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Literature There are two books whose titles include our topic [Gar73; Lon93]. They

can be useful for some of the basics, but are overall outdated.
For vector-valued martingales, modern references are [Hyt+16; Pis16].
The only book about sharp constants in martingale ienqualties is [Osg12].
One stochastic analysis text that pays attention to our topic is [Kal21].
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[1: 2021-10-12]

0 Review of martingale basics

Random variables will be usually defined on a filtered probability space (Q, (%,)nens 4)-
We denote by #, the o-algebra generated by U, cnF,,. The following examples are useful
to keep in mind.

Example 0.1 (Dyadic filtration). Q = [0, 1], u Lebesgue measure, 4, is the g-algebra gen-
erated by the dyadic intervals of length 27", that is, intervals of the form [27"k, 27" (k +
1)] with k € Z.

A higher dimensional version involves dyadic cubes. One can also construct similar
filtrations on more general manifolds, or even metric measure spaces.

Example 0.2 (Atomic filtrations). Q = [0,1], u Lebesgue measure, %, is a o-algebra
generated by finitely many intervals.

We recall that an atom for a measure u on a o-algebra ¥ is a set A € ¥ such that
u(A) > 0 and, for every A’ € F with A’ C A, we have u(A’) € {0, u(A)}. In an atomic
o-algebra, every measurable set is a finite union of atoms.

One can view martingale analysis as analysis of atomic filtrations, if we do not al-
low any constants to depend on the filtration. All results that we are interested in can
be transferred from atomic filtrations to general filtrations. However, it is technically
convenient to always use general filtrations, since they can appear in applications.

Example 0.3. Q = [0,1]V, u the product of Lebesgue measures,
%, = {B x [0, 1]("n+1--} | B C [0, 111071} Borel}. (0.1)

This filtration appears in the analysis of independent random variables, and gives a good
idea of how a general filtration looks like.

An adapted process is a sequence of functions (f,,) such that, for every n € N, the
function f,, is %,-measurable.
An adapted process f is called predictable if, for every n > 0, the function f, is
F,_,-measurable.
For nested o-algebras ¥’ C ¥ on Q, the conditional expectation is the orthogonal
projection
EC|F) : I2(Q,F,u) —» I2(Q,F, 1.

The conditional expectation has the following properties. Here and later, all identities
and inequalities are meant to hold almost surely, unless mentioned otherwise.

1. EQ|F) = 1.

2. For every p € [1, o], E extends to a contraction IP(F) — L[P(F")

3. SE(fIF') = [ f forevery f € L}NF).
4. Positivity: f >0 = E(f|F') > 0.

5. Assume that f € L}N(¥F), g € [°(F), and either fg € L}(F) or f > 0,E(f|F')g €
L}(F"). Then
E(fglF") = E(f|IF")g in L'(F").

Suppose that (X, F,u) is a regular measure space and ¥’ C ¥ is a sub-o-algebra.
Then there exists an essentially unique measurable map (X, #') — M(X), y = u,, such
that, for every f € L'(¥), for u-a.e. y € X, we have f € [NX,u,), and [ fdu, =
E(f|F')(¥). This map is called a measure disintegration. A measure disintegration satis-
fies uy = p,, for u-a.e. y and uy-a.e. x.



Example 0.4. If ' is an atomic filtration, then we can choose a collection of disjoint
atoms A C F' with u(Uyec4A) = 1. Then, for each x € A € A, we can set du, :=
u(A)~11, du, and

E(f17)(x) = u(A)~ f J) du(x).

A

Example0.5. Let Q = [0, 1] with the Lebesgue measure, F the Borel o-algebra, and F’
the Borel o-algebra in the first variable, like in (7.5). Then, we can choose M(x,y) to be
the Lebesgue measure on {x} X [0, 1], and

1
E(f1)(x.y) = f FGay)dy.
0

A martingale is an adapted process with values in C (later also in a Banach space)
such that, for every m < n, the function f,, is integrable, and we have

fm = [E(fnl?m)-

Example 0.6. Sums of independent random variables

Example 0.7 (Dyadic martingale). Let f be an integrable function on [0, 1] with the
Lebesgue measure and f,, = E(f|%,) (the same definition works for any filtration).

This construction can often be used to transfer results from martingales to a real
analysis setting. The main difference between the analysis of dyadic martingales and
general martingales is that the Calderén-Zygmund decomposition does not work for
general martingales. A substitute that does work for general martingales is the Gundy
decomposition.

The main reason why this construction does not produce all possible martingales is
that it may happen that lim,,_, . || f4]| = o, in which case there might be no function f
with f,, = E(f|%,). A well-known example involves a doubling betting strategy.

Example 0.8. Any integrable process can be written as the sum of a process with pre-
dictable jumps and a martingale.

A stopping time is a function 7 : Q — N = N U {oo} such that, for every n € N, we
have {t < n} € %,.

Example 0.9. Any constant function is a stopping time.

Example 0.10 (Hitting time). If f is an adapted process with values in a metric space X
and B C X is a Borel set, then

7 :=inf{t | f; € B}

is a stopping time, called the first hitting time of B.

If o, T are stopping times, then o A 7 and o V 7 are also stopping times.
For a stopping time 7 and a process f, the stopped process f7 is defined by

ftT = fenre

If f is a martingale, then the stopped process f7 is again a martingale.
If 7 is a stopping time, the corresponding o-algebra is defined by

F ={AeF, |(VnNANn{r <n} e}

The function 7 is #,-measurable. We abbreviate E. f := E(f|%).
The optional sampling theorem says that, for every discrete time martingale f, bounded
stopping time 7, and another stopping time o, we have

fo/\‘r = [Eofr-



1 Maximal and square functions

You are probably already familiar with the Lebesgue differentialtion theorem. The best
proof of that theorem uses the maximal operator to absorb error terms. This idea is used
in many places in analysis, and the study of martingales is one of these places.

Definition 1.1 (Maximal operator). For an adapted process f with values in a normed
space, we write

Mf, = (Mf), := i‘iplfkl-

Remark. Since our martingales are indexed by a countable set, we can use a pointwise
supremum here. In continuous time, we would need a lattice supremum.

A submartingale is an adapted process with values in R such that, for every m < n,
we have

Jm < Epfa
Example 1.2. If (f,,) is a martingale, then (|f,|) is a submartingale.
Example 1.3. If f is any adapted process, then M f is a submartingale.
If f is a submartingale, then, for any p € [1, o] and m < n, we have

I fmllp < 1 fallp-
We define the IP norm of a (sub-)martingale by

Ifllp 2= suplfullp-
n

With this definition, the maximal operator is clearly bounded on L*. The next result
looks a lot like an I! — LY* bound for M, but is in fact stronger and more convenient
to use.

Lemma 1.4. Let f be a submartingale with values in Rs,. Then, for every 1 > 0 and
n € N, we have

AUMS, > )| < f £ du.

M fn>A}
Proof. For a fixed 4, define the stopping time
7 :=inflk | fi > 1}.
Then, {Mf,, > A} = {t < n}. Hence,

AMfy > A =2 Y Iz = K|

k<n

<> Je du
k<n J{r=k}

(submartingale property) < Z fndu
k<n J{r=k}

= f Jn dpu. O
{Mfn>1}

Remark (I* norm). By Chebychev’s inequality, for any measurable function g, we have

sup (g > 2} < gl

A>0
The converse inequality is false with any constant, as shown by the example g(x) = 1/x
on the measure space R with the Lebesgue measure. The left-hand side of the above
inequality is the so-called L seminorm of g. As suggested by the notation, L is part
of a larger family of Lorentz spaces, which is in turn contained in Orlicz spaces, but we
will not talk about such generalities.



Theorem 1.5 (Doob’s maximal inequality). Let f be a submartingale with values in R .
Then, for every p € (1, o], we have

IMfllp < D'llfllp-
Here and later, p’" denotes the Holder conjugate: 1/p + 1/p" = 1.

Proof. By the layer cake formula and Lemma 1.4, we write

IMfullo = f pAPLu(Mf, > ) dA
0

< f o [ fauar
{Mfn>24}

Mfy
f f pAP-2f, dadu

e f (M1, du

IA

£ p 1/ 1-1/
L[ awvec [ aagp awe.

Since f,, € IP implies f, € IP forall k < nby IP contractivity of conditional expectations,
we have M f,, € IP. Hence, we can cancel suitable powers of || M f,||, on both sides and
obtain the claim. O

There are other ways to deduce Theorem 1.5 from Lemma 1.4, such as real interpo-
lation with the L* estimate. But the above proof does not rely on the L* estimate, only
on the I!-like estimate in Lemma 1.4.

It is often the case in martingale theory that inequalities near I! are the most pow-
erful ones. One can justify this by the observation that L' is the minimal assumption
required to even define a martingale.
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If f is a martingale, then the increments df, are orthogonal in the Hilbert space
I2(Q). Indeed, more generally, for any n and g € L°(%,_;), we have

E(gdf,) = E(E(gd fulFn-1)) = E(QE(d fn|F-1)) = E(g - 0) = 0. (1.1)

Definition 1.6 (Square function). For a martingale f, we write

Shh o= (X ldff)"”.

k<n

In continuous time, the analog of Sf is denoted by [f] and called the quadratic
variation.

Here and later, for notational simplicity, we will consider martingales with f, = 0.
Since martingale increments d f;, are orthogonal, we have

Ifnll2 = 1S fll2-

Next, we will see that S is bounded from L' to L1*®. The proof that we present for
this fact uses a summation by parts identity of a kind that also appears e.g. in the It6
formula.

Lemma 1.7. Let f be a martingale, A > 0, and 7 := inf{n | | f,| > A}. Then,

2 E(dfilP1esi) < 220 f -
k

On the left-hand side of the above estimate, we are taking the expectation of S;_;.
Note that 7 — 1 is not a stopping time. Such predictability emulation will also be impor-
tant in the BDG inequality below.

Proof. By the monotone convergence theorem, it suffices to consider the case fyy =
fn41 = -+ for an arbitrarily large N. Then, we can replace t by 7 A N + 1 without
changing the inequality. This is necessary to apply the optional sampling theorem.

We use the identity

D AflP + 1 fal? = 2fcfoe = 2 D) fiaadie

k<t k<t
Note that
(k<tt=Q\{r<kl=Q\{r<k-1} € F_,.
Therefore, by (1.1), we have
EQg<cfi—1dfi) = 0.

Hence,

E D ldfil® + Elfoal® = 2E(f fro)-

k<t

Therefore,
DTE(dfielPlesk) < 2E|f; froa] < 2E1fA] < 22] £ 11,
k

where the last step follows from the optional sampling theorem, which gives in particu-
lar fr = Ez fy41- O

Corollary 1.8. Let f be a martingale and A > 0. Then,

HSf > A} < 3274



Proof. Lett :=inf{n||f,| > 1}. Then
[{Sf > Bl < 1{Sfrm1 > A + {T < 00} S A2 froall5 + A7 IS -
By Lemma 1.7, the first summand is < 2471 f;. O

Lemma 1.9 (Davis decomposition). For every martingale (f,), there exists a decomposi-
tion f = fPd + % a5 a sum of two martingales such that fP® has a predictable bound
on jumps:

dfP| < 2Mdf,_;, (1.2)
and f* has bounded variation:
ED |dfY| < 2EMdS. (1.3)
n
Proof. Let
dg, := min(1, Md/p ——nlygf
|d fal
dfpred = dgn - [En—l(dgn)’
Md
dh, :=df, —dg, = max(0,1 — |d§”| ——Inclyg
n

dfrllw :=dhy, — E,_1(dhy).

Then, by definition,
|dgn| < Mdfy,_1,

and, by positivity of conditional expectation, also
|[En—1(dgn)| < [En—l(ldgnl) < [En—l(Mdfn—l) = Mdfn—l'

This implies (1.2).
On the other hand, we have the telescoping bound

|dhy,| = max(0, |df,| — Mdf,_1) = Mdf, — Mdf,_i,
which implies (1.3). O
Theorem 1.10 (Davis inequalities). Let f be a martingale with f, = 0. Then,
ESf ~ EMF.

Here and later, A < B means that A < CB with an absolute constant C, and A ~ B
means that A S Band B S A.

Proof. It suffices to consider martingales with fy = fy41 = -+ =: fy for some N, as
long as we show bounds independent of N.

Let f = fPd 4+ f® be a Davis decomposition as in Lemma 1.9. Then, for every n > 0,
we have the predictable bound

d d d d
TS et |+ 1 fe | < U famy |+ 2IMd fug| =2 ppoy-
Let A > 0and 7t :=inf{n | p,, > A}. Then,

{SfPred > A} < {SfP"*d > 2,7 = oo} + [{r < o
< [{S£P4® > 23] + [{r < oo}
< 22| SfPred @2 4 {7 < oo}
= 22 + {r < oo}



On the set {T = oo}, we use the bound M P < Mp < A, while on the set {7 < co}, we
use the bound | ™| < p,_, < A (at this point, predictability is essential). This gives

S > ) < A2 f

{r=00}

PR 4 f P2 4}z < oo}
{r<oo}
< /1_2/ ) |prred|2 + |{T < oo}| + |{T < o0}|.
(o<

Note that {7 < oo} = {Mp > A}. Inserting this in the above inequality and integrating in
A, we obtain

ESfPred = f {SfPred > A} dA
0

gf /1‘2/ |prred|2d/1+2/ (Mp > 1}| dA
0 {prredsl} 0

(o0
= E|M fPred |2 f A2dA + 2EMp
prred

= EMfPd + 2EMp

< 3EM fPred 4+ AEMdf

< 3EMS + 3E ) |df| + 4EMdf
n

<3EMf + 10EMdAS.
This, together with the simple bound
ESf™ < E Y |dfp¥| < 2EMdY,
n

implies ESf < EMY.
The proof of the converse inequality is similar and uses

pred — ((S pred)z + (dfpred)z)l/z < |Sfpred| + |dfpred| < |Sfpred| +2|Mdfn 1| = pp_1.
O

Lemma 1.11 (Garsia—Neveu). Let W, Z be positive random variables such that, for every
A > 0, we have

[E(1W>/1(W -A) < [E(1W>AZ)- (1.4)
Then, for every p > 1, we have
Wi, < plIZllp-

Proof. For p = 1, it suffices to take  — 0, so assume p > 1. Suppose first that W' is
bounded by A and (1.4) holds for all € (0, A). We will use the formula

t? = p(1— p) f (t — )AP-2dA.
0



It yields
w
EWP = p(p — 1)[Ef (W —2)P~2da
0
A
—p(p =) [ EOF - Dl P00
0

A
<p(p—1) f E(ZLy P2 dA
0
w
=p(p - 1)[Ef ZWP=2da
0

= pEZWP~1
< p([EZp)l/p([EWp)l_l/p.

Since W is bounded, we can cancel a suitable power of EWP on both sides and obtain
the claim.
For general W, we apply the bounded case to min(W, A) and let A — 0. OJ

Corollary 1.12. Let (A;) be an increasing predictable process with Ay = 0 and & a positive
random variable such that, for everty t, we have

Ei(Aw —Ap) < E(§).

Then, for every p > 1, we have
lAcllp < PIEI,-

Proof. For A > 0, lett :=inf{t | A;;; > A}. Then,
[EmaX(Aoo - /1’ O) = [E(Aoo - /1)11'<oo < [E(Aoo _Ar)lr<oo < [E(§11<oo) < [E(gleo>/l)a

so we can apply Lemma 1.11. O
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Corollary 1.13 (Burkholder-Davis-Gundy inequalities). Forevery p € [1, o0) and every
martingale f, we have

I1S£llp ~ IMfllp-

Proof. For any t, and B € %, we can apply Theorem 1.10 to the martingale 15(f —
f(tO))tZtoa and obtain

E;y(M(f — f10)) ~ E, (S(f = f'°)).
Note that

Mf —Mf,, <M(f = flo) <2Mf, Sf—Sf, <S(f - f') <Sf,

so the conditions of Corollary 1.12 hold for instance for A, = MJ; and £ = Sf, with

exception of the fact that A, is not predictable. This can be remedied by taking A, =

Mf,_yand § = Sf + Mdf < 3Sf. Corollary 1.12 now shows that [Mf|, < plISfll,-
The proof of the converse inequality is similar. O

1.1 Predictable square function

Definition 1.14 (Predictable square function). For a martingale f, let

1/2

st 1= Q) Exma(ld i)
=1

The continuous time version of s f is denoted by ( f) and called the predictable quadratic
variation. We mainly discuss sf because the continuous time analog is sometimes used
in stochastic analysis, and in order to present a few techniques.

The next lemma looks similar to IP contractivity of conditional expectation, but it
cannot be proved by using this contractivity for each invidual summand.

Lemma 1.15. Let z;, z,, ... be positive random variables. Then, for every p € [1, ), we
have

ECY Ex_1(zi))P < pPECQ zi)P-
k=1 k=1

Proof. The hypothesis of Corollary 1.12 holds with equality for A, = W, and § = Z,
where

n n

W, 1= Y Exa(zi), Zn i= ), 2k (1.5)
k=1 k=1

]

Corollary 1.16. Let p € [2, ) and f be a martignale. Then, we have

Isfllp, < (p/2)"?ISlp-

Lemma 1.17. Let Z, W be positive random variables such that, for some C < oo and all
A > 0, we have
E(ZAA) <CE(W AQ).

Then, for every p € (0, 1], we have

EZP < CEWP.

10



Proof. For p = 1, it suffices to let 1 — oo in the hypothesis.
For p < 1, we use the formula

tP=p1 - p)f (t AV)AP~2dA.
0
Chaning the order of integration and applying the hypothesis for each 1, we obtain the

claim. O

Corollary 1.18. Let zy, z,, ... be positive random variables. Then, for every p € (0, 1], we
have

(o] o0
EC zi)P < 2E(Y] Exy(2i))P.
k=1 k=1
Thus, we see that, for p € (0,2] and any martingale f, we have
1S£lp Sp lIsflp-
Proof. Define W,Z asin (5.17). Let t := inf{n | W, > A}. Then,

E(Zo AA) S E(Z; + A 10y)
= > E(ligezi) + A{We, > A
k

< D E(kerEro1zi) + E(Wo A D)
k

< 2E(Wy, A A).
We conclude by Lemma 1.17. O

Corollary 1.19. Let p € (0,2] and f be a martingale. Then

IMfllp < 5'PlIsfllp-
Proof. Lett :=inf{n|sf,,; > A}. Then,

E((Mf)? AR?) < E[(MfT)] + PEl oo
(Doob’s inequality) < 4E[(f7)*] + 2Elgs_ 52
< SE((8fe0)® A A2).

We conclude by Lemma 1.17. O

Lemma 1.20 (Good-A inequality). Let f, g be positive random variables, p € (0, o0), and
suppose that we are given § > 1 and 8, € R, with fPe < 1. Assume that, for every
A > 0, we have

u{g > BA, f < 62} < eufg > A}.
Then,

FP—c

EgP < EfP.

Proof. The hypothesis implies

uig > PA} = u{g > BA, f < A} + pulg > BA, f > A}
<eu{g> A+ ulf > 61}

Using the formula t? = p fot AP~1dA, we obtain
g
EgP = p[Ef A-tda
0

= pf ufg > AP~ dA.
0

11



Inserting the above estimate, we obtain
E(g/B)P < eEgP + E(f/5)P.
Rearranging, we obtain the claim. O

Lemma 1.21. Let zy, z,, ... be positive random variables. Then, for every p € (0, ), we
have

EQQ zi)P Sp EMzV Y E_q(zi))P
k=1 k=1

Thus, we see that, for p € [2, o) and any martingale f, we have
ISfllp <p Isf v Mdflp.

Proof. We continue using notation (5.17). We will verify the hypothesis of Lemma 1.20.
Let 3,6 € R,y with B > & + 1. Consider the stopping times

t:=infln|Z, > A, g :=inf{n| Z, > A}, 0 :=inf{n | (W41 V 2,,) > 64}
and the process

hy, = Z 1T<k§rﬁ/\azk-
k<n

Then, if Z > fland W v Mz < 84, we have ¢ = o0, so that

hoo= D, zZxk2PA— D zk—2, 2 PA-A=81=(B—1-8)A

T<k<tg k<t
Hence,
WZ > BAW NV Mz <6} <ufhy > (f—1-95)A}
< Fom
1
= B-i-on Zk: E(lrck<rsnoZic)
1
= GE-i-on Zk: E(lck<rgnobr-12k)
< mmmm
- 6—;:—5“{2 i
Now it suffices to take any 8 > 1 and & sufficiently small depending on . O

Remark. Most of the material in this section is from [Bur73].

12
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2 Lépingle inequality

For 0 < r < oo and a sequence of random variables f = (f,,),, the r-variation of f on
the interval [¢, ¢] is defined by

J 1/r
Vifpei=  sup (Db, —ful?) 21)

Jt'<ug<---<ujy<t j=1

where the supremum is taken over arbitrary increasing sequences. Analogously, V= f, ; :

Supt’Su’<uSt |fu’ - fu|-

We abbreviate V' f, :=V"fy,and V' f := V" f; .

The following result is a quantitative version of the martingale convergence theo-
rem.

Theorem 2.1 (Lépingle inequality). Forevery p € [1, o), there exists a constant C, < oo
such that, for every r > 2, and every martingale f, we have

,
IV flie < Cpm”Mf”Lp' (2.2)

The main difficulty here is that the supremum in the definition of V" is taken over
not necessarily adapted partitions. We will remedy this by a greedy selection algorithm,
stopping as soon as we see a large jump. We have to use stopping rules depending on a
parameter m in order to capture jumps of all possible sizes.

Proof. By the monotone convergence theorem, we may assume that f becomes constant
after some time N.
Let M; = sup,s .. | fe — fir|- For each m € N, define an adapted partition by

@™ =0, o) i=inflt > g ||f, - f,| > 27"M,}. (2.3)
Claim. Let0 <t' <t < oo and m > 2. Suppose that
2<|fp = £I/I27"M,) < 4 (2.4)

Then there exists j with t’ < g(m) < tand

Ife — fil < 8|fr(-m1) - f:r(.m)|- (2.5)
i- j

Proof of the claim. Let j be the largest integer with 7’ : = rj(m) <t. Weclaim that 7’ > t'.
Suppose for a contradiction that 7’ < t’ (the case " = t’ is similar but easier). By the
hypothesis (2.4) and the assumption that ¢, ¢’ are not stopping times, we obtain

2 * 2_th < |ﬁ/ - ﬁ' S |j:[-l —ﬁ/l + |j;—/ _ﬁl < 2_thl + Z_th S 2 * Z_th,

a contradiction. This shows 7/ > t'.
It remains to verify (2.5). Assume that M.+ < M,/2. Then, for some 7" € (z,t], we
have |fr — fyr| > M;/2 > 27™M_», contradicting maximality of 7’. It follows that

Fom = fiml 2 27"Mes 2 27"M,/2 2 |fy — £1/8. 0
J= J

13



Next, for any 0 < p < r < oo, we will show the pathwise inequality

o0 o0
—(m— r—p
V() <8 3 (27 IM,,) Z'ﬁgmf —]CTJ(m)Ip- (2.6)
m=2 j=1 -

Let (u;) be any increasing sequence. For each I with |f,,, — f,,,,,| # 0, let m = m(l) > 2
be such that

2< |fu1 - ful+1|/(2_mMul+1) S 4.

Such m exists because the distance is bounded by M,,, ..
Let j = j(I) be given by the Claim above with t' = u; and ¢t = u;,,. Then

o = fusal” < 81 = Syl - (427 My, )P
Since each pair (m, j) occurs for at most one [, this implies
Dy = fu, I < 8° Zlﬁ(m) — fomlP - 27" IM )P
1 m,j J-1 J
Taking the supremum over all increasing sequences (u;), we obtain (2.6).
Since we assumed that f,, becomes independent of n for sufficiently large n, we have
M < V' (fi) < 0.

