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In this note we review Austin’s proof [Aus11] of the density Hales-Jewett (DHJ) theorem
[FK91] via sated extensions. After translating DHJ into a measure-theoretic problem Fursten-
berg and Katznelson obtained a suitable invariance of the measure using the Carlson-Simpson
theorem. In this note we shall use the Graham-Rothschild theorem instead.

In order to make the notation less heavy we identify natural numbers with finite von
Neumann ordinals, i.e. k = {0, ...,k — 1}. Expressions like k" usually denote not the integer
exponentiation but the set-theoretic one, thus k" is the set of functions from {0,...,n — 1}
to {0,...,k — 1} or the set of words of length n on the alphabet {0,...,k — 1}. The integer
expression k" is the cardinality of our set k".

1 Density Hales-Jewett

Let (X, X)) be a standard Borel space. A law is a sequence of Borel probability measures (u")7,
on (X*', =®F"). Note that Borel probability measures on Polish spaces are Radon (TODO: find
some measure theory book where it is proved), thus form a weakly compact metrizable set.

Alaw fi on (X,3) together with a Borel map ¢ : X — X is an extension of u if for every n
we have (¢®"), i = u.

1.1 Stationary laws

For an n-dimensional combinatorial subspace S™ : k" — k™ one has a pullback map S : X K
X*" and a pushforward map St MX K"y = M(X*"). Alaw is called strongly stationary (s.s.) if

for every n and every n-dimensional combinatorial subspace S™ : k" — k™ one has S, u™ = u".

Lemma 1. For every law u there exists a sequence of combinatorial subspaces (S,,) such that the
laws (S, )44 converge in the product weak topology (i.e. each of the measures constituting these
laws converges weakly) to a s.s. law as m — 0.

Proof. Pick a sequence of natural numbers (n,,),, in which each number occurs infinitely often
and pick a metric on the compact metrizable space M(XX") for each n. We construct the
sequence (S,,),, inductively as follows. Begin with S, = id.

At step m > O partition the compact metric space M(X*™) into finitely many sets of
diameter at most 2~™. To each n,,-dimensional subspace S™ : k"™ — k¥ associate the
measure (S™),.((S,,—1)«u)N. By the Graham-Rothschild theorem there exists a subspace
S =(8": k" — kNM)_ such that, for every n, the measures associated to all n,,-dimensional
subspaces of each S"(k") lie in the same cell of the partition.

By the pigeonhole principle one of the cells occurs infinitely often. Replacing each S™ by
a subspace of some S " with n’ > n that corresponds to this cell we may assume that the cell
does not depend on n. This property is evidently preserved under taking subspaces.

Define S,, =S,,_; ©S.

Since each n occurs infinitely often in the sequence (n,,),,, we obtain for the resulting
sequence of subspaces that the measures corresponding to n-dimensional subspaces eventually
lie in a 27™-ball in M(X*"), for any m € N.

This shows that ((S,,)..u)" does converge weakly for each n and that the limit is s.s. (since
the pushforward operation on measures is weakly continuous). O

1.2 Relative independence

Proposition 2 (See [Tao07, Appendix]). Two o-algebras B; and B, are called relatively inde-
pendent over B (under a measure u,) if one of the following equivalent conditions holds:
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1. For all f; € L®(By), f, € L*(By) we have E(f,f2|B) = E(f|B)E(f2|B),

2. For all f; € LY(B;) we have E(f;|B V By) = E(f,|B),

3. For all f; € L*(B;) we have [[E(f1|B V By)|l, = [[E(f1|B)l|2,

4. For all characteristic functions f; € L?(B1) we have ||E(f;|B V By)|l> = [IE(f1|B)|l5.
Proposition 3. If B C B, then the above statements are equivalent to any of the following.

1. For all f; € L%(B;) such that f; L B we have f; L BV B,,

2. For all f; € L?(B,) such that f; Y. BV B, we have f; Y. B.

Proof. The third statement above clearly implies the first here, and the two statements are
clearly equivalent. Assuming the first statement take f; € L?(B;) and write

fi =E(f11B) + (f1 — E(f1|B)).

By definition of the conditional expectation the expression in parentheses is orthogonal to B
and by the assumption B C B; it is B;-measurable. Hence it is also orthogonal to B V B,. Since
E(f;|B) is also B V By-measurable, we obtain E(f;|B V By) = E(f;|B). By density this implies
the second statement above. O

1.3 Sated laws

Definition 4. Let uy be a s.s. law and e C k. The e-insensitive o-algebra ¥, C X is defined by

Ael, = ul(ni_l(A)Anj_l(A)) =0 foreveryi,j€<e.

An up-set is a subset I C (>k1) such thatif e € I and e C ¢’ C k then e’ € I. For an up-set [
define I} := V¢ Z,.

A s.s. law is called I-sated if for every s.s. extension ¢ : i — u the algebras ¢~ 1(X) and %,
are relatively independent over ¢ ~'(Z;). A s.s. law is called fully sated if it is sated for every I.

Proposition 5. Every s.s. law u admits a fully sated extension.

Proof. The fully sated extension is constructed as an inverse limit of extensions (X ), Z(m)» U(m))
starting with (X gy, Z(0), 4(0)) = (X, Z, u). Let also (f(q ), be a dense sequence in L*(X, %, u).
Let (7', Pms Im)m De a sequence in N x N X (>k1) such that r,, < m and such that each triple
occurs infinitely often.

Let (X (), Z(m)» U(m)) e given and choose a s.s. extension

Pm+1)" K(m+1)> Z(m+1) m+1)) = K(m) Zam)s Bm))

in such a way that |[E(f(; , j|Z(m+1),1, )ll2 differs from its maximal possible value by at most
27™. Let also (f(+1,p)), be a dense sequence in LZ(X(mH), Y(m+1) u(()m+1)).

Let (X(4), Z(w), U(w)) be the inverse limit of this tower of extensions. (TODