0 + a6.

But the more precise relation (12.7) shows that y2
0 − x3

0 ∈ Γ(E,L5). So a0 = 1. We have
6 ∈ OS(S)× by assumption, so there exists a unique (!) linear transformation16 of the
form {

x = x0 + p

y = y0 + qx0 + r,

where p, q, r ∈ OS(S), such that x and y satisfy a simplified Weierstrass equation

y2 = x3 + ax+ b. (12.8)

Note that still x ≡ π̄−2 mod OS(S) and y ≡ π̄−3 mod L2(E). So our intermediate result
is:

Lemma 12.5. Assume that S is affine. Then there are unique x ∈ L2(E) and y ∈ L3(E)
with x ≡ π̄−2 mod OS(S) and y ≡ π̄−3 mod L2(E) such that their Weierstrass equation
(normalized as per being monic in y2) is of the simple form (12.8). In particular, this
determines the coefficients a, b ∈ OS(S).

Step 4: Gluing to general S. Now assume S is any. Lemma 12.5 constructs unique
data (xi, yi, ai, bi) for an open covering S =

⋃
i∈I Si. By the uniqueness, they glue to a

trivialization
1, x, y : O3

S
∼−→ p∗(L3)

and sections a, b ∈ OS(S) such that E is identified with the Weierstrass curve

V+(Y 2Z −X3 − aXZ2 − bZ3) ⊂ P2
S .

That is, Lemma 12.5 holds for any S, not just affine ones. It is left to show that this proves
Theorem 12.3, meaning that π, x and y also satisfy (12.3) and are uniquely determined by
this condition. This is precisely the next lemma.

Lemma 12.6. Let p : E → S and L be as above. Let x ∈ L2(E) and y ∈ L3(E) be global
sections that map to generators of L2/L and L3/L2, both viewed as line bundles on S.
Assume that the Weierstrass equation of x and y is simple. In particular, there exists a
generator π ∈ Ω1

E/S(E) such that π|D+(Y Z) = −dx/2y. Then π̄ := e∗(π) agrees with

(x mod L)/(y mod L2) ∈ L−1/L−2 ∼−→ ωE .

16Exercise: Check this.
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Proof. This can be checked locally near every point of Γ = e(S). So assume L−1 = I = (t)
for some function t, and that

x = f/t2, y = g/t3.

Here, f and g are invertible.

π̄ = (x/y mod I2)

= (f/g · t mod I2)

= (f/g)(e) · (t mod I2)

(?)
= (f/g)(e) · dt ∈ ωE .

The equality (?) is along the identification (12.5). Now we compute

−dx
2y

= − t
2df − 2tfdt

t4
· t

3

2g

=
f

g
dt− t

2g
df

e∗7−→ (f/g)(e)dt ∈ ωE .
(This computation is justified because t is not a zero-divisor.) �

Step 5: Proof that the x, y from Lemma 12.5 are the unique ones such that (12.3) holds.
Let x ∈ L2(E) and y ∈ L3(E) be such that

(1) Their images x̄ and ȳ in L2/L and L3/L2 are generators.
(2) Their Weierstrass equation is simple.
(3) The identity π|D+(Y Z) = −dx/2y holds.

By Lemma 12.6, π̄ = x̄/ȳ where again π̄ = e∗(π). Because the Weierstrass equation
of x and y is simple, in particular monic in both y2 and x3, we have x̄3 = ȳ2 in L6/L5.
Taking their quotient, we find

1 = x̄3/ȳ2 = x̄ · π̄2 ∈ OE/I.
This means x̄ = π̄−2. Then also

ȳ = (ȳ/x̄) · x̄ = π̄−3.

We conclude that the x, y constructed by Lemma 12.5 are the unique sections that satisfy
(1)–(3). Conversely, the coordinates of every simplified Weierstrass equation give rise to
such x, y. This finishes the proof of the theorem. �

13. Coarse moduli space

In the previous section, we have passed from E`` toW in order to obtain a representable
functor. Given a pair (E, π) ∈ W(T ) and a unit λ ∈ OT (T )×, there is a new pair (E, λπ).
That is, there is a Gm-action Gm ×W →W. If π′ ∈ Ω1

E/T (E) is another generator, then
there is a unique λ ∈ OT (T )× such that π′ = λπ. Thus, on an intuitive level, the quotient
Gm\W (in whatever sense) should be very close to the original functor E``. Our aim is
to make this precise.

13.1. Group scheme actions.

Definition 13.1. Let S be a scheme, let G/S be a group scheme, and let X/S be any
scheme. An action of G on X is a morphism

µ : G×S X −→ X

such that for every T → S, the induced map µ(T ) : G(T ) × X(T ) → X(T ) is a group
action.
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By the Yoneda lemma, giving an action µ of G on S is the same as giving actions of G(T )
on X(T ) for every T → S that are compatible with pullbacks. Yet another equivalent
definition can be made in terms of diagrams similar to (2.8), (2.9) and (2.10); they are of
the form (13.3) and (13.4).

Example 13.2. Work over S = SpecZ. There is an action
µ : Gm ×W −→W

OT (T )× ×W(T ) 3 (λ, (E, π)) 7−→ (E, λπ).
(13.1)

We have shown that W is representable by an affine scheme. So the above example is
a special case of a Gm-action on an affine scheme.

Construction 13.3 (Gradings from Gm-actions). Work over S = SpecR. Let A be an
R-algebra. Let t denote the coordinate on Gm,R. That is, write Gm,R = SpecR[t, t−1]
with group law m∗(t) = t⊗ t. Let

µ : Gm,R ×SpecR SpecA −→ SpecA

be an action. It is the dual of an R-algebra morphism

µ∗ : A −→ R[t, t−1]⊗R A.
For each integer i ∈ Z, we define

Ai = {a ∈ A | µ∗(a) = ti ⊗ a}. (13.2)

Proposition 13.4. (1) The definition in (13.2) gives a Z-grading of A. That is, A =⊕
i∈ZAi as R-module and AiAj ⊆ Ai+j for all i, j ∈ Z.

(2) Passing from µ to its grading defines a bijection between actions of Gm,R on SpecA
and R-module gradings A =

⊕
i∈ZAi with AiAj ⊆ Ai+j.

Proof. The sum of the Ai is direct, meaning
⊕

i∈ZAi ⊆ A. Namely, consider an element
a =

∑
i∈Z ai. Then

µ∗(a) =
∑
i∈Z

ti ⊗ ai.

The elements {ti ⊗ 1}i∈Z ⊂ A[t, t−1] are A-linearly independent. So a = 0 implies ai = 0
for all i ∈ Z.

Next, let a ∈ A be any and write µ∗(a) =
∑

i∈Z t
i⊗ ai. We claim that ai ∈ Ai and that

a =
∑

i∈Z ai. To prove this, we use the associativity of a group action which states that

Gm,R ×R Gm,R ×R SpecA

id×µ
��

m×id // Gm,R ×R SpecA

µ

��
Gm,R ×R SpecA

µ // SpecA

(13.3)

commutes. Passing to rings of functions and applying the maps to a, this states∑
i∈Z

ti ⊗ µ∗(ai) =
∑
i∈Z

ti ⊗ ti ⊗ ai.

Comparing both sides, we find µ∗(ai) = ti ⊗ ai and hence ai ∈ Ai. Now we use another
axiom of group actions, namely that the identity element acts trivially. This is expressed
by the commutativity of

SpecA
(e,id) // Gm,R ×R SpecA

µ

��
SpecA.

(13.4)
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Passing to rings of functions applying the maps to a, this states that

a 7−→ µ∗(a) =
∑
i∈Z

ti ⊗ ai
t7→17−→

∑
i∈Z

ai
!

= a.

We have now shown that A =
⊕

i∈ZAi. Moreover, this grading is by R-modules because
µ∗ is R-linear. It is left to prove AiAj ⊆ Ai+j . But this is immediate since µ∗ is a ring
homomorphism,

µ∗(aiaj) = µ∗(ai)µ
∗(aj) = (ti ⊗ ai)(tj ⊗ aj) = ti+j ⊗ (aiaj).

We leave it as an exercise to verify that this sets up a bijection between actions and
gradings as claimed. �

13.2. Quotients by Gm-actions.

Definition 13.5. Let µ : G ×S X → X be an action. An S-morphism f : X → Y is
called G-invariant if the two compositions

G×S X
pX ,µ−→ X

f−→ Y

coincide. Equivalently, for every T → S, the map f(T ) : X(T )→ Y (T ) is G(T )-invariant.
A categorical quotient (in the category of S-schemes) is a universal G-invariant mor-

phism. That is, it is a pair (Q, q) consisting of an S-scheme Q and a G-invariant morphism
q : X → Q such that for every G-invariant f : X → Y , there is a unique factorization
through q,

X

f   

q // Q

∃!
��
Y.

(13.5)

Categorical quotients need not exist. Even if they do, they might be hard to construct
and may have unexpected geometric properties.

Example 13.6. Consider the smooth manifolds R× and R, and the smooth action R× � R
given by scaling. This action has a categorical quotient in smooth manifolds which is given
by R → {pt} (check this!). But note that there are two orbits, namely {0} and R \ {0}.
Thus the underlying set of the categorical quotient differs from the set-theoretic quotient.

The basic technique for constructing quotients by actions of affine group schemes is to
take rings of invariant functions:

Definition 13.7. Let R be a ring, set S = SpecR, let G = SpecH be an affine R-group
scheme, let X = SpecA be an affine R-scheme, and let µ : G ×S X −→ X be an action
with dual

µ∗ : A −→ H ⊗R A.
The µ-invariants of A are defined as the sub R-algebra

AG := {a ∈ A | µ∗(a) = 1⊗ a}.

In other words, we require µ∗(a) = p∗(a) where p : G×S X → X denotes the projection.

Lemma 13.8. Let the notation be as in Definition 13.7. Then the natural map

q : Spec(A) −→ Q := Spec(AG)

is a categorical quotient of X by G in the category of affine S-schemes. That is, (13.5)
holds for all G-invariant maps f to affine S-schemes Y .
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Proof. This is immediate from definitions: Let Y = SpecB. The map f : X → Y being
G-invariant by definition means that

f ◦ µ = f ◦ pX : G×S X −→ Y.

This is equivalent to f∗ : B → A having image in AG. In other words, we have the unique
existence in

A AG? _oo

B
f∗

``

∃!

OO .

�

Example 13.9. Let R be a ring and A an R-algebra. Assume that G = Gm,R acts on
X = SpecA. Let A =

⊕
i∈ZAi be the corresponding grading (Proposition 13.4). Then

AG = A0.

Theorem 13.10. With notations as in Example 13.9, set Q = SpecA0 and let q : X → Q
be the map coming from the inclusion A0 ⊆ A. Assume that A is noetherian. Then (Q, q)
is a categorical quotient in all R-schemes.

Proof. Step 1: Sheafy invariants. Let V ⊆ Q be any open. Then U = q−1(V ) ⊆ X is open
and G-stable because q is G-invariant. Here, G-stable means that the action µ restricts
to a morphism

µ|G×U : G×S U −→ U.

Clearly, µ|G×SU is a G-action on U . Set

(q∗OX)G(V ) := {f ∈ (q∗OX)(V ) | µ∗(f) = p∗(f)}.
The condition µ∗(f) = p∗(f) can be checked on open covers, so this defines a subsheaf of
q∗OX .

Step 2: In fact, OQ
∼→ (q∗OX)G. Namely, since q is G-invariant, the pullback map

q∗ : OQ → q∗OX factors through (q∗OX)G. We now have a map of sheaves

q∗ : OQ −→ (q∗OX)G,

and we can check that it is an isomorphism locally on Q. Let V = D(f) ⊂ Q be any
principal open and let A0 → C0 = A0[f−1] be the corresponding localization. Then
U = q−1(V ) with its Gm,R-action is given by

U = Spec(C0 ⊗A0 A), (C0 ⊗A0 A)i = C0 ⊗A0 Ai. (13.6)

In particular,
(C0 ⊗A0 A)0 = C0 ⊗A0 A0 = C0

which means OQ(D(f))
∼→ (q∗OX)G(D(f)) as was to be shown. We remark that we did

not use the property of C0 being a localization. The description (13.6) holds for any affine
base change A0 → C0.

We now come to the main part of the proof which is about the topology of q : X → Q.

Definition 13.11. (1) Consider an action µ : G×S X → X. A closed subscheme Z ⊆ X
is called G-invariant if µ restricts to a G-action on Z. That is, the upper horizontal arrow
exists:

G×S Z
∃! //

� _

��

Z� _

��
G×S X

µ // X.

(13.7)

(2) Let I ⊆ A be an ideal in a graded ring A =
⊕

i∈ZAi. Then I is called homogeneous
if I =

⊕
i∈Z(I ∩Ai). This is equivalent to I being generated by homogeneous elements.
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Lemma 13.12. Consider an action of G = Gm,R on an affine R-scheme X = SpecA.
Let Z ⊆ X be the closed subscheme defined by the ideal I ⊆ A. Then Z is G-stable if and
only if I is homogeneous.

Proof. Passing to the dual of (13.7), we are trying to characterize ideals I such that the
upper horizontal arrow exists in

(A/I)[t, t−1] A/I
∃?oo

A[t, t−1]

OOOO

A.

OOOO

µ∗oo

(13.8)

In other words, we are trying to characterize ideals I such that µ∗(I) ⊆ I[t, t−1]. Let
a =

∑
i∈Z ai ∈ I. Then µ∗(a) =

∑
i∈Z t

i ⊗ ai. From here it is clear that

µ∗(I) ⊆ I[t, t−1] ⇐⇒ ∀ a ∈ I we have ai ∈ I ∀ i ∈ Z.
�

Step 3: We claim that the map q : X → Q is surjective. Let a0 ⊆ A0 be any ideal.
Then it is checked from the definition of graded R-algebra that

a0 = A0 ∩ (a0A).

Apply this to a prime ideal p0 ∈ Spec(A0). By assumption, A is noetherian, so the ring
A/(p0A) has only finitely many minimal prime ideals, say q1, . . . , qr. Moreover, there
exists an integer n ≥ 1 with (

∩ri=1 qi
)n ⊆ p0A ⊆ (∩ri=1qi).

Taking the intersection with A0 we obtain

A0 ∩ (∩ri=1qi)
n ⊆ p0 ⊆ A0 ∩ (∩ri=1qi). (13.9)

Let Zi = V (qi) be the closed subscheme defined by qi. At the level of underlying topo-
logical spaces, both V (∩ri=1qi) and V ((∩ri=1qi)

n) are just Z = ∪ri=1Zi. So (13.9) states
that

V (p0) = q(∪ri=1(Zi)).