Substituting this inequality in (2.6) and canceling V;"(f;)"~2 on both sides, we obtain
o0 o0
VI (f)P <80 0 27m=2=R) N £y — fom P (2.7)
m=2 j=1 gt

By the optional sampling theorem, for each m, the sequence ( fT (m)j is a martingale
J

with respect to the filtration (?T (m)j- Let
j

S © NE
(m) *= (jzzllﬂj_:fl) - f,}(,m)l )
denote the square function of this martingale. Then (2.7) implies

had 1/2 o0
Vrf < 8( Z 2—(m—2)(r—2)S(2m)) <8 2 2—(m—2)(r—2)/25(m)

m=2 m=2

By Minkowski’s inequality, this implies

[c9)
IV flle <8 3 2720228y 1.

m=2

Applying the BDG inequality for the martingales ( Fom )j> we obtain
j

o0
IV flie Sp D5 272022 sup) £ omll1e
Jj J

m=2

< r
r—2

Mo UJ

Remark. The dependence of the constant in Theorem 2.1 on the variation exponent r

can be improved to Lz using a vector-valued BDG inequality. In fact, a slightly more
V-

careful version of the above argument already shows this for p € [2, o).
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2.1 Martingale convergence

Corollary 2.2 (Martingale convergence). Let f be a martingale with | f||; < oo. Then,
foreveryr > 2, V" f is finite a.s. In particular, the sequence (f,,),, converges a.s.

Proof. Fixing A < o0 and N € N, consider the stopping time
T :=inf{n||f,| > 1}.

Then Mf™N < AV |fian|. Since T A N is a bounded stopping time, by the optional
sampling theorem, we have

IMFAN < A+ I feanlh < A+ £l
By Lépingle’s inequality, for r > 2, we obtain
IV F Ny S A+ 1 flh-

Since the right-hand side does not depend on N and by the monotone convergence the-
orem, we obtain
V'l S A+ 1flh-

In particular, the function V" f7 is finite a.s. On the set {Mf < A}, we have f = f7, so
that V" f is finite a.s. on this set.

Taking the union over 1 € N, we find that V" f is finite a.s. on the set {M f < o0}. By
Doob’s maximal inequality, this set has full probability. O

We have shown that, for an I! martingale f, the limit f,, := lim,,_,, f,, exists a.s.
We recall the condition under which this convergence also holds in I'. We start with an
example that shows that this is not always the case.

Example 2.3. Consider Q = [0, 1] with the dyadic filtration. The sequence
R T
is a martingale and converges pointwise a.s. to 0. On the other hand, Ef,, = 1 # 0 = EO.

Definition 2.4. A set F of real random variables is called uniformly integrable if

lim sup EQ1y51>a1f1) = 0.
—® feF

Example 2.5. If f € I}, then the singleton {f} is uniformly integrable.

Uniform integrability is useful because it is the minimal hypothesis under which an
analogue of the dominated convergence theorem holds. We recall this analogue.

Proposition 2.6 (Dominated convergence). For every sequence of random variables f =
(fn), the following are equivalent:

1. fis Cauchyin L},
2. f is uniformly integrable and Cauchy in probability, that is,

(Ve > 0)(AN e N)(Vm,n > N)u{|f, — fin] > €} <e.

In relation with martingales, it is important that uniform integrability is preserved
under conditional expectation. This can be seen using the following characterization.

Lemma 2.7. Let F be a set of random variables. The following are equivalent.

1. F is uniformly integrable.

15



2. supep E|f] < 0o and
lim sup E(1 =0. 2.8
(Ars0 pE@Alf] (2.8)

Proof. Without loss of generality, all r.v. in F are positive.
— : For every 1 > 0, we have

Ef <A+ EQssyf).

Taking the supremum over f € F on both sides and choosing A such that sup feF E(fsaf) <
00, we see that SUP fe E|f] < o0.
Moreover,

EQaf) S p(AA+EQpsa /).

Taking first the supremum over f € F, and then lim4)_,¢, We obtain

lim supE(1,f) < sup Eps1f)-
u(A)~0 e

Taking lim;_,,, we obtain (2.8).
& : We have u{f > 1} < I"'Ef. Taking the supremum over f € F, we obtain

supu{f > A} <A tsupEf.
feF feF

The RHS converges to 0 as 1 — o0. The second hypothesis now implies that F is uni-
formly integrable. O

Lemma 2.8. Let F C L}Q,F) be uniformly integrable. Then the set
{E(f|F')| f € F,F C F sub-c-algebra}
is uniformly integrable.
Proof. We verify the characterization above. We have
EIEC(fIF)I < EE(fIIF) = E|f].

This verifies the first condition.
Fixing 1 > 0, we also have

EQAIE(f1F)D < EAAE(SIIF) = BEQAIF)IfD < AE[f] + EAga, 5)>a1fD
Since u{E(14|F") > A} < 27 u(A) and using (2.8) for the set F, we obtain

lim  sup E(14|E(f]F)]) < AE|f].
MA)=0 feF.F1cF

Since 4 > 0 was arbitrary, this implies (2.8) for the set of conditional expectations. [J
The above results can now be summarized as follows.

Proposition 2.9 (Martingale closure). For every martingale f = (f,)nens the following
are equivalent.

1. The set {f,},en is uniformly integrable.
2. The sequence (f,)nen converges in L.
3. There exists f,, € L' such that, for every n € N, we have f,, = E,, f..

If the above conditions hold, then we can take f,, = lim,,_,, f, a.s. and in L*.

16
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Remark. We have seen that, for a martingale f, we have
Mf € ! = f isuniformly integrable = f € L'

The second implication cannot be reversed by Example 2.3. The following example
shows that the first implication also cannot be reversed, and also that M is not bounded
on L.

Example 2.10. Let Q = [0, 1] with the dyadic filtration and
foo = Z (m + 1)_22m1[2—m—1’2—m]
m=0
and f, := E, fy. Then, for x € (27171,27!), we have

2—1

Mf(x) = fi(x)=2" Y] (M+1)72™ 1 om1 p-m) (p) dy = 2171 Y7 (m+1)72 ~ (14+1)712L

We see that Mf & L.

3 Vector-valued inequalities

Remark. The norm on a Banach space X will be sometimes denoted by Xf := |f|x-
This is consistent with operator notation, in that every norm is also a sublinear operator.

Lemma 3.1. Let X be a Banach space. Let T be a subadditive operator that maps X-
valued martingales starting at 0 to R -valued increasing adapted processes starting at 0
such that, for every stopping time t, we have

Tfe =T ),

and for every time t we have
Tf <Tfi_1+Xdf;.

Let U be another operator satisfying the same properties as T.
Assume that, for somer € (1, o0) and every X-valued martingale f, we have

P{Tf>ASA"Uf). (3.1)
Then, for every q € [1, o) and every X-valued martingale f, we have
LATf Sq LU f + LIMXdAf. (3.2)

The formulation is flexible enough to apply to any combination {T, U} = {XM, XS},
and also some other operators, such as martingale transforms or r-variation norms.

Proof. Consider first the case g = 1. We use the Davis decomposition f = fPred 4 fbv,
Of the two possible generalizations of the Davis decomposition to X-valued martingales,
we use the one in which the absolute value is replaced by the X-norm (the alternative
would be to make a decomposition for each k separately). Specifically, we have

Xdff™ < 2MXdf,_,, ED XdfY < 2EMXdf.
n

For 1 > 0, define the stopping time

T = inf{t | U > 1 or MXdSf, > A}.

17



We claim that
Ut < Ufered A 32, (3.3)

Indeed, the first bound is trivial. The second bound is trivial if 7 = oo, so assume 7 €
(0, ). Then, by properties of the Davis decomposition, we have

U™ < U + Xd "™ < 2+ 2MXdf,_; < 3.
Also,
(Tfrred > 23 C{TF™ > U {r < oo}
C{TfF™ > JuUfr > uMXdf, > 4}

By the layer cake formula,
I = [ BT >
0
< f P{T " > 2} d/1+f P{UfPrd > 2}dA
0 0

+f P{MXdf > A}dA =: I+ IT + III.
0

The term II1 is easy to bound by the layer cake formula.
In the term I1, we use the properties of the Davis decomposition to estimate
I = U Pl
<NUfllp + 1T
<NUfllp + 1 Xd fi¥ |
n

<Ufller + 2|MXd ]|

Using the hypothesis (3.1) and (3.3), we bound the first term by
15 [ Ao o
0
< f AU frred A 3|5, dA
0

=F f min(A~"(UfPed)’, 37)dA
0
S EUfPed =7,

and we reuse the previously established estimate for I1.

We have shown (3.2) for g = 1, and we will now extend this claim to g > 1. In doing
so, we may replace Uf by (Uf + MXdf)/2. This has the effect that we may omit the
second summand on the RHS of (3.2).

For q > 1, we use the Garsia-Neveu lemma. For a martingale f,let’f := f — f* be
the martingale f started at (stopping) time 7.

For any t € N and B € 7;, we can apply the case g = 1 to the martingale 15 !f, and
obtain

ETf SEU'S.
Note that
Tfoo - Tﬁ = Tfoo - T(ft)oo < T(f _ft)oo = thoo’
U'fo (Uf +UfNe < 2Ufoo,

so the conditions of Corollary 1.12 hold for A; = T f;_1)yo and § ~ U f,,. Corollary 1.12
now shows the claim. O
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Monotonicity of U f is used in estimates for both I and II above.

Corollary 3.2 (¢" valued BDG inequality). For every k € N, let fy = (fi.n)n be a real-
valued martingale starting at 0. Then, for every q,r € [1, ), we have

LM fi, S 19€LS fi.

Proof. For r = g, this follows from the scalar-valued Doob’s inequality and Fubini. For
general q, we apply Lemma 3.1 with X = ¢". O

Toy example: better constant in Lépingle.

3.1 Weighted and vector-valued Doob inequalities

Letw € L}MQ, %) be a positive function, that we will call a weight. We write wy := Ejw,
w* :=sup, wy,and wB := fpwdu for B € 7.

Lemma 3.3. Let f be an Ry-valued submartingale (recall that this means f < Ey f, for
k < n). Then, for every A > 0 and n € N, we have

Aw{Mf, > A} < f fuMw,, du.
{Mfn>1}

Proof. For a fixed 4, define the stopping time
7 :=inffk | fi > A}
Then, {Mf, > 1} = {T < n}. Hence,

Aw{Mf, >} =1 wir =k}

k<n

< Zf Srewy du
k<n Y{r=k}

(submartingale property) < Z fowi du
k<n Y{r=k}

< f fuw* dpu. O
{Mfn>21}

We recall that, for a function f on a measure space (Q, u) and p € [1, ), the [P>®
quasinorm is defined by

Ifllzpes 2= sup Auf| f| > A}P.
>0

For p = oo, we have | f|zp.0 = ||fllze-

Theorem 3.4 (Marcinkiewicz/real interpolation, see e.g. [Gral4]). Let (Q, 1) and (€, &)
be o-finite measure spaces. Let 0 < py < p; < oo. Let

T : IPo(Q) + IP(Q) = I°(Q)
be a subadditive operator such that, for every function f, we have
ITfll Py < Ajllfllppsqy  J =01

Then, for every p € (pg, p1), we have

ITf ey Sp IflLeco)-
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Lemma 3.5. Let p € (1, o), f be a submartingale, and w a weight. Then,

IMfllLeqw) Sp I1f e

Proof. We will show the following more precise estimate:

IM fnllieewy Sp v llce(vwy)s (3.4)

from which the claim follows by letting N — oo. The main advantage of this formula-
tion is that the right-hand side increases in N, which would not be the case if we would
use the weight w* instead of Mwy;.

Lemma 3.3 implies in particular

IM fxrllLieowy S Ifnllzrvwy)-

The estimate
IM flleo(w) S Il llzee (vwy)

is easy to see. By real interpolation, these two bounds imply (3.4). O

Proposition 3.6 (Vector-valued maximal inequality). Let p € (1,0) and r € (1, 0]
Then, for any sequence of martingales fi = (fx,n)n, we have

U)gl’;Mfk Sq,r Lp”pll;fk'

Proof. The case r = oo follows from the scalar case, because £ f; is a submartingale.
The case p = r also follows from the scalar case and Fubini.
Forl<r<p<oo,letp :=(p/r) = p/(p—r). Then, for some weight w € I with

|wl, < 1, we have

p/r\" /p
lepMfily s (EQ f)™)
k

=EY Mfi)'w

k
S EYIfil w*

k

and we conclude using Holder’s inequality and boundedness of the maximal operator

on IP.
Forl < p<r < oo,lets € (1, p). Then, for some sequence of weights with

/ !
167" willprsy ~ 1,
we have
IEEMAS = 1675 M £ s

Nfzwk(Mfk)s
k
sf%@mﬁ

(rls) /
<€ willrsy 1657 1 il -

Since (r/s)" < (p/s)’, from the previously shown case, we obtain

(r/s)

/ !
16" will sy S 1607 willprsy ~ 1. 0

Remark. Most of this section is from [Hyt+16, Section 3].
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4 Rough paths

In this section, we discuss how to define /" a dg for not very regular functions a, g. The
intended application is that g is a sample path of a martingale, which only has bounded
r-variation for r > 2, so that we cannot use Stieltjes integration.

The function a is assumed to have the same regularity as g, because we want the
theory to be suitable for solving equations like f(t) = fot a(s, f(s))dg(s).

4.1 Young integration with Hélder functions

We begin with a criterion for convergence of Riemann-like sums. Let A := {(s,¢) |
0<s<t<T} ForanyE : A - Rand a partition 0 = 7y, < ... < 7y = T, write

J
T P ~
‘:O,T = Z ':”j—l’”j'
J=1

We will discuss sufficient conditions for the convergence of these sums along the di-
rected (by set inclusion) set of partitions.
For a mapping E : A — E (E a vector space), we write

5= )
—=s,u,t + T =St

sty

A control is a function w : A — [0, o) that is superadditive in the sense that
w(s, 1) + w(t, u) < w(s,u)
for all s < t < u. This implies in particular that w(t, t) = 0 for all ¢.

Lemma 4.1. Let w be a control and 6 > 1. Let (E, |-|) be a Banach spaceand & : A - E
such that, forevery0 < s <t <u < T, we have

|08 ¢ .ul < (s, u)®. (4.1)
Then, for every partition 0 = 1y < ... < 7y = T, we have
Zo,r — I Bo,r| S (6 — 17w (0, T)°.
Proof. By induction on the partition size J, we will show the bound

J-1

1Z0,r — I™Eo, 7] < . (2/k)°w(0, T)°.
k=1

For J = 1, we have 77E, r = &, 1, which serves as the induction base.
Suppose that the claim is known for all partitions of size J and let 7z be a partition of
size J + 1. By superadditivity of w, we have

J-1
Do) = Y, o(Teme) ¥ Y, @k Tiys) < 20(0, T).
k=0 k<J—1 even k<J-1odd

Hence, there exists k with w(7y, 7i42) < 20(0, T)/J. Let 7' := 7 \ {m)41}. Then,

!

7S 0.1 = 7% Zo1l = 6By, < @0 Ter2)® < 211 (0, T).

Applying the inductive hypothesis to ', we obtain the claim. O
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Proposition 4.2 (Sewing). Let w be a control such that

lim sup w(7j, 77j41) = O. (4.2)
T

LetE : A — E besuch that (4.1) holds. Then, the limit
jEO,T :=1lim anO’T
T
exists and satisfies
1780,7 — Eo,7l S (6 — )7 w(0, T)°.

Proof. For any partitions 7 C 7', by Lemma 4.1, we have

! !
e V] ) 7T —
|‘7 ‘:‘S,t - ‘7 :"S,[| S Z":ﬂj,ﬂj+1 - ‘7 ‘:ﬂj,ﬂj+1

J
S 2l i)’
J

S sup (7, 7j41)?! Z (7, 7Tj41)
J J

< a(s, 1) sup w(m, iy )P
J

The hypothesis (4.2) implies that 7 — J7E; is a Cauchy net. O
Example 4.3 (Young integral). Leta,g : [0, T] — R be a-Holder functions and
Egt o= as(gr — &)
Then,
085 u = Esu— Est — Eru
= ay(8y — &) — as(8r — &s) — a:(8u — &)

= as(gu - gt) + as(gt - gs) - as(gt - gs) - at(gu - gt)
= (a5 — a;)(8u — &)-

In particular, Eg;,, S |s — ¢|*|lu — t|* < |u — s|**. Hence, provided that 2a > 1, the
hypothesis of Proposition 4.2 holds with 6 = 2« and w(s, t) ~ |t — s].
4.2 Young integration with V" functions
If the function g : [0, T] — R has bounded r-variation, then
J
C‘)g,r(Sa t) :=(V'gs)' = sup Zlgﬂj - gn'j_llr
SSTS - SATSt j=1

is a control. If both a,g € V7, then, in the situation of Example 4.3, we have

|68, 1] < (s, ) cog , (8, )" (4.3)

This implies in particular (4.1) with @ = wg, + wg , and 6 = 2/r. However, (4.2) only
holds for this control if a, g are also continuous. In order to integrate functions with
jumps, we will show a version of the sewing lemma under the condition (4.3).

Definition 4.4. If f is a function defined on a suitable interval, we write

f(t+):=tlim f&), f@=):= lim f(t'),

I>t,t'>t t'—>t,t'<t

provided that the respective limits exist.
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Lemma 4.5. Let w be a control. Then, for every € > 0, there exists a partition 7 such that

max(w(7j_y1+, ) A (i1, 7i—)) < €. (4.4)
j

Proof. We select the partition greedily starting with 7, = 0. It will be clear from the
construction that the claim (4.4) holds. If 7; has been already selected and 77; < T, we
distinguish two cases.

Case 1: if w(7j, Tj+) < €, then we let

Tjy1 2=sup{t > 7 | (7, 1) < €}

Then w(7j, 7j,,—) < €.
Case 2: if w(7j, mj+) > €, then we choose any 7,1 € (7;, T| with w(7mj+,7j4;) < €.
To see that such Tjy1 exists, suppose for a contradiction that, for every t € (7rj, T],
we have w(7j+,t) > €. Choose recursively t, = T and, given ty, let t;, € (7, ty) be
such that w(ty,q, ) > €. By superadditivity, we obtain

(7, T) 2 D tes1, i) = +00
K

a contradiction.

The selection of 77;’s ends after finitely many steps, because otherwise we would have
w(7j, i +) > € for every j, which in turn implies w(7j, 7,,) > €, and summing over
even ] we obtain a contradiction with the superadditivity of w. O

Theorem 4.6 (Sewing with jumps). Let w, ,,w,, be controls and o ,,,, > 0 with
A+, > 1foralln €{1,...,N}.
LetE : A - E. Assume

16850l < Z C01 (s, u)cu2 "(u, 1),

n=1

Then the following net limit exists,

T 1= limI"Ey,r,

and one has the following estimate:
N
—_ —_ X1,n
|9Z0.7 — Eo.1 Za’ﬁa (0, T=)ewy 2 (0+, T),

with C depending only on min, a; , + a; ,.

Proof. Let
O :=minay, +a,, >1
n

and

(s, ) 1= Zwll"/e( ()53 (s+4,1).

Note that the functions (s, t) = @ ,,(s,t—) and (s, t) = w, ,,(s+,t) are also controls. The
function w is a control, because, by Holder’s inequality,

/6
O CRN 25 70(5,u) 2 (@105, 0) + @1, (6, 1) (@3, 1(5, 1) + 3 (1, 1))
> wl,n(S5 t)al’n/ew2,n(sa t)az’n/e + wl,n(t’ u)“l,n/ewz’n(t’ u)az’n/e'
It follows from Lemma 4.5 applied to the control }; (w; , + @, ) that (4.2) holds. Since
|65,4.| < c(s,u)®, we can apply Proposition 4.2. O
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Theorem 4.6 allows us to integrate under the hypothesis (4.3), but only for r < 2. By
the law of the iterated logarithm, paths of the Brownian motion are not in V" for any
r<2.

There are two options to refine the above reasoning in order to obtain an integration
theory suitable for martingales.

« The classical stochastic integration uses orthogonality between martingale incre-
ments. We will return to that.

« Rough integration theory replaces Riemann-Stieltjes sums by higher order quadra-
ture schemes. Higher order quadrature improves the order of convergence (under
suitable regularity assumptions). In the rough setting, it improves from having no
convergence to having convergence.

Another motivation for us to look at the rough integration theory is that it informs us
about the estimates that we will want when we return to stochastic integration.
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4.3 Rough paths

Throughout this section, we fix some r € [2, 3).
An r-rough path (with values in R%) consists of

X:[0,T] > RY X:A - R
such that X € V", X € V"2, where

1/
ViXse = sup (Z'Xuj,ujﬂ |r) r-

sSup<:--<uy<t j
and Chen’s relation holds for s < t < u:
Xs,u = Xs,t + Xt,u + (Xt _Xs) &® (Xu - Xt)- (4-5)

Remark. If X is sufficiently regular for the integral to be defined, one can take

t
Xs,t :=f(X—_Xs)®qu-
s

Next, we introduce the spaces in which one can state and solve differential equations
driven by rough paths.

Definition 4.7 (Controlled path). Let X = (X,X) be an r-rough path in R%, An X-
controlled r-rough path in a vector space E consistsof Y : [0,T] - E,Y' : [0,T] —
L(R%, E) such that Y’ € V" and

Ry :=0Yy, — Y{6X,, € V2.

Although RYX depends on all of Y, Y, X, it is commonly abbreviated to RY, since
the other dependencies are usually unambiguous.

It may be helpful to think about the scalar case d = d’ = 1, and we will use the scalar
notation. All arguments will be, however, formulated in such a way that they work in
the vector-valued case, which is important e.g. because one may wish to incorporate
time as an additional coordinate in X.

Example 4.8. (X, 1) is an X-controlled path.

Lemma 4.9 (Rough integral). Let X = (X, X) be an r-rough path and Y = (Y,Y') an
X-controlled path in L(R?, RY"). Let Bgr o= Y0Xs; + Y{X ;. Then,

T
f YdX :=1lim 975, 1
0 T ’

exists and satisfies

t
| f YdX — By | S V2R V' Xy + VIV VX4
N

Proof.
085t = YsOXsu + Y5 Xsu — (G8Xsp + Yo X 0) — (Y6Xew + Vi Xp )
= Y0X; ,, + Yy Ko — Xy p) — (60X, + Y/ X, )
= (Y — Y6X,y + Yy Keu + 8X5 ® 6Xp0) — VX (4.6)
= (Y — Y)OXpy + (Y7 — Y)X¢u + Y5 (6Xsr ® 6X10)
= —Ry; 0X e + (¥ = Y )X
Hence, we can apply Theorem 4.6. O
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Example 4.10. fOT(X — X5, 1) ® dX = X 1. Indeed, in this case 62 = 0 in (4.6).

This gives even a V'3 approximation of the integral. However, we drop the second
order term and only use a V"/2 approximation, since we want to run the iteration in the
simplest possible space for the given regularity.

4.3.1 Rough differential equations

We consider an initial value problem that is informally described by Y, = y,, dY =
¢(Y)dX. A rigorous formulation is the following: given a rough path X in R¢ and a
function ¢ : RY > L(RY,RY), we are looking for an X-controlled path Y such that

T
Yr=yo+ f d(YV)X. (4.7)
0

We still have to define what we mean by ¢(Y).

We will find that this problem has a unique solution if ¢ € C2', the space of twice
differentiable functions with ¢, D¢, D*¢ bounded and D?¢ Lipschitz.

The proof proceeds by a fixed point argument. First, we need to identify a metric
space in which this argument will be run. We abbreviate | X||, := V"X, 1.