The union on the right hand side is finite and hence agrees with ∪ri=1q(Zi). Moreover,
q(Zi) is nothing but the irreducbible closed subspace with generic point q(qi). Since V (p0)
is irreducible with generic point p0, there hence has to exist some i with p0 = q(qi), proving
the claim.

Step 4: A brief observation. Let {Ij}j∈J be a family of homogeneous ideals of A. Then

(
∑
j∈J

Ij) ∩A0 =
∑
j∈J

(Ij ∩A0).

Geometrically on the level of topological spaces, this states that for G-invariant closed
subschemes Zj ⊆ X,

q(∩j∈JZj)) = ∩j∈Jq(Zj). (13.10)

Step 5: We claim that if Z ⊆ X is G-invariant, then q(Z) is closed. Let y ∈ q(Z) \ Z
be any point. Let Y = {y} be its closure endowed with its reduced subscheme structure.
Then q−1(Y ) ⊂ X is closed and G-invariant. Then we have

Y = q(Z) ∩ Y
(3)
= q(Z) ∩ q(q−1(Y ))

(4)
= q(Z ∩ q−1(Y )).

(13.11)
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Now we argue as during Step 3: Since X is noetherian, Z ∩ q−1(Y ) has finitely many
generic points z1, . . . , zr and the last line in (13.11) equals ∪ri=1q(zi). Since Y is irreducible
with generic point y, there exists some i with y = q(zi). This is in contradiction to our
assumption y /∈ q(Z), so q(Z) \ Z = ∅.

Final step: (Q, q) has the categorical quotient property. Let v : X → T be any G-
invariant morphism of R-schemes. Then for every W ⊆ T affine open, v−1(W ) ⊆ X is
open and G-stable. Thus Z = X \ v−1(W ) (with reduced scheme structure) is closed and
G-stable. By Step 5, this implies that q(Z) is closed. So VW = Q \ q(Z) is open with
q−1(VW ) ⊆ v−1(W ). Covering VW by affine opens and using Step 2, we find a unique
morphism VW →W that fits into the diagram

v−1(W ) ⊇ q−1(VW )

v

$$

q // VW

∃!
��
W.

Step 4 and 5 imply that if we varyW to cover all of T , then the VW cover all of Q. Indeed,

∩W (Q \ VW ) = ∩W q(X \ v−1(W ))

(4)+(5)
= q(∩WX \ v−1(W ))

= q(∅).

Moreover, Step 2 ensures that the various maps VW → T glue to a morphism Q → T .
This finishes the proof of Theorem 13.10. �

Example 13.13. (1) Let k be a field and A = k[X1, . . . , Xn]. Consider the action µ of
Gm,k on Ank with coaction map

µ∗ : A −→ k[t, t−1]⊗k A, µ∗(Xi) = t⊗Xi.

On S-valued points, this is nothing but the the scaling action

λ · (x1, . . . , xn) = (λx1, . . . , λxn).

The corresponding grading is the usual grading by degree, meaning deg(Xi) = 1 for
i = 1, . . . , n. In particular A0 = k. By Theorem 13.10, the map Ank → Spec k is a
categorical quotient Gm\Ank . This is in line with Example 13.6.

(2) Consider next the localization A[X−1
1 ]. The grading is as before, i.e.

deg(Xr1
1 · · ·X

rn
n ) = r1 + . . .+ rn.

The difference is that we now allow r1 ∈ Z and then obtain

A[X−1
1 ]0 = k[X2/X1, . . . , Xn/X1].

This situation is familiar from the construction of Pn−1
k .

(3) Consider A = k[X,Y ] with the non-standard Gm,k-action given by

µ∗ : k[X,Y ] −→ k[t, t−1]⊗k k[X,Y ], µ∗(X) = t⊗X, µ∗(Y ) = t−1 ⊗ Y.

On S-valued points, this is the scaling action

λ · (x, y) = (λx, λ−1y).

The grading on A is given by deg(X) = 1 and deg(Y ) = −1. In particular A0 = k[XY ].
So the categorical quotient of µ is isomorphic to A1

k.
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13.3. Application to W and E``. Recall that the Weierstrass moduli problem is repre-
sented by SpecR with

R = SpecZ[1/6][a, b,∆−1], ∆ = 4a3 + 27b2

and universal pair (E , π) given by

E = V+(homog(y2 − x3 − ax− b)) ⊂ P2
R

π = −dx/2y.
Recall that there is a Gm-action on W give by λ · (E, π) = (E, λπ).

Proposition 13.14. The corresponding grading on R = Z[1
6 ][a, b,∆−1] is given by

deg(a) = −4, deg(b) = −6.

The Gm-invariants R0 ⊂ R are given by

Z[1/6, j], j = −1728
4a3

∆
.

Sketch of proof. Let (E, π) be a Weierstrass pair over a scheme S with 6 ∈ OS(S)×.
We have seen in Lemma 11.3 and during the proof of Theorem 12.3 that the choice of
coordinates x, y on E that have a simple Weierstrass equation is unique up to scaling
operations of the form (11.4)

x′ = ux, y′ = vy, where u, v ∈ OS(S)×, u3 = v2. (13.12)

Now assume that λ ∈ OS(S)×, that (x, y) are such that π = −dx/2y, and that π′ = λπ.
Then the unique (x′, y′) with π′ = −dx′/2y′ are determined by

x′ = ux, y′ = vy, u3 = v2, u/v = λ.

The unique solution (u, v) is

u =
u2

v2
= λ−2, v = u/λ = λ−3.

Substituting x = x′/u and y = y′/v in the Weierstrass equation y2 = x3 + ax+ b gives

λ6(y′)2 = λ6(x′)3 + aλ2(x′) + b.

Renormalizing as to make this monic gives

(y′)2 = (x′)3 + λ−4ax′ + λ−6b.

This shows that deg(a) = −4 and deg(b) = −6. Now assume that p(a, b) ∈ Z[1/6, a, b]
and n ∈ Z are such that p(a, b) ·∆n is homogeneous of degree 0. Then, clearly, p(a, b) has
to be homogeneous of degree 12n. Since

4a3/∆ = 1− 27b2/∆,

a small argument shows that the ring of Gm-invariants is Z[1/6, j] as claimed. �

Let E``[1/6] be the restriction of E`` to Z[1/6]-schemes. One can show (exercise) that
there is a unique natural transformation J : E``[1/6]→ Gm\W that makes the following
diagram commute:

W //

��

E``[1/6]

Jyy
Gm\W.

(13.13)

This can be proved abstractly from the categorical quotient property of Gm\W, and the
resulting J has the following concrete description. Let E/S be an elliptic curve. Then,
after identifying Gm\W with the affine scheme SpecZ[1/6, j] as in Proposition 13.14, the
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map J (E)∗ : Z[1/6, j]→ OS(S) takes j to the j-invariant j(E). It is defined by choosing
an open covering S = ∪i∈ISi such that each restriction E|Si admits a Weierstrass equation
y2 = x3 + aix + bi. Then j(E)|Si = −1728 · 4a3

i /(4a
3
i + 27b2i ). As the j-invariant does

not depend on the choice of Weierstrass equation, (j(E)|Si)i∈I glues to a global section
j(E) ∈ OS(S).

One may further show (exercise) that the morphism E``[1/6]→ Gm\W has the follow-
ing universal property. For every natural transformation F : E``[1/6] → Y to a scheme
Y , there is a unique morphism f : Gm\W → Y making the following diagram commute:

E``[1/6]

J

yy
F
��

Gm\W
f

// Y.

(13.14)

That is, J is a so-called coarse moduli space for E``[1/6]. It has to be understood as the
best possible approximation to E``[1/6] by a scheme.