4.3.2 Operations on controlled paths

We have deliberately omitted the condition Y € V" from the definition of the controlled
path, because it is implicit in the other conditions.

Lemma 4.11 (Implicit bound). Let X be a rough path and Y an X-controlled path. Then
Y1l < 1Y lsap Xl + IRY /2

Lemma 4.12 (Integration). Let X be a rough path and Y an X-controlled path. Let Z; :=
fOt YdXand Z; :=Y;. Then,Z = (Z,Z'") is an X-controlled path, and it satisfies

IRZ Nz S IRY N2 lX i + 1Y NAIX 2+ 1Y sup X2 (4.8)
Proof.

RZ, =6Z, — Zi6Xy,

t N
=f YdX—f Y dX — Y;6X,
0 0

t
= f Y dX - 6%, — X + VX0
S

The last term corresponds to the last term in the conclusion, and the remaining differ-
ence is estimated by Lemma 4.9. O

Lemma 4.13 (Composition with a smooth function). Let X be a rough path and Y an
X-controlled path. Suppose ¢ € C;’l. Then ¢(Y) := (¢(Y),D¢(Y)Y") is an X-controlled
path, and we have

leC)' Nl = IDSY)Y [l < IDPllsupll Y llr + 1DPlLip 1YY llsup» (4.9)

1
IR* /2 < IDPllsuplR 2 + S IDlziplY 7. (4.10)

Interestingly, this estimate does not depend on X.
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Proof. Adding and subtracting D¢(Y;)Yy, we obtain
DH(Y))Y; — D(Yy)Ys = DP(Y)(Y; — Yy) + (DP(Y;) — D(Yy))Yy . (4.11)

This implies the first estimate.
By Taylor’s formula,

IRZ)| = 1¢(Y) — $(Y;) — DP(Yy) Yy X, |
< [¢(Y;) — $(Y;) — D(Y;)Ys 1| + |DP(Y;)RY,|

1
S IDSlziplYsel* + IDPllsup RS 1]

IA

which implies second estimate. O

The above discussion allows us to constrct a space in which the equation (4.23)
makes sense.

Lemma 4.14 (Solution space). Forany ¢ € C;’l and any A € (0, 00), there exists € > 0
such that if | X||, + |X|ly/2 < €, then the set of X-controlled paths

Y=YXA) =YY, <A IR 2 < ALY Ny < AlLips 1Y lsup < 19llsup}
(4.12)
is invariant under the mapping

Step : Y~ (o +f d(Y) dX, ¢(Y)) (4.13)
0

forany y, € RY

Proof. Implicit constants in this proof are allowed to depend on the C,}l,’1 norm of ¢.
Suppose Y € Y. Direct estimates show

leDN < NlLiplYll- < As N1E(Pllsup < [Hllsup-
By Lemma 4.13, we have
6Ol S A, IREDYlp5 < A2 (4.14)
By Lemma 4.12, we obtain
|RR S| < e(A? + A +1).

By Lemma 4.11, this implies

l f SV AX], < (A2 +A+1).
0

Choosing e sufficiently small, we obtain the claim. O

Remark. Global bounds on ¢ can be replaced by growth conditions, and then ¢ would
also depend on y, and these growth conditions. There is also a “rough Gronwall lemma”
for concatenating local solutions in such a setting.
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4.3.3 Contractive iteration

In this section, we will show that the iteration (4.13) is contractive with respect to a
suitable metric on the space (4.12). This implies existence and uniqueness of solutions.

For the later purpose of proving continuous dependence of the solution on data, the
estimates will involve two rough paths X, X and paths Y, Y controlled by the respective
rough paths. We abbreviate

AY=Y-Y, AY =Y —-Y', ARY=RY—-RY, AX=X-X, AX=X-X,
AP(Y) = p(Y) — p(Y'), ARPY) = RF(Y) _ R¢(V),

Lemma 4.15 (Stability of composition). Suppose ¢ € Cﬁ’l. Let X, X be rough paths, Y a
X-controlled path, and Y a X-controlled path. Then,

1Y) = ¢(Dl» < IDBllsuplAY Il + DSl LipIAY lsupl Y1l (4.15)

Ip(Y) = ¢(Y)' [l < IDPllsuplAY [l + 1Dl Lipl Y IAIAY g
+ IDPlLipllAY llsupll Y7l + ID>Pllsup IAY 1Y lsup + ID* AN Lip IAY llsup I Y 11V llsups
(4.16)

IRFY) — Ry < |Dllsup AR [lr/2 + IDPULipIIAY llsuplIRY I1/2

1 . 1 N
+ Il (Y11 + IVIDNAY [l + SID*BILipllAY lsup IV 7. (4.17)

Lemma 4.15 almost recovers Lemma 4.13 upon setting Y = 0.

Proof. In order to show (4.15), we write

(%) — $(¥5) — ($(¥r) — $(¥s))

1 1
_ f DY, + H(Y; — Y)Y — Y;)dr — f DT, + H(¥; — T)(Ti — T) dr
0 0
1

- f (D&Y + r(Y; = Y)Y — ¥; — (% — 7))

0
+ (DPY; + (Y, — ) = DI(% + 1Y, — Y)Y, — Vo)) dr, (4.18)

and estimate

ID$(Y; + r(Y; — Y5)) — Dg(Y; + r(¥; — Yy))|
< IDGllLipl (Vs + r(Y; = Y5)) = (Y5 + r(Y, — ¥)
< IDllip(rlY; — Y| + (1 = 1Y — Y1)
< IDPllLiplAY llsup-

In order to show (4.16), we write

(DP(Y)Y; — DP(Y)Y,) — (D(Y)Yy — D(¥)Yy)
= D(Y)((Y, = ¥{) — (5 = ¥5)) + (D$(Y;) — DS(Y))(¥s — ¥y)
+ (D$(Y;) — DI, = ¥5) + (D$(Y;) — D$(Yy)) — (D(Y,) — DP(Y)Ys .-
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The first 3 terms contribute the first 3 terms to (4.16). The 4-fold difference in the last
term can be written as in (4.18) with D¢ in place of ¢, which gives the last 2 terms in
(4.16).

Now we show (4.17). By inserting D¢(Y;)Y; ; and Dp(Y;)Y; ;, one has

REY) — RED) = 4(v),, — DY)V Xy, — ($(V )5 — DHT) T Ky )
= ¢(Y)s — DP(Y) Yy, — (¢(¥)s, — DP(Y,)Y ) (4.19)
+ D(Y,)RY; — D$(¥;)RY,

By Taylor’s formula, the first line in (5.12) equals

1
f (1= (DY, + rY, )Y — D*§(Y, + ¥, )72 dr
0

The integrand can be written in the form
D*(Y; + Y (Y = B27) + (D*@(Y; +1Y,,) = D*¢(Y; + 1T, DG,

and this contributes the last line to (4.17).
The second line in (5.12) equals

D(Y)RY; — D(YIRY, S D(Y)(RY, — RYp) + (DP(Y:) — DH(T)IRY
which completes the proof. O

Lemma 4.16 (Stability of rough integration). Let X, X be rough paths, Y a X-controlled
path, and Y a X-controlled path. Define Z,Z as in Lemma 4.12. Then,

IARZ 12 Sr IAY lsupIXHrr2 + IAY [ X/2 + IARY |12 1X1I
1Y NaupllAX sz + 1Y 114X 72 + IRY [lp/2|AX . (4.20)

Note that (4.20) with Y = 0 recovers (4.8).

Proof. Let By, := Y X;, + ¥ X;; — (Y;X;; + Y¢X;,). Then one has,

R — 5D = f Yax-¥x, - ([ Yax- 7%,
S
< |sts,t - Ysl s,t| + |I('—')s,t - Es,tl'
We estimate the first term by
|AYY X o] + V5 AX -

We estimate the last term by the sewing lemma (Theorem 4.6) with (as the calculation
(4.6) shows)

S(E)r,u,v = Rll'/,u‘qu,v + SYT’,uXu,v - (R%?,ua}zu,v + 5?17/,u§{u,v)-
and

182Dl < 1A8Y Xl + 820 AX, ] + [ARY, 8K, ] + RELASK,

Lemma 4.17 (Stability of implicit bound).

1Y =Yl < IAY lsuplX Il + 1Y lsuplAXl + IARY [l/2.
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Proof. This follows from writing
Yor — Ys,t = (Yi X, + R?,t) - ¥y ~s,t + R?,t)
= (Yy - Ys)Xs,t + Ys(Xs,t _Xs,t) + (ARgt)- O

Lemma 4.18 (Contractivity of the iteration). Forevery A < co and ¢ € C,f’l, there esists
€ > 0 such that, for every rough path X with || X||, < € and |X|,/» < €, the map (4.13) is
strictly contractive on the set

{Y € YX,A) | Yo = yo, Y5 = $(0)} (4.21)
with respect to the metric
d(Y,Y) = max(|ARY [/, [AY[l, 2| Dllsup + AIDlLip) IAY |- (4.22)

Proof. The implicit constants here are allowed to depend on A in the definition of 4.
Suppose Y, Y € Y(X,A) with d(Y,Y) = aand Y, = Y, = y,. Then,

[AY|syp < [IAY], S a.
By Lemma 4.15, we obtain

1Y) = ¢l < IDBllsupllAY Nl + IDSNLip IAY lsup 1Y ] < 0t/2.

1Y) = ¢(X)' Il S IAY" 11y + IV I 1AY llsup
+AY laupll YNl + HAY [AY Nsup + IAY lsup 1Y 1A 1Y " lsup S (1 + A),

IR?®) — REM||, 1y S IARY [l + [AY [lsuplRY [lr/2
+ (Y1l + IYIDIAY I + 1AY [lsup I V117 S a1 + A42).
Let Z = Step(Y), Z = Step(Y). Then
1AZ"]|, = [1$(Y) — ¢V < a/2.
By Lemma 4.16,
IARZ |,/ S €(IAP(YY lgup + 1AV [l + |ARPV|,) S ae.
By Lemma 4.17, this implies
IAZ]l» S IAZ llsupl X1y + IARZ /2 < IAZ'|| € + Cea S e

Choosing € small enough, we obtain the claim. O

Theorem 4.19 (Existence of solutions). For every ¢ € Cﬁ’l, there exist A < coand € > 0
such that, for every rough path X with || X||, < € and |X||,/, < € and every y,, there exists
a unique X-controlled path Y € Y(X, A) such that, for every t € [0, T], we have

t
Y=Y+ f ¢(V)dX, Y = ¢(¥p). (4.23)
0
Proof. Let A, € be as in Lemma 4.18. Define a sequence of controlled paths by

(Yo)r =yo» (Yo): =0, (Yj;1) = Step(Y;).

For j > 1, the paths (Y;) are elements of (4.21). It follows from Lemma 4.18 that this
sequence is Cauchy with respect to the metric (4.22), and its limit solves the RDE (4.23).
Uniqueness of the solution follows from strict contractivity of (4.13). O

One can also show that the solution Y in Theorem 4.19 is unique among all X-
controlled paths (not only those in ¥(X,A)). To this end, we note that, given any two
X-controlled solutions, they are in ¥ (X, A) for some large A. One then has to subdivide
the time interval into smaller intervals, on each of which X has sufficiently small vari-
ation norm to apply Lemma 4.18. Large jumps of X have to be handled separately. We
omit the tedious details.
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4.3.4 Lipschitz dependence on data

Lemma 4.20 (Local Lipschitz dependence of RDE solution on the data). For every ¢ €
C,f’l and every A < oo, there exists € > 0 such that if X, X are rough paths with norms < ¢,
Y € Y(X,A) is a solution of (4.23) with initial datum y,, and Y € Y(X,A) is a solution of
(4.23) with initial datum J, such that |y, — J,| < € and rough path X, then

max(|ARY [ly2, |AY I, |AY 1) Sy.6.4 max(IX = Xy, X = Xlly/2, [Yo = Fol)-
Proof. Let 8 be the RHS of the conclusion and
a := max(||ARY [/, IAY" |l 2(|D@llsup + AIDlILip + DIAY],).