Definition 13.15 (Coarse moduli space). LetM be a contravariant functor on (Sch/S)
and let J : M → M be a natural transformation to an S-scheme M . Then (M,J ) is
called a coarse moduli space forM if it has the following two properties:
(1) For every algebraically closed S-field k, the map J (k) :M(k)→M(k) is bijective.
(2) Every natural transformation F :M→ Y to an S-scheme Y factors uniquely through
a morphism f : M → Y .

For the j-invariant, property (1) is precisely Theorem 11.4.

14. Fine moduli spaces

14.1. Level structure. Let E/S be an elliptic curve. Recall that E[n] is a finite locally
free S-group scheme of degree n2 (Theorem 9.5). If moreover n ∈ OS(S)×, then E[n]→ S
is finite étale (Corollary 9.20) and there exists a finite étale surjective T → S together
with an isomorphism

Z/nZ⊕2

T

∼−→ T ×S E[n].

Definition 14.1. Let n ≥ 1, let n ∈ OS(S)×, and let E/S be an elliptic curve. (1) A
level-n-structure on an elliptic curve E/S is an isomorphism

α : Z/nZ⊕2

S

∼−→ E[n].

(2) The functor of level-n-structures on E is defined as

LE,n : (Sch/S)op −→ (Set)

[u : T → S] 7−→
{
α : Z/nZ⊕2

T

∼−→ T ×S E[n] level str.
}
.

(14.1)

There is an action of GL2(Z/nZ) (even of the constant group scheme GL2(Z/nZ)
S
) on

LE,n that is given by composition: g • α := α ◦ g.

Definition 14.2 (Torsor). Let G be an S-group scheme acting on an S-scheme X. Then
X is called a G-torsor (for the Zariski/étale/fppf/fpqc topology, respectively) if there exists
a covering T → S for said topology and a G-equivariant isomorphism

γ : T ×S G
∼−→ T ×S X.

Here, G-equivariant means that γ(gh) = g · γ(h) for all U → T and g, h ∈ G(U).
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Remark 14.3 (Terminology in special cases). (1) Let G = GLn,S , for example G = Gm,S .
Then any G-torsor for the fpqc topology is already a G-torsor for the Zariski topology.
For this reason, the topology is usually not explicitly mentioned in this case.
(2) Let Γ be a finite group. By Γ-torsor over S, one means a ΓS-torsor for the étale
topology. Moreover, any ΓS-torsor for the fpqc topology is already a ΓS-torsor for the
étale topology.

Proposition 14.4. The functor LE,n is representable by a finite étale S-scheme. It is a
GL2(Z/nZ)-torsor.17 More precisely, there exists a finite étale surjective T → S together
with an GL2(Z/nZ)-equivariant isomorphism

GL2(Z/nZ)
T

∼−→ T ×S LE,n.

In particular, LE,n → S is finite locally free of degree |GL2(Z/nZ)|.

Proof. Giving a group homomorphism

α : Z/nZ⊕2

T
−→ T ×S E[n]

is equivalent to giving the images α(1, 0), α(0, 1) ∈ E(T ). Hence we consider X := E[n]×S
E[n]. Then LE,n ⊆ X is the subfunctor of T -valued points such that the two sections define
a level structure (i.e. s.th. α is a homomorphism). For each pair (a, b) ∈ (Z/nZ)⊕2 \(0, 0),
consider the map that takes linear combination

ma,b : X −→ E[n], ma,b(x, y) = ax+ by.

Note that X and E[n] are finite étale S-schemes, so ma,b is automatically finite étale
(Lemma 9.17). Similarly, 0 : S → E[n] is finite étale. Consider the fiber product

Ba,b = X ×ma,b, E[n], 0 S −→ X. (14.2)

It is the “bad locus” where the two sections (x, y) ∈ X are linearly dependent via (a, b).
Being finite étale is stable under products, so Ba,b → S is finite étale. By Lemma 9.17
again, or by stability under pullbacks, (14.2) is finite étale. By Proposition 9.19, (14.2) is
open and closed. (Since (14.2) is also a monomorphism, this means that Ba,b is an open
subscheme of X that is also closed.) Similarly, any T -morphism α : Z/nZ⊕2

T
→ T ×S E[n]

is open and closed. So it can be checked fiber by fiber whether α is an isomorphism, and
we obtain

LE,n
∼−→ X \ ∪(a,b)6=(0,0)Ba,b.

This proves the representability of LE,n by an open and closed subscheme of X.
For the second claim, consider a finite étale surjectiven T → S and an isomorphism

Z/nZ⊕2

T

∼→ T ×S E[n]. Then clearly

T ×S LE,n
∼−→ GL2(Z/nZ)

T
.

Being finite locally free of degree d can be checked after fpqc base change, so LE,n → S is
finite locally free of degree |GL2(Z/nZ)|. �

Definition 14.5. (1) Let E``n/Z[1/6n] be the functor of isomorphism classes of pairs
(E,α), where α is a level-n-structure for E. Here,

(E,α) ∼= (E′, α′) ⇐⇒ ∃γ : E
∼−→ E′ s.th. γ ◦ α = α′.

(2) Let Wn/Z[1/6n] be the functor of isomorphism classes of pairs (E,α, π), where α is a
level structure and where π ∈ Ω1

E/S(E) is a generator. There are forgetful maps to E``n

17See Remark 14.3.
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and W that fit into a commutative (not Cartesian!) diagram

Wn
//

��

E``n

��
W // E``.

(14.3)

(3) Endow Wn with the Gm-action λ · (E,α, π) = (E,α, λπ). Denote by

q :Wn −→Mn := Gm\Wn (14.4)

the categorical quotient. (“M” is for moduli space.)

Corollary 14.6. The functor Wn is representable by an affine Z[1/6n]-scheme. The
forgetful map Wn →W is a GL2(Z/nZ)-torsor.

Proof. Theorem 12.3 states that W[1/n] is representable. Apply Proposition 14.4 to the
universal elliptic curve E → W. We obtain that Wn is representable by a finite étale
GL2(Z/nZ)-torsor over W[1/n]. Being finite over an affine scheme, Wn is in particular
affine. �

The Gm-action on Wn commutes with the GL2(Z/nZ)-action. This implies that the
GL2(Z/nZ)-action preserves the ring of invariants Γ(Wn,OWn)0 and hence thatGL2(Z/nZ)
acts on the quotient Gm\Wn. In this way, we obtain the GL2(Z/nZ)-equivariant diagram

Wn

|| $$
E``n

Φ // Gm\Wn

(14.5)

where the dotted arrow exists for the same abstract reasons as in (13.13). One may also
show with the same arguments that Φ is a coarse moduli space for E``n. The next theorem
is the main result of our course.

Theorem 14.7. Assume that n ≥ 3. Then Φ is an isomorphism. In particular, E``n is
representable by an affine scheme.

14.2. The Gm-action on Wn when n ≥ 3. We begin with a statement that explains
why Theorem 14.7 is plausible. Relatedly, it also provides the motivation for considering
level structures in the first place.

Proposition 14.8. Let n ≥ 3, and let (E,α)/S be an elliptic curve together with a level-
n-structure. Then

Aut(E,α) = {id}.

Proof. Let φ : E
∼→ E be an automorphism such that φ|E[n] = id. Then E[n] ⊆ ker(φ−1).

By Proposition 10.1, there exists a homomorphism ψ : E → E such that φ− 1 = nψ. We
obtain that

n2 deg(ψ) = ψ∗ ◦ ψ
= (φ− 1)(φ∗ − 1)

= deg(φ)− (φ+ φ∗) + 1

= 2− (φ+ φ∗).

By Proposition 10.9 (2), φ is a 6-th root of unity. In particular, φ+ φ∗ ∈ [−2, 2].18 Thus
we obtain n2 deg(ψ) ≤ 4. Since n2 ≥ 9 by assumption, the only possibility is ψ = 0. �

18More precisely, by Corollary 7.26, φ+ φ∗ is locally constant on S with values in {−2,−1, 0, 1, 2}.
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Definition 14.9. Let G be an S-group scheme and let X be an S-scheme. An action
µ : G×S X → X of G on X is called free if the morphism

G×S X
µ×prX−→ X ×S X (14.6)

is a closed immersion.

Let T be an S-scheme and consider the map

(µ× prX)(T ) : G(T )×X(T ) −→ X(T )×X(T ). (14.7)

Assume the images of two points (g, x) and (g′, x′) are equal; that is,

(gx, x) = (g′x′, x′).

Then x = x′, and hence gx = g′x. This means that g−1g′ lies in the stabilizer G(T )x.
In this way, we see that (14.6) is a monomorphism if and only if all stabilizers G(T )x are
trivial (here T/S and x ∈ X(T ) any). In set theory, this is precisely the definition of a
free action. The slightly stronger requirement for (14.6) to be a closed immersion is added
to exclude certain topological pathologies.

Proposition 14.10. Assume that n ≥ 3. Then the Gm-action on Wn is free.

Proof. We use the following criterion to check that f : Gm ×Wn →Wn ×Wn is a closed
immersion.

Lemma 14.11 ([8, Tag 04XV]). Let f : X → Y be a morphism of schemes. Then f is a
closed immersion if and only if it is a proper monomorphism.

f is a monomorphism. As explained after (14.7), this is equivalent to the stabilizers of all
T -valued points (E,α, π) ∈ Wn being trivial. By Proposition 14.8, the only automorphism

(E,α)
∼−→ (E,α)

is the identity. So (E,α, π) ∼= (E,α, λπ) if and only if π = λπ if and only if λ = 1.
f is proper. Wn is a finite type Z[1/n]-scheme, so f is of finite type. We need to check

the valuative criterion of properness.

Proposition 14.12 (Weil’s extension theorem). Let S be a connected Dedekind scheme19

with generic point η. Let E1 and E2 be elliptic curves over S. Then

Hom(E1, E2)
∼−→ Hom(E1(η), E2(η)). (14.8)

The proof is beautiful and not difficult, but we skip it for now. We remark that the
analog of (14.8) also holds for abelian varieties (Néron model property of abelian schemes,
see [1, §1]).

We check the valuative criterion for f . Let R be a DVR with quotient field K and such
that n ∈ R×. We need to see the unique existence of the dotted arrow for any diagram of
the form

SpecK //

��

SpecR

��ww
Gm ×Wn

// Wn ×Wn.

The uniqueness is clear because all involved schemes are separated. For the existence,
translating to the moduli definition of Wn yields the following. Let (E1, α1, π1) and
(E2, α2, π2) lie inWn(R). Assume that there exists a datum (λ, (E,α, π)) ∈ K××Wn(K)
together with isomorphisms

(E,α, λπ)
∼−→ K ⊗R (E1, α1, π1), (E,α, π)

∼−→ K ⊗R (E2, α2, π2). (14.9)

19That is, S is noetherian, integral, normal and 1-dimensional.

https://stacks.math.columbia.edu/tag/04XV
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We need to see that (λ, (E,α, π)) ∈ R× ×Wn(R).20 Composing the isomorphisms from
(14.8), we obtain an isomorphism

γK : K ⊗R (E1, α1)
∼−→ K ⊗R (E1, α2)

such that γ∗K(π2) = λπ1. By Weil’s extension theorem, there exists a unique isomorphism
γ : E1 → E2 such that K ⊗R γ = γK . Then also

α2 = γ ◦ α1 : Z/nZ⊕2

R

∼−→ E2[n] (14.10)

because this identity holds after K ⊗R −, and because both source and target in (14.10)
are flat affine R-schemes. Now both π1 and γ∗(π2) are generators of the free rank one
R-module Ω1

E1/R
(E1) and hence differ by an element λ0 ∈ R×. Necessarily λ0 = λ because

this holds after K ⊗R −, so λ ∈ R× and the proof is complete. �

14.3. Quotients by free Gm-actions.

Proposition 14.13. Let S = SpecR be an affine scheme, let X = SpecA be an affine
S-scheme, and let µ : Gm,S ×S X → X be a Gm-action. Assume that µ is free. Then the
quotient

X −→ Q := SpecA0

is a Gm-torsor for the Zariski topology. More precisely, A1 is a line bundle over A0 and
A =

⊕
i∈ZA

⊗i
1 .

Proof. The action µ being free means that the dual to (14.6), which in our case is

µ∗ : A⊗R A −→ R[t, t−1]⊗R A
Ai ⊗R A 3 ai ⊗ b 7−→ ti ⊗ aib,

is surjective. In particular, t⊗ 1 lies in its image. This means there exist e1, . . . , er ∈ A1

and b1, . . . , br ∈ A such that 1 = e1b1 + . . . + erbr. Arranging this identity degree by
degree, we see that we may assume that e1, . . . , er are homogeneous of degree 1 and that
b1, . . . , br are homogeneous of degree −1. Set ui = eibi. Then

SpecA0 = ∪ri=1 D(ui).

Claim: There is a Gm-equivariant isomorphism Gm,D(ui)
∼−→ D(ui)×QX. To prove this,

note that ui ∈ A[u−1
i ] is invertible. So ei and bi are invertible in A[u−1

i ]. Given any
a ∈ A1[u−1

i ], we may write a = (ae−1
i )ei. In other words, multiplication by ei defines an

isomorphism of A0[u−1
i ]-modules

ei : A0[u−1
i ]

∼−→ A1[u−1
i ].

This shows that A1 is a line bundle over A0 that is trivialized by ei above D(ui). Given
a ∈ Ad[u−1

i ], we similarly have a = (a · e−di ) · edi . So the natural map⊕
i∈Z

A⊗i1
∼−→ A

is an isomorphism. Over D(ui), this states that A[u−1
i ] = (A0[u−1

i ])[ei, e
−1
i ] as graded ring

(ei sits in degree 1), meaning that there is a Gm-equivariant isomorphism

Gm,D(ui)
∼−→ D(ui)×Q X (14.11)

as claimed. In particular, X → Q is a Gm-torsor for the Zariski topology in the sense of
Definition 14.2 that is trivialized by the covering tri=1D(ui)→ Q. The proof is complete.

�

20This notation is justified because Wn(R) ⊆ Wn(K) which follows from the fact that Wn is repre-
sentable by an affine scheme/resp. is separated. The more precise meaning is that λ ∈ R× and that there
exists a datum (Ẽ, α̃, π̃) ∈ Wn(R) with K ⊗R (Ẽ, α̃, π̃) ∼= (E,α, π).
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14.4. Proof of Theorem 14.7. Recall that n ≥ 3. Our aim is to construct two mutually
quasi-inverse functors Φ and Ψ that make the following diagram commute,

Wn

||

q

""
E``n

Φ //Mn.
Ψ

oo

(14.12)

Construction of Φ. This is the same as the construction of J in (13.13). Given an
isomorphism class (E,α) ∈ E``n(S), pick an open covering S = ∪i∈ISi such that ωE |Si
is trivial. Choose generators πi ∈ Ω1

E/S(Ei). These define points (E|Si , α, πi) ∈ Wn(Si)

which map to points xi = q(E|Si , α, πi) ∈ Mn(Si) of the quotient. On overlaps Si ∩ Sj ,
the choices πi|Si∩Sj and πj |Si∩Sj differ by a (unique) unit from OS(Si ∩ Sj)×. In other
words, they are Gm(Si∩Sj)-translates of each other. Since q is Gm-invariant, this implies

xi|Si∩Sj = xj |Si∩Sj ∈Mn(Si ∩ Sj).