We may assume o > (3, since otherwise the conclusion already holds. In this case, we
have
1AY llsup < Yo = Fol + AY ]l S @ [AY lsup < [@lLiplAY [lsup S -

By Lemma 4.15, we obtain
(Y)Y = ¢(¥) |, S aQ +A), [AR?|,/» S a1 + A2),

A simple bound is
leN- < NllLipll Yl < A.

As in (5.15), we have )
IR*],/, S A%

Inserting all these bounds into Lemma 4.16, we obtain

IARY [,z S €(IIA¢(Y)'||sup+||A¢(Y)'||r+||AR¢(Y)||r/z)+ﬁ(||¢(17)'||sup+||¢(Y)||r+||R¢(Y)||r/z)
S ea(l+A%) + B(1 + A2).

By Lemma 4.15, we have

1AY"]l = 1¢(Y) = ¢(V)ll» < IDPllsupllAY [l + I1DPlLip IAY lsup 1Y
< (ID¢llsup + AIDSlLipIAY (| + Al DSl Liplyo — Fol < /2 + CB.

Moreover, by Lemma 4.17, we have

IAY I, < JAY [laupIX1r + 1Y lsuplAX [ + JARY | 12.
< Cac+ AP+ C(ea + B).

Inserting these bounds into the definition of a, we obtain
a <max(C(ea + fB),a/2 + CB, C(ea + pB)),
where C depends on r, ¢, A. If Ce < 1/2, then this implies a < Cp. O

Remark. Rough paths were introduced in [Lyo98] and controlled paths in [Gub04]. For
a long time, the theory concentrated on Holder continuous paths; a good exposition of
this case is in the book [FH20]. The treatment of V" paths is adapted from [FZ18].
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5 Martingale transforms

The main result of this section, Theorem 5.4, is a bound for discrete time versions of the
It6 integral.
We denote ¢P norms by

p. .
Chay i= ()] lagP)VP.
keN

In order to simplify notation, we only consider martingales g with g, = 0.

5.1 Davis decomposition

We will use the following L? bound for the Davis decomposition (constructed in Lemma 1.9).

Lemma 5.1 (Davis decomposition in L?). For every martingale (f,,) with values in a Ba-
nach space X, there exists a decomposition f = fPd + % as a sum of two martingales

adapted to the same filtration with fopre3d = 0 such that the differences of fP™ have pre-
dictable majorants:
Xdff™ < 2Mxdf,_, (5.1)
and f® has bounded variation, in an integral sense for every q € [1, 0):
19 ) Xdf¥ < (q+ DIIMXd . (5.2)

k<n

Proof. Recall from the construction in Lemma 1.9 that
dfy" = dhy — En_1(dhy),
where h,, is a process such that

Xdh, = MXdf, - MXdf, ;.

Therefore,
L9 Xdff¥ <19 ) Xdhy + 19 )" By Xdhy.
k<n k<n k<n
Using Lemma 1.15 in the second summand, we obtain the claim. O]

Lemma 5.2. Let1 < q < oo, X be a Banach function space, elements of which are

R-valued maps x(-), and (f,) a martingale with values in X. Then for P! given by
Lemma 5.1 we have

ISP *lxlla < (@ + 2SS lxllza,
where the square function is given by

IS£lx == €A dfa(Dlx

Remark. We will apply this with X = €7, i.e. r-summable series, viewed as maps from
N — R, with the usual Banach structure.

Proof. Using (5.2) we estimate

S £ xllza < MISFllxllza + IS xlza
< IS SFlixlze + 11D 1dnf ™ x e
n

< MISSflxliza + 125 1dnf ™ lxllza
n

<MSflixlza + (g + Dlsuplld,flix|ra
n

S MISFlxllza- O
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5.2 Vector-valued maximal paraproduct estimate

We call a process (K ;)s<; depending on two time variables adapted if F§ ; is #;-measurable
foreverys < t.
For an adapted process (5 ;) and a martingale (g, ), we define

(F,8), := Y, Fjdg (5.3)

S<j<t
Note that II(F, g), . only depends on (K .).

Proposition 5.3. Let0 < q,q; < 00,1 < qg,7 1 < 00,1 < 1 < 0. Assume 1/q =
1/q9+1/q, and 1/r = 1/1y+1/r,. Then, for any martingales (g ))n, any adapted sequences
(Fs(’t )s<t» and any stopping times 1, < 7, with k € Z, we have

k k
FO.e0 ] < Caparron |8 s ES] 160588 Ny (54

rk<t<1k ‘rk<t<rk

1/2
where Sgg, 1= (6(Sg))s't V2 _ (EJ sald gl .

Proof of Proposition 5.3. We may replace each g®) by the martingale

~(k k k
8 1= g — %, 69

without changing the value of either side of (5.4).
Consider first g > 1. For each k, the sequence

k) . _ 0, < TIQ,
¢ H(F(k)ag(k))r;(,t’ t> TIQ’

is a martingale. We may also assume Eip=0 if t ¢ [, 7). By the ¢ valued BDG
inequality (Corollary 3.2), we can estimate

LHS (5.4) < h<’<>|H
el gl
< |€,1MF<k>€J.2|dg}")|||
q

< ey MF®q,

erosg®) Hq
0

Here and later, we abbreviate MF* := sup i |Fr(,kj |.
k>
Consider now q < 1. By homogeneity, we may assume

eIMF®| = gosg®l =1, (5.6)
q1 do
and we have to show
mw®g®%|”51
Fd <t<Tk

We use the Davis decomposition g = gP™! + g® (Lemma 5.1 with X = ¢"0). The
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contribution of the bounded variation part is estimated as follows:

ler sup [TF®, gl il

Tk<t<Tk

k k),b
< lleg JIEY 1 - 1dg ™ lq
J

k),b
< e MF®)|g, 160 (Z|d Ol

k),b
<|é; MF<">||q1||Z€ 14" ™ 1140

(k
S 16 MFOlg lsup £ 1dg) g,
<1 MO 255,
where we used (5.2) in the penultimate step.

It remains to consider the part gP™ with predictable bounds for jumps. We use the
layer cake formula in the form

/fq=me{fq>A}dﬂ=me{f>ll/q}dA.
0 0

By the layer cake formula, we have

q
mGE, gy |

T <t<Tk

= f Ple sup [TIFW,glorred), | > 2Vayda. (5.7)
0

k<t<Tk

Fix some 4 > 0 and define a stopping time

(k),pred

1nf{ |M(€ dg(k)) > e or grosg > eV or €I’{'l sup |E[(;i)]| > /11/‘11}.

0<j<t

(5.8)

Define stopped martingales gﬁ") = ggf\)fpred and adapted processes

£ = E®

t' tAT—1"

Then, on the set {T = oo}, we have
TI(F®), g(k)’Pred)T;{,t = TI(FR), g(k))‘[;(,t for all k, t.
Hence,

{er sup ITI(F(K), g(k).pred) , (> 24y

<t<Tk

ciey sup ITI(FCO, g(k)) (| > A4
T} <t<t) (5.9)

U {_g;;osg(k) > /11/(10} U {€£OSg(k)’pred > /11/%}

U{GMF® > at/an}
The contributions of the latter three terms to (5.7) are < 1 by (5.6) and Lemma 5.2. It
remains to handle the first term.

By construction, we have £;! MF®) < /41, and due to (5.1) we also have £;°Sg® <
AM40, provided that the absolute constant ¢ in (5.8) is small enough. Choose an arbltrary
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exponent g with gy < § < oo. By the already known case of the Proposition with (qq, q;)
replaced by (g, o), we obtain

P{ey sup [TI(F®),g®), | > 214}

T} <t<T)

<x94)er sup [T(F®, 50y, |3
k‘rfcstgrk fietTd (5.10)

Sq Ve ME®| & 16,0 55|

< 17U | p70 Sglkdpred 5 Al/qo”Z:.

This estimate no longer depends on the stopping time 7. Integrating the right-hand side
of (5.10) in A, we obtain

o0 (o]
/ ,1—q/qo||g£0 Sg(k)pred A ,11/qo||‘37 dl=E f (/1“7/‘10(19;{0 Sg(k)predyd A 1)da
0 0

~ [E(glzo Sgk)-predydo
~ 1,

where we used § > qy, Lemma 5.2 with X = ¢'0, and the assumption (5.6). O

35



[10: 2021-12-14]
[11: 2021-12-21]

We will soon need a version of Proposition 5.3 with a supremum in both time argu-
ments of the paraproduct. Nice estimates of such form are only available under some
structural assumptions on F. In this course, we only consider F = §f.

Theorem 5.4. Let q,qq,q1, 7,1 be as in Proposition 5.3 with ry = 2, that is,
0<q,q; £0,1<qp,r<o0,1<n<L00,1/q=1/q9+1/q;,1/r =1/2+ 1/n.

Let f be an adapted process, g a martingale, and t an adapted partition. Then, we have

o sup of | dSgle, 1D

Tp_1SE<Tg

sup 1612l < |k

Tr—1SS<t<Tg

Proof. For any s <t < u, the sums (5.3) satisfy the relation

5H(F’ g)s,t,u = Hs,u(F, g) - Hs,t(F’ g) - Ht,u(F’ g)
= 2, Bjadg— ) Fjadg— 2, Fjadg

s<j<u s<j<t t<j<u
= > (Fjo1—E j_1)dg.
t<j<u

In case of F = §f, the right-hand side becomes
Y. (fi— fdg = (fi — fi)(gu —

t<j<u

Therefore, for any 7;, < s < t, we can estimate
1L, (8f.8)| < MLy (8. 9| + [TLey (8. 8)] + 185 08l

In the first two terms, we apply Proposition 5.3 with 7}, = 7y, f®¥) = f, g® = g for
each k. In the last term, by Holder’s inequality, we have

ez

In the former norm, we observe that the dependence on ¢ disappears. In the latter norm,
we use the 2 valued BDG inequality (Corollary 3.2) with the martingales h(®) = Tk-1g%«,
O

&' sup  [5fy

Tr—1SS<t<Tg

e s s -

Tr—1SS<t<Tg

sup  |8fy S5g3t|” ‘

Tr—1SS<U<Tk

5.3 Stopping time construction

In this section, we estimate the r-variation of a two-parameter function by square function-
like objects, like we did this for one-parameter functions in the proof of Lépingle’s in-
equality.

For an adapted process (I ; )<, let

Iy, = sup ||, II* :=TI%.

n
o<n<n’<n”

Lemma 5.5. Forany discrete time adapted process (I ;)s,, there exist adapted partitions

(m)
T such that, for every 0 < p <r < oo, we have

Linax (H* P
r o myy*\r—pP
lSU[T Z|Hul 1ul| 1 —2-r +2 Z (2 11 ) Z:l( (m) (m) t,rj(m)l) ’
u0<“n?d<Xulmax J=L T sty
(5.12)
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Proof of Lemma 5.5. For m € N, define stopping times
‘L'(()m) =0,
and then, for j > 0, allowing values in N U {0},

T}Tl) = inf{t > g(m) ) sup |y | > 2""‘1H;"}. (5.13)
TJ(-m)St’<t

Fixw € Q and let (ul)i“:“g be a finite strictly increasing sequence. Consider 0 < p <r <
oo and split

lmax o0
Z|Hul_1,ul|r = Z Z IHul_l,ullr’ (514)
1=1 m=0 leL(m)
where
L(m) :={l € {1, ..., Ly} | 277, < [TL,,_ 4, | < 27T ). (5.15)

In (5.14), we only omitted vanishing summands, since |TT,,_, ,, | < IT;;, . Letalso L'(m) :=
L(m) \ {sup L(m)}. Using (5.15), we obtain

Lmax 0 e}
Z |Hul_1,ul|r S Z (z_mn*)r_p Z |Hu1_1,ul|p + Z (2—"’11‘[*)1’. (516)
=1 m=0 leL!(m) m=0

Claim. For every | € L(m), there exists j s.t. rj(

™ e (. u).
Proof of the claim. Let j be maximal with 1}('") < u;_;. Since | € L(m), by definition
(5.15), we have

Ty, | > 277G,

By the definition of stopping times (5.13), we obtain m

j+1 Sul D

Fix m. For each | € L'(m), let j(I) be the largest j such that g(m) € (u;_1,u4;]. Then

all j(I) are distinct, and, since | # max L(m), the claim shows that TJ((’"D)H < 0. Fur-
thermore, by (5.15), the monotonicity of ¢ — II}, and the fact that the infimum in the

definition (5.13) of stopping times is in fact a minimum unless it is infinite, we have

Tie1  (m) (m) Tjy+1
O s <Tin

My | <2770, < 27",y <2 sup 1L, om) |- (5.17)

Since all j(I) are distinct, this implies

o)

Z |Hu1_1,ul |p < 20 Z sup |Ht’ T(.m) |p'
>

leL!(m) j=1 TS]:II)SH <T]('M)

Substituting this into (7.5), we conclude the proof of Lemma 5.5. ]

Corollary 5.6. Let (Il ;)s<; be an adapted process with I1; ; = 0 for all t. Then, for every
0<p<r<ooandq € (0,c0], we have

(i( sup [T ))

j=1 Tj_1$t<t/STj

: (5.18)

1/p
.

|V'TI||Lq S sup
T

where the supremum is taken over all adapted partitions .
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Proof. By the monotone convergence theorem, we can restrict the times in the definition
of V" to a finite set, and then apply Lemma 5.5.