Hence the datum (xi)i∈I glues to an S-valued point Φ(E,α) ∈ Mn(S). Note that this is
the unique way to define a natural transformation Φ that makes (14.12) commute.

Construction of Ψ. We now use that n ≥ 3 and apply our previous preparations. Note
that constructing Ψ is equivalent to constructing an isomorphism class (E,α) ∈ E``n(Mn).
Combining Proposition 14.10 with Proposition 14.13, we have shown that Wn → Mn

is a Gm-torsor for the Zariski topology. In particular, there exists an open covering
Mn = ∪i∈IUi together with sections σi

Wn

q

��
Ui �
� //

σi
<<

Mn.

(Concretely, choose the Ui as the D(ui) in (14.11), and note that Gm,Ui has the constant
section 1.) By the moduli definition ofWn, the sections σi correspond to triples (Ei, αi, πi)
over Ui.

Part of the torsor property is that for each pair i, j, there exists a unique unit λij ∈
OMn(Ui ∩ Uj)× with

(Ei, αi, πi)|Ui∩Uj ∼= λij · (Ej , αj , πj)|Ui∩Uj .

Namely, up to isomorphism, we are comparing two sections

σi|Ui∩Uj , σj |Ui∩Uj : Ui ∩ Uj −→ Gm,Ui∩Uj ,

and such sections always differ by left multiplication with an element of Gm(Ui ∩ Uj).
The conclusion is that, in particular, there exist isomorphisms

γij : (Ei, αi)|Ui∩Uj
∼−→ (Ej , αj)|Ui∩Uj .

By Proposition 14.8, the cocycle condition is automatically satisfied for {γij}, and hence
the datum (Ei, αi)i∈I glues to a (unique up to isomorphism) pair (E,α) ∈ E``n(Mn).

Tracing through the definitions of Φ and Ψ, a small check shows that they are mutually
quasi-inverse. �

15. The Deuring–Eichler Mass Formula

In this last section, we present an application of the construction of the moduli space
for Mn, n ≥ 3. Namely, we will explain a proof of the mass formula of Deuring–Eichler
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(10.9): ∑
{E supersing. over F̄p}/∼

1

|Aut(E)|
=
p− 1

24
. (15.1)

We will take several statements on faith in this section, but the proof logic will still
demonstrate the significance of having a universal family of elliptic curves.

15.1. Ordinary and supersingular elliptic curves. Let E/k be an elliptic curve over
a field of characteristic p. We have seen that E[p] is a k-group scheme of degree p2. What
else can we say? We know:
(1) The k̄-points E(k̄) form a p-torsion group of order ≤ p2. Up to isomorphism, the only
possibilities are 0, Z/pZ, or (Z/pZ)⊕2.
(2) The identity connected component of E[p], call it E[p]◦, is a closed subscheme of
SpecOE,e. The local ring OE,e is a DVR because E is a smooth curve, and its residue
field is k. Let t ∈ OE,e be a uniformizer. There is hence an integer m ≥ 1 such that
E[p]◦ ∼= Spec k[t]/(tm). By a translation argument, |E(k̄)| ·m = p2, so m ∈ {1, p, p2}.
(3) The group scheme E[p] cannot be étale because we have shown that

e∗Ω1
E[p]/k = ker

(
p : e∗Ω1

E/k −→ e∗Ω1
E/k

)
. (15.2)

This shows that the only possibilities are m = p or p2.

Definition 15.1. We call E ordinary if m = p, or equivalently if |E(k̄)| = p. We call E
supersingular in the complementary case: m = p2 and |E(k̄)| = {0}.

We note without proof that this is equivalent to the definition we gave at the end of
§10:

Proposition 15.2. Let E/k be an elliptic curve over a field of characteristic p. The
following are equivalent:
(1) E is supersingular, meaning E[p](k̄) = {0}.
(2) End(k̄ ⊗k E) is non-commutative, meaning an order in a quaternion algebra.

15.2. Frobenius and Verschiebung. Let X be a scheme over Fp. Then there is the
absolute Frobenius morphism FX : X → X: It is (by definition) the identity on the
topological space of X and given by

F ∗X(f) = fp, f ∈ OX(U), U ⊆ X open

on functions. Now assume that X is an S-scheme. Clearly, FX need not be a morphism of
S-schemes because it also acts by f 7→ fp on functions coming from OS . More precisely,
the following diagram commutes:

X
FX //

��

X

��
S

FS // S.

(15.3)

Set X(p) = S ×FS , S X. By the universal property, (15.3) gives rise to an S-morphism
FX/S called the relative Frobenius,

X

FX

$$FX/S //

''

X(p) //

��

X

��
S

FS // S.

(15.4)
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Apply this to an elliptic curve E/S. The pullback E(p) is again an elliptic curve over S,
called the Frobenius twist of E. The relative Frobenius FE/S : E → E(p) preserves the
unit section. By Corollary 7.25, it defines a homomorphism.

Example 15.3. Locally on S, the relative Frobenius has the following description. Sup-
pose E is given by the Weierstrass equation y2 = x3 + ax + b where a, b ∈ OS(S). Then
E(p) is defined by

E(p) : y2 = x3 + apx+ bp.

In particular, the Hasse invariants of E and E(p) are related by j(E(p)) = j(E)p. On the
affine opens E \ {e(S)} and E(p) \ {e(S)}, the relative Frobenius is given by

FE/S : V (y2 − x3 − ax− b) −→ V (y2 − x3 − apx− bp), F ∗E/S(x) = xp, F ∗E/S(y) = yp.

This makes sense because

F ∗E/S(y2 − x3 − apx− bp) = (y2 − x3 − ax− b)p ∈ (y2 − x3 − ax− b).

The relative Frobenius FE/S is bijective on topological spaces. It is, in particular,
fiber-wise non-zero and hence an isogeny. We know (Lemma 9.1) that this implies that
ker(FE/S) is a finite locally free group scheme over S. Let I ⊂ OE be the ideal sheaf
defining the unit section e(S). When computing the kernel via the Cartesian diagram

ker(FE/S) //

��

S

e
��

E
FX/S

// E(p),

it is not hard to show that ker(FE/S) = V (Ip): For example, the definition of FE/S
immediately gives V (Ip) ⊆ ker(FE/S). Then we can check in fibers (i.e. for smooth
curves over a field) that deg(FE/S) = p, so equality has to hold.

Definition 15.4. By the above, the degree of FE/S is p. Define the Verschiebung

V : E(p) −→ E

as the unique homomorphism such that V FE/S = [p]E (use Proposition 10.1). Equiva-
lently, define V as the Rosati adjoint F ∗E/S .

Proposition 15.5. Let E/k be an elliptic curve over a field in characteristic p. Then E
is ordinary if and only if V : E(p) → E is an étale isogeny.

Proof. We have essentially seen during §9 that an isogeny f : E1 → E2 is étale if and
only if ker(f) is an étale group scheme. Assume the base is a field, say S = Spec k. By
Theorem 9.16, we know

ker(f) is étale ⇐⇒ k̄ ⊗k ker(f) is constant

⇐⇒ | ker(f)(k̄)| = deg(ker(f)).
(15.5)

Specializing to the situation of the proposition, we need to show that E is ordinary if
and only if | ker(V )(k̄)| = p. (Note that deg(V ) = p.) Since V FE/k = [p], we have
F−1
E/k(ker(V )) = E[p]. If E is supersingular, then E[p] ∼= Spec k[t]/(tp

2
) and this implies

ker(V )(k̄) = {0}. If V is ordinary, then we know that E[p](k̄) ∼= Z/pZ. We also know
that ker(FE/k) ∼= Spec k[t]/(tp), so necessarily ker(V )(k̄) ∼= Z/pZ. �

Example 15.6. Consider a prime p - 6n and the special fiberMn,Fp . Denote by E/Mn,Fp
the universal elliptic curve. (We do not require the universal level-n-structure on E .)
Then all that has been said before applies to E : There is the Verschiebung morphism
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V : E(p) → E . The kernel ker(V ) is a finite locally freeMn,Fp-group scheme of degree p.
Its fibers are étale (resp. connected) precisely over those points ofMn,Fp over which E is
ordinary (resp. supersingular). Only finitely many points are supersingular, and our aim
is to count them.

15.3. The Hasse invariant. Recall that we defined the Hodge bundle of E/S by ωE =
e∗Ω1

E/S . If f : E1 → E2 is a homomorphism, then pullback of differential forms defines a
map of line bundles f∗ : ωE2 → ωE1 .

Lemma 15.7. Let f : E1 → E2 be a homomorphism of elliptic curves over S. Then f is
an étale isogeny if and only if the induced pullback f∗ : ωE2 → ωE1 is an isomorphism.

Proof. The map f is étale if Ω1
E1/E2

= 0. By a translation argument that one can carry
out in geometric fibers, for example, this is equivalent to e∗Ω1

E1/E2
= 0. Consider the

exact sequence
f∗Ω1

E2/S
−→ Ω1

E1/S
−→ Ω1

E1/E2
−→ 0.

Pullback along the unit section of E1 gives an exact sequence

ωE2

f∗−→ ωE1 −→ e∗Ω1
E1/E2

−→ 0.

Both ωE2 and ωE1 are line bundles on S, so f∗ is not invertible precisely if e∗Ω1
E1/E2

is
non-zero, as was to be shown. �

Lemma 15.8. Let E/S be an elliptic curve over an Fp-scheme S. There is a natural
isomorphism ωE(p)

∼→ ω⊗pE .

Proof. Consider the diagram that defines E(p):

E(p) h //

��

E

��
S

FS

//

e(p)

HH

S.

e

HH (15.6)

We have denoted the unit section of E(p) by e(p) because it comes via base change of e
along FS . Now recall that the formation of Ω1 commutes with base change. That is,

h∗ : h∗Ω1
E/S

∼−→ Ω1
E(p)/S

.

If we now apply the definition of ωE(p) , then we find

ωE(p) = e(p),∗(h∗Ω1
E/S

)
= F ∗S

(
e∗Ω1

E/S

)
= F ∗SωE . (15.7)

Given any line bundle L on an Fp-scheme S, we have F ∗S(L) = L⊗p. Namely, if (φij)i,j ∈
H1(S,O×S ) is a cocycle defining L, then (φpij)i,j is a cocycle defining F ∗S(L). Applying this
to (15.7) finishes the proof. �

Definition 15.9 (Hasse invariant). Let E/S be an elliptic curve over an Fp-scheme S.
Consider the pullback map on Hodge bundles induced by the Verschiebung,

V ∗ : ωE −→ ωE(p)/S = ω⊗pE . (15.8)

Let HaE ∈ H0(S, ωp−1
E ) be the corresponding section of ωp−1

E . It is called the Hasse
invariant of E.

Corollary 15.10. For every point s ∈ S,
HaE(s) = 0 ⇐⇒ E(s) is supersingular. (15.9)

Proof. By Lemma 15.7, HaE(s) = 0 if and only if V (s) : E(s)(p) → E(s) is not étale. By
Proposition 15.5, this happens if and only if E(s) is supersingular. �
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15.4. Application to our counting problem.

Example 15.11. Suppose that n ≥ 3 and p - 6n. Consider the geometric special fiber
Mn,F̄p = F̄p ⊗Z[1/6n]Mn with its universal elliptic curve E . Corollary 15.10 implies that

#
{

(E,α)/F̄p
∣∣∣ E supersing.
α level-n-str.

}
/iso. = #{x ∈Mn,F̄p | HaE(x) = 0}. (15.10)

Proposition 15.12. Suppose n ≥ 3. The morphism Mn → SpecZ[1/6n] is smooth of
relative dimension 1.

Proof. The Weierstrass moduli problem W is representable by an open subscheme of A2
Z

(Theorem 12.3). In particular, it is smooth of relative dimension 2 over Z. The morphism
Wn → W is finite étale by Corollary 14.6. So Wn is also smooth of relative dimension 2
over Z.

Next note the following fact. Let X → Y → Z be two morphisms of locally finite
presentation. Suppose that X → Y is surjective and smooth of dimension d, and that
X → Z is smooth of dimension e. Then Y → Z is smooth of dimension e− d.

We know thatWn →Mn is a Gm-torsor, in particular surjective and smooth of relative
dimension 1. We deduce thatMn → Z is smooth of relative dimension 1. �

In particular, Mn,F̄p is a smooth, affine, 1-dimensional F̄p-scheme. It need not be
connected, but each connected component is integral and normal. Let Ha ∈ ωp−1(Mn,F̄p)
be the Hasse invariant of the universal elliptic curves. We can view the vanishing locus
V (Ha) as a divisor onMn,F̄p . In this context, we have the following important result of
Igusa:

Proposition 15.13 (Igusa). The multiplicities of div(Ha) are all equal to 1. In particular,

deg(div(Ha)) = #
{

(E,α)/F̄p
∣∣∣ E supersing.
α level-n-str.

}
/iso. (15.11)

The right hand side in (15.11) is closely related to our original counting problem.
Namely fix an elliptic curve E over an algebraically closed field k. Let n ≥ 1 be an
integer such that char(k) - n. Then E[n] ∼= Z/nZ⊕2

k
and there are precisely

|GL2(Z/nZ)| = |Isom
(
(Z/nZ)⊕2, E[n](k)

)
|

many level structures on E. Let α0 and α1 be two such level structures. Then (E,α0) and
(E,α1) are isomorphic in the sense of E``n(k) if and only if there exists an automorphism
γ ∈ Aut(E) such that α1 = γ ◦ α0.

Suppose in addition that n ≥ 3. Then Aut(E) → Aut(E[n](k)) is injective by Propo-
sition 14.8 and we see that there are |GL2(Z/nZ)|/|Aut(E)| many pairs (E,α) up to
isomorphism. So dividing both sides of (15.11) by |GL2(Z/nZ)|, we obtain

deg(div(Ha))

|GL2(Z/nZ)|
=

∑
{E/F̄p supersing.}/iso.