The term IT* is of the form on the right-hand side of (5.18) with 7; = co0. Therefore,
the claim follows from the triangle inequality in L7 (if ¢ > 1), g-convexity of L7 (if g < 1),
and Holder’s inequality. O

Theorem 5.7. Let
0<qq £0,1<qy<00,1<n<00,1/q=1/q9+ 1/q;,1/r <1/2+1/n.
Let f be an adapted process and g a martingale. Then, we have
TGS, ©)llg S 1V7 fllg, ISglg,. (5.19)
Proof. Combine Corollary 5.6 and Theorem 5.4. O

Remark. This section is mostly copied from [FZ20].
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6 Ito0 integration

In this section, we discuss integration with respect to a cadlag martingale in continuous
time, generalizing the paraproduct IT from the previous section. We consider stochastic
processes adapted to some filtration (%);cr,,, indexed by positive real times. We begin
with some convenient regularity assumptions. These assumptions are not restrictive, in
the sense that, for any martingale, one can reparametrize time and change the filtration
in such a way that they are satisfied, but we will not discuss this, since our focus is on
more quantitative issues.
A filtration (J;);er,,, is called right-continuous if, for every t > 0, we have

%i=(%

t'>t
For a function f : Ry, — E with values in a metric space E, the left and right limits at
a point ¢ are denoted by
fi— = lim f, fiy = lim f,

sot,s<t s—ot,s>t

if they exist. A function f : Ry — E is called cadlag (for “continue a droite, limite a
gauche”, “right continuous with left limits”; some authors use the English abbreviation
“rcll”) if f;_ exists for every t > 0, and f; = f;, for every t > 0. A stochastic process

g : QX Ryo — Eis called cadlag if every path g(w, -) is a cadlag function.

Theorem 6.1 (Regularization, see e.g. [Kal21, Theorem 9.28]). Let & = (%);cr,, be a
right-continuous filtration. If g is a martingale with respect to F, then there exists a cadlag
martingale g with respect to F such that, for every t > 0, we have

gt =81 ae
For an adapted partition 7, we write
lt,7] :=max{sen|s<t}, 0<Lt<o0. (6.1)

For a cadlag adapted process f = (f;);>0, @ cadlag martingale g = (g;);>0, and an
adapted partition 7z, we consider the following Riemann-Stieltjes sums:

Hn(f’g)t,t’ = Z 5ﬁt,ﬂj,ﬂjagﬂj,ﬂj+1/\t’a 0<t<t < oo (6-2)

<t/
t<m;<t

In each summand, the integrand f is evaluated at the left endpoint of the interval [z, 7 ; |
on which we consider the increment of the integrator g (and also at | ¢, 77|, which is even
further to the left). This is the distinguishing feature of the It6 integral that makes it a
martingale in the ¢’ variable.

Unlike in Riemann(-Stieltjes) integration with a bounded variation integrator, eval-
uating ¢ at other points in general produces different results (e.g. Stratonovich integral,
where f is averaged over 7; and 7 ;).

Most classical treatments involve sums

Z fﬂj 5g71'j,77.'j+1/\t’ ’

<!
i<t

which corerspond to fixing t = 0, but this obscures the observation of the natural regu-
larity of the It0 integral that fits nicely with rough path theory.
For an adpated process f and an adapted partition 7, we write

= o (6.3)
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Proposition 6.2. Let0 < q; < 00,1 < gy < o0, and 0 < r, p; < 0. Suppose
1/r<1/py+1/2, 1/q=1/qy+1/q,. (6.4)

Let (f;) be a cadlag adapted process and (g;) a cadlag martingale.
Then, for every adapted partition 7, we have the estimate

[vror.9)] , S 1VPF Pl 1V2glweo. (6:5)

Proof of Proposition 6.2. Since IT"(F, g); , is cadlag in both t and t', we have

lmax

1/r
VITI™(F,g) = lim sup (Z " (F, 8)uy_y I’) ,

.
 Inaxotho <-++<uy u € =1

where 7(") = 7 U 27"N. By the monotone convergence theorem, it suffices to consider
a fixed 7(, as long as the bound does not depend on n.
For any adapted partitions 7 C 7, we have

Hﬂ(f’ g)t,t’ = Z 5f[t,7rj,7tk5g7rk,ﬂk+1/\t’

k:t<m<t’

= Z 5f[t,7rj,7rk Z 5g‘rl,rl+1/\t’

k:t<m<t! L <7 <mp AL

= Z Z af[t,nj,[‘rl,nj 5g‘rl,rl+1/\t’ (6-6)

k:t<mp<t’ i <T<mp AL’

()
= Z 5~ﬁt,TJ,Tl 6grl"[l+1/\tl

lit<Ty<t!

= Hf(f(”)’g)t,t’:
where f( is given by (6.3). Define discrete time processes ff(”), g: by

(ff(n))j - 1, (8)) = &z,
Then, we have
I (f, g)fj,fj, = Hf(f(ﬂ)’g)rj,rj,
()
= Z 5]({‘5[,1],71 5grl,rl+1/\1—j,

l:'rj<r,<‘rj/

= Z 5ff(1ﬂf)l 0817141
I: j<l<j’

= H(ﬁ'(ﬂ)’gr)j,j’,

where the last line is the discrete time paraproduct defined in (5.3). By Theorem 5.7 and
the BDG inequality (Corollary 1.13) for the discrete time martingale g,, we obtain

VA, g0llg S IV E 1188y S IV A lg V282 llge < IV Fllg 1V ¥8llgy -

Lemma 6.3. Let (f;);>0 be a cadlag adapted process. Suppose that VP1 f € L1 for some
P1,q1 € (0, ]. Then, for every p; € (p;, o) U {0}, we have

Lm||[VPL(f = fO)|ar = 0.
/e

Proof. We have VP1 f(T) < VP1 f and, by Holder’s inequality,
VRS = ) S VPI(f = f)I-8Ye(f — )P
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with some 6 € (0, 1], so it suffices to consider p; = .
Let € > 0 and define a sequence of stopping times recursively, starting with 7z, := 0,

by
Tjer 1= inf{t > 77| 16fz,0] 2 €]
Since f is cadlag, the infimum is either +oco or a minimum, so that this is indeed a
stopping time. Also by the cadlag assumption, this sequence of stopping times is strictly
monotonically increasing in the sense that 7; < co = 7; < 7. Moreover, if T :=
sup; 7; < oo, then the left limit fr_ does not exist, contradicting the cadlag hypothesis.
Therefore, 7; — oo, so that 7 is an adapted partition.
Then, by (4.18), for any adapted partition 7' 2 7 and s < t, we have

18 = ST < 1fi = Femn| + 1 = fis]
< 2e+ 2e. ]

Theorem 6.4 (1t6 integral). In the situation of Proposition 6.2, suppose that the right-hand
side of (6.8) is finite. Then
1(f,8) := ImIT*(f,8) (6.7)

exists in L1(Q, V"), satisfies the bound
[vre.g)| , < 1ve sl lveglis, (6.8)
and, forany0 <t <t' <t"” < oo, Chen’s relation

O(f, 8)eer — T(f, @ppr — L[, 8)prpn = O 00841 ¢ (6.9)
The limit (6.7) is called the It6 integral (with integrand f and integrator g).

Proof of Theorem 6.4. By the Cauchy criterion for net convergence, the existence of the
limit (6.7) will follow if we can show that

lim sup
T 127

vrar(r.g - ()|, =o. (6.10)

To this end, we use that, by (6.6), we have

7(f, ) — I*(f,g) = W (f™ - [, g).
Let p; € (p1, ©]U{oo} be such that 1/r < 1/p; +1/2. By Proposition 6.2 with f replaced
by f — f(O, we obtain
e -0,
SIVP (D = FOYD Ly [Vog] a0

This converges to 0 by Lemma 6.3.

In order to show the Chen relation (6.9), we first show that the corresponding re-
lation holds pointwise for the discretized paraproducts IT". Indeed, by definition (6.2),
fort <t' <t”,we have

I(f, &)e,er = (S, Q)er — (S, Qe o (6.11)

= Z 5f[t,7rj,7z'j5gﬂj,7rj+1/\t”_ Z 5ﬁt,7‘[],ﬂj5gﬂ'j,ﬂj+1/\t’

Lt <!
t<mj<t <<t

- Z 5ﬁt’,7rj,7rj5gnj,7rj+1/\t”

t’<7rj<t"
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= Z ﬁ[,ﬂj,ﬂj(agﬂj,ﬂj+lAt'/ - 5g7rj,7rj+1/\t’) + Z 5f[t,7rj,7rj5g7rj,nj+1/\t”

t<7rj<t’ t<7rj=t'<t"

+ Z (5ﬁt,7'[],7'[j - 5ﬁt’,n],nj)5gnj,nj+lAt”

’ Lt
t'<mi<t

= Z ﬁ[,?‘[J,?‘[j5g7'[j+1/\t',7'[j+1/\t”+ Z 5ﬁt,71’],77j6g71'j,77.’j+1/\t”

t<7rj<t’ z<ﬂj:t’<t”
+5flt,ﬂJ,lt’,7TJ Z 6g71’j,71'j+1/\t”

t’<7rj<t”

All summands except possibly the one with 7; < t' < 7, in the first sum vanish, and
it follows that

= aﬁt,ﬂfj,[t’,ﬂj( Z 5g7'[j+1/\t’,7'[j+1/\t”+ Z 5g7rj,71j+1/\t”+ Z 5g7'[j,7rj+1/\t”)

E<Tj<t!<Tj4q t<mj=t'<t” t'<mi<t”
— _ s¢lm
= a.ﬁt,ﬂj,[t’,ﬂj( Z 5gt’,7'[j+1/\t” + Z 5g7Tj,7Tj+1/\t”) = 5ﬁ,t’ égmu.
E<Ti <t <7 j ALY t'<mi<t”

By the already known conclusion (6.7), the process (6.11) converges to the left-hand side
of (6.9). By Lemma 6.3, the last expression in the above chain of equalities converges to
the right-hand side of (6.9). O

6.1 Quadratic covariation

Proposition 6.5. Let q,,q; € [1,0), 1/q = 1/qy + 1/q;, and r > 1. For cadlag martin-
gales f,gwith VX f € L0, Vg € L1, let

Lfs g]zt’ -= Z af”j’”jﬂag”j’”jﬂ'

|t,7|<7;<|t’, 7]

Then,
[f. 8l 2= lim[f, 817y (6.12)
exists in L1(V"). Moreover, we have the integration by parts formula
0ft,0008trr = II(f,8)epr +TI(E, e + [f>8leer- (6.13)

The process (6.12) is called the quadratic covariation of f and g. Here are a few facts
about it that easily follow from the definition:

Vi<t <t", [f.8lier =f-8leer +[f: 8l as.