1

|Aut(E)|
. (15.12)

15.5. Compactification of Mn. It is clear from (15.12) that our aim is to determine
deg(div(Ha)), where Ha ∈ ωp−1(Mn,F̄p) is the Hasse invariant of the universal elliptic
curve. Recall that if D is a divisor on a proper curve X in the sense of §6, then deg(D)
only depends on the line bundle OX(D). In order to apply this logic to Ha, we need to
compactify Mn,F̄p . This is easy to do abstractly: Every connected affine smooth curve
has a natural smooth projective compactification ([5, Theorem 24.1]). Applying this to
each connected component ofMn,F̄p , we can define

Mn,F̄p :=
disjoint union of the smooth compactifications

of all connected components ofMn,F̄p .
(15.13)
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The subtle question is how to extend the pair (ωp−1,Ha) to this compactification. More-
over, we would like to have a description of the boundary points Mn,F̄p \Mn,F̄p . These
questions were answered in a classical article by Deligne–Rapoport [2] who constructed
a compactification of Mn in terms of generalized elliptic curves. The first page of their
article already shows that this involves certain singular genus 1 curves:

We will mostly be interested in the case n ≥ 3. Then a Néron n-gon over an algebraically
closed field k is a proper reduced connected k-scheme X of dimension 1 with the following
properties:

(1) X has n irreducible components all of which are isomorphic to P1
k.

(2) Each irreducible component intersects precisely two other irreducible components,
each in a single point. (Note that since X is connected, the irreducible components then
necessarily form a circle.

(3) All intersections are transversal. This notion can be defined in general, but here
it means that each intersection point has an affine neighborhood that is isomorphic to
Spec k[x, y]/(xy).
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Definition 15.14 ([2, Definition II.1.4]). Let S be a scheme. A stable curve of genus 1
over S is a morphism X → S that is proper, flat, of finite presentation, with 1-dimensional
fibers and the following property: For each s ∈ S, the geometric fiber Specκ(s) ×S X is
either a smooth curve of genus 1 like in §6, or a Néron n-gon over κ(s) (where n is allowed
to depend on s).

Let p : X → S is a stable curve of genus 1. We denote by Xsm ⊆ X the locus where
p is smooth. This is an open subset which agrees with the complement of all the n-gon
intersection points of the non-smooth fibers.

Definition 15.15. (1) A generalized elliptic curve over S is a stable curve E → S of
genus 1 together with a multiplication morphism

m : Esm ×S E −→ E

that restricts to a group scheme structure on Esm.

(2) Assume n ∈ OS(S)×. A generalized elliptic curve with level-n-structure (E,α) over S
is a generalized elliptic curve E → S whose fibers are either smooth or n-gons together
with a trivialization

α : Z/nZ⊕2

S

∼−→ Esm[n].

Let k be an algebraically closed field and E/k an n-gon. Up to isomorphism, there is
precisely one possibility21 to define a generalized elliptic curve structure on E and then

(Esm, m|Esm×kEsm) ∼= Z/nZ×Gm,k.

In particular, Esm[n] ∼= Z/nZ × µn,k. Torsion subgroups also behave well in families: If
E → S is a generalized elliptic curve with fibers smooth or n-gons, then E[n] is a finite
locally free S-group scheme of degree n2.

Theorem 15.16 (Deligne–Rapoport). Assume that n ≥ 3. Consider the functor of iso-
morphism classes of generalized elliptic curves with level-n-structure (E,α) on Z[1/6n]-
schemes. It is representable by a proper smooth morphismMn → SpecZ[1/6n].

We assume n ≥ 3 from now on. For p - 6n, the special fiber F̄p⊗ZMn is a proper smooth
curve over F̄p that contains Mn,F̄p as dense open subscheme. It is hence isomorphic to
the abstract compactification from (15.13).

Moreover, let E be the universal generalized elliptic curve onMn. Then ω := e∗Ω1
E/Mn

provides a natural extension of the Hodge bundle fromMn toMn.

Proposition 15.17. The Hasse invariant Ha ∈ ωp−1(Mn,F̄p) extends to a section Ha ∈
ωp−1(Mn,F̄p) that does not vanish in any of the boundary pointsMn,F̄p \Mn,F̄p .

Intuitively, the lemma holds because the n-torsion in a Néron n-gon is Z/nZ×µn, which
is just like for an ordinary elliptic curve. We obtain that

deg(div(Ha)) = (p− 1) · deg(ω) (15.14)

where the right hand side denotes the degree as line bundle on a proper smooth curve.22

21Main idea and exercise for this: Determine all automorphisms of P1
k that fix 0 and ∞.

22More precisely, take the sum of the degrees on all connected components.
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15.6. The degree of ω.

Proposition 15.18. The degree of ω onMn,F̄p is given by

deg(ω) =
|GL2(Z/nZ)|

24
. (15.15)

Proof. Step 1: The discriminant. Let y2 = x3 +ax+ b be the simple Weierstrass equation
for a pair (E, π) ∈ W(S). We have seen during the Proof of Proposition 13.14 that if we
scale π to λπ, then (a, b) scale to (λ−4a, λ−6b). Now recall that π ∈ ω(S) is nothing but
a trivialization of the Hodge bundle. It follows that for any family of elliptic curves E/S
with 6 ∈ OS(S)×, we have defined natural sections

a ∈ ω−4(S), b ∈ ω−6(S).

(Concretely, let S = ∪i∈ISi be an open covering such that there exist trivializations
ω|Si = OS · πi. Let ai, bi ∈ OS(Si) be the corresponding Weierstrass equation coefficients.
On each intersection Uij = Ui∩Uj , there exists λij such that πi = λijπj . Then ai = λ−4

ij aj

and bi = λ−6
ij bj which shows that they glue to sections of ω−4 resp. ω−6.) In particular,

the discriminant defines a nowhere vanishing section

∆ = 4a3 + 27b2 ∈ ω−12(S).

Step 2: Application to the universal family. We apply all this with S =Mn,F̄p and obtain
a nowhere vanishing section ∆ ∈ ω−12(S).

Proposition 15.19. The inverse ∆−1 ∈ ω12(S) extends to a section of ω12 that has simple
zeroes at all points of the boundaryMn,F̄p \Mn,F̄p .

The proof of Proposition 15.19 requires one to understand the complete local rings at
boundary points. This is done in terms of the so-called Tate curve. We take the statement
on faith and obtain that

deg(ω) =
|Mn,F̄p \Mn,F̄p |

12
. (15.16)

Step 3: The number of boundary points. Let k be an algebraically closed field with char(k) -
n and let E∞/k be an n-gon generalized elliptic curve. How many pairs (E∞, α) ∈Mn(k)
are there? The argument is the same as before (15.12). It is not too hard to see that
Aut(E∞) = {±1} and {±1} ↪→ Aut(Esm

∞ [n]). So the number of isomorphism classes
(E∞, α) is

|Mn,Fp \Mn,F̄p | =
|GL2(Z/nZ)|

2
. (15.17)

Combining (15.16) and (15.17), we find

deg(ω) =
|GL2(Z/nZ)|

24
as was to be shown. �

15.7. Proof of the Deuring–Eichler mass formula. Our proof is for all p ≥ 5. Pick
an auxiliary integer n ≥ 3 with p - n. We now combine all the results we obtained about
Mn,F̄p : ∑

{E/F̄p supersing.}/iso.

1

|Aut(E)|
(15.12)

=
deg(div(Ha))

|GL2(Z/nZ)|

(15.14)
= (p− 1) · deg(ω)

(15.15)
=

p− 1

24
,

(15.18)

https://en.wikipedia.org/wiki/Tate_curve


94 ANDREAS MIHATSCH

and the proof is complete!
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