To see this, note that the same identity holds for [-, -] for any adapted partition 7 that
contains the times ¢, ¢', t".

Ve <t, Elf,fliy =ElSfip 2,

To see this, note that the same identity holds for [-, -]” for any adapted partition 7 that
contains the times t, t’, because, by the optinal sampling theorem, & f,,j,,rj+ , are martin-

gale increments, and therefore orthogonal in I2.
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Proof of Proposition 6.5. First, we compute

5f[t,7rj,t’5g[t,nj,t' - I (f, g)t,t’ - II"(g, f)t,t’

= ( Z 5f71'k,71'k+1/\t’)( Z 5g71j,7rj+1/\t’)

Lt,r| <7 <t’ [t,n’JSrrj<t’
- Z 5f[t,7rj,ﬂj 5g7tj,ﬂj+1/\t’ - Z 5g[t,7rj,ﬂk5fﬂk,7rk+1/\t’
[t,r[J<7rj<t’ |t |l<mp<t’

= Z afﬂj,ﬂj+1/\t’5g7fj,ﬂj+1/\t’

lt,r|<m;<t’

+ Z afﬂk,ﬂk+1At’5g7Tj,7l'j+1/\t/ - Z 5f[t,7rj,7rj5gﬂj,7rj+1/\t’
L, | <7 <mj<t’ [t,7|<mj<t’

+ Z Sfﬂk,ﬂkﬂ/\t’agﬂj,ﬂjﬂ/\t’ - Z 5g[[,7‘[J,7‘[k5f7'[k,71'k+1/\["
¢, |<7j<me<t’ |t,T|<m <t

Each of the last two lines vanishes identically.
In particular, replacing ¢’ by |¢', |, we obtain

&Rt 1881ttt =T e ey =& Dy = D, Snyim ;11 O8myum o

lt,|<7;<|t’',7]
(6.14)
Note that
I (f, g)t,[t’,r[] =I1"(f, g)t,t’ - Z 5ﬁt,ﬂj,nj5gﬂj,t” (6.15)

7Tj<t'<7'[j+1

where the sum consists of either 0 or 1 summands. For any inrcreasing sequence u, <
.. < ug, we have In particular, with any a € (0, — 1), we have

K-1 ,

2 5ﬁuk,nj,nj 5g7rj,uk+1

k=0 7mj<upy1<7mjs1

= Z |5f[uk,7rj,[uk+l,ﬂj ag[uk_,_l,rrj,uk_,_l |r

ks ug,m|<|up1.7]

) 1/2 )
> Bhuetwen) (X 108 ”)

k:lug,m|<|ugsr,7l k:lug,m|<|ugyr,7]

< (V27 f) supl8g)s,z,¢|* (V2 0g) ==
t

1/2

IA

This expression no longer depends on the sequence (u;). By Lépingle’s and Holder’s
inequalities, this is bounded in L, and, taking into account Lemma 6.3, this converges
to 0 in I9. Hence, the second term on the right-hand side of (6.15) converges to 0 in
L1V". Theorem 6.4 and Lépingle’s inequality for f now imply

1i7rrn 7 (f, g)t,lt’,n] = II(f, g)t,t’ in L1V",
Writing (6.14) as

[f. €17 = 6£768) = T1°(f, @) yor ) — TI7(E, e e (6.16)

we see that the first summand on the right-hand side converges to §fdg in L1V" by
Lemma 6.3, and the remaining summands to It6 integrals by the above discussion. Hence,
the left hand side converges, as was claimed in (6.12). The identity (6.13) is the limit of
the above equality. O
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7 A sharp inequality for the square function

The proof of the BDG inequality that we have seen in this notes was quite indirect: we

started with some I? identities and used the Davis decomposition to lower the IP expo-

nent. In this section, we will take a look at a more direct method for proving martingale

inequalities. In this special case, it will yield an inequality with an optimal constant.
This section follows [Bur02].

Theorem 7.1. Let (f,,),en be a real-valued martingale. Then, for every N € N, we have

E(31fol + Z 14/ ) <E(2f + lj;,’\gz). (7.1)
n=1

We will see later that the inequality (7.1) implies the Davis inequality for the mar-
tingale square function with the sharp constant. In applications, one replaces (7.1) by
the slightly weaker inequality

E(31fl + Z 'df” ) < 3ER.
n=1

However, the preculiar form of the right-hand side of (7.1) permits to show this result
by induction on N.

7.1 A Bellman function

The inductive step in the proof of Theorem 7.1 is usually stated as a concavity property
of a special function. Functions used in such arguments are called “Bellman functions”;
many more examples can be found in the books [Ose12; VV20].

Thoroughout this section,

We define U : D — R by

x|+ (y — 1)m?
U(x,y,M):=y—|| (;/1 ) ;

where y = 3. The main feature of this function is the following concavity property.

Proposition 7.2. Forany x,h € R and y,m € Ry, with |x| < m, we have

|h|? 2(x)h
S e N— < -2 2
U(x+h,y+(|x+h|Vm),|x+h|Vm)_U(x,y,m) - (7.2)
Proof of Theorem 7.1 assuming Proposition 7.2. Using (7.2) with
< |d I .
X=fo, Yy=5u: —7|f0|+2 f* , m=f, h=dfp,
we obtain 2fdf
U(fn+1’ §n+1’ fr;k+1) < U(fn: Sn’ fr:k) - nTn-H (7~3)
n
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By conditional independence, we have

2fn@fn1
In

Taking expectations, we obtain

[EU(fn+1a S~n+1’ fr:k+1) < [EU(fn’ S~n’ fr;k)

Iterating this inequality, we obtain

2fn

E(——F— I

17) = <5 E(dfns1] ) =

2
(3165 + Z WAl INE 5 ) = EUCh S ) < EUCh 500 £5) =0,

) fx

Remark. The above proof in fact shows the pathwise inequality

NP 2(f)dfn
I Z -

3|fo|+2' - <2fi+

Proof of Proposition 7.2. If |x + h| < m, then
|h|?

Ux+hy+ ),|x+h|Vm)

(Jx+h|vm
N |h|2) |x + h|> + (y — )m?
m
- w_ |x|?> + 2xh + |h|? + (y — 1)m?
m m
_XP+ @ -1m* 2xh
m m

=U(x,y,m) — %

=(y

If |x + h| > m, then we need to show

|2
x + Al

|x +h|>+ (y = D|x + h|? <y- x>+ (y = Dm* _ 2xh
< ot

O+ )= x + A m

This is equivalent to

2 = ylx + P =[x = (= Dm® _ 2xh

|x + h| m m

The inequality (7.5) is equivalent to

h|*m X+ h|  —|x+h|*+|h?
|h| L |S | |2 ||_(y_1)_

m2|x + h| m m

O]

(7.4)

(7.5)

Lett :=|x+h|/m > 1and{ := |h|/m. Note that |t — | = ||x + h| — |h||/m < |x|/m < 1.

With this notation, (7.5) is equivalent to
Plt—yt<—t2+82—(y—1),

or
1
7> m(t2 -1-PA-1/t)=(+1) -2/t
Hence, it suffices to ensure
y> sup (t+1)-— 1/t
t>1,]t—f|<1

The supremum in f is assumed for £ = (¢ — 1), so this condition becomes

y>supt+1—(t—1)*/t =sup3—1/t = 3.
t>1 t>1
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7.2 Sharp constant in the Davis inequality for the square function

Proposition 7.3. Let f be a real-valued martingale. Then

ESf < \3Ef*.
Proof. By Holder’s inequality and (7.1), we obtain

N 2
ESf < E((f9Y2(Y %)1/2)
n=1 n

< ([Ef*)l/z(HIzZ:l |dfnz|2))1/2

< V3Ef*. O
The next result shows that \/E is the best possible constant in Proposition 7.3.
Proposition 7.4. Lety > 0. Suppose that the inequality
ESf < yEf* (7.6)
holds for all real-valued simple martingales f with f, = 0. Theny > \/E
Proof. LetV : D — R be given by
Vix,t,z) := \/? —yz.
Define U : D — (—o0, 0] by
U(x,t,2) 1= sup{EV(fuo, t + S%(f), f* vV 2) | fo = x}, (7.7)

where the supremum is taken over all simple martingales (that is, martingales f that
take only finitely many values). This function will play the role of the “best” Bellman
function for the inequality (7.6).

Substituting the constant martingale into the definition (7.7), we see that, for any
(x,t,z) € D, we have

V(x,t,z) < U(x,t,z), (7.8)
We claim that, for any simple measurable function d : Q — R with Ed = 0, we have
EU(x+d,t+|d? |x+d|Vz) < U(x,t,2). (7.9)

Proof of (7.9). Fixx € Rwith |x| < z. Letd : Q — R be a simple function with Ed = 0
and P(d = ;) = p; € (0,1] for 1 < j < m, where Z;nzl pj = 1. Choose b; € R so that

U(x+s5,t+ 5% [x + 55| vV z) > by
Then, by the definition of U, there exists a martingale f/ with ij = X + s; satisfying
EV(f&, t + I5;2 + S2 (), (f)* v z) > b;.
Let f be a martingale with f; = x + d which continues with the same distribution as f/

(rescaled by p; in measure) on the set{d = s;}. Because |x| < z, we have f*vz = (f N*vz
on {d = s;}. By (7.7), we have

U(x,t,z) > EV (foo, t + S*(f), f* v 2)

m
=Z/ V(foo,t+|sj|2+|df2|2+---,f*VZ)dIP
j=1/{d=s;}

= > BEV(f.t + |5 + S, (f)* v 2)
j=1

&

pj

\Y
M=

—.
1
—_

Using the freedom in the choice of b;’s, this implies (7.9). O
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For every 1 > 0, we have
V(x,t,z) = AV(x/A,t/12%,z/2), U(x,t,z) = AU(x/A,t/2, z/2).
Define u,v : [-1,1] X R5g = (—o0, 0] by
v(x,t) :=V(x,t,1), u(x,t)="U(xt,1).

Since t — V(x,t,z) is nondecreasing, the same holds for t — u(x, t), so left limits exist.
We claim that
u(1,1-) > u(0,2-) + u(1,1-). (7.10)

To see this, let0 < s < 1 < r. Letd be arandom variable such that P(d = —1) = r/(r+1)
and P(d = r) = 1/(r + 1). Then, (7.9) and scaling imply that

u(l,s) = U(,s,1)
r 1
> — - 2
> r+1U(0,S+1,1)+ 1_}_rU(1+r,s+r ,147)
r
= ——u(0,s+ 1) +u(l,(s+r)/1 +7r)?)
r+1
r
> 2 2
> r+1u(0,s+1)+u(1,r /(1 + 1)),

where we used monotonicity of u in the second variable in the last step. Both summands
on the RHS are increasing in both variables s,r. Taking r — oo and s — 1, we obtain
(7.10).

If f is a simple martingale with f, = 0, then, by the hypothesis (7.6), we have

EV(fy,0+ S%f, f¥*Vv1) =ESf —yE(f*v1) <ESf —yEf* <O0.

By the definition (7.7), this implies that u(0,0) = U(0,0,1) < 0.
Let d be a random variable with P(d = 1) = P(d = —1) = 1/2. Using (7.9) and the
fact that u(x, t) = u(—x, t), we obtain

0 > u(0,0) > %[u(l, D+u(-1,1)]=u1,1) >ul,1-) >v(1,1-)=1—1y.

This implies that u(1,1—) is finite. So (7.10) yields u(0,2—) < 0. Let d be a random
variable with P(d = 1) = P(d = —1) = 1/2. By (7.9), for every € > 0, we obtain

0> u(0,2—) > u(0,2—¢) > %[u(l, 3—e)+u(—1,3—¢)] = u(1,3—¢) > v(1,3—€) = V3 —¢c—y

Therefore, y > 4/3 — €. Since € > 0 was arbitrary, this implies y > \/5 O
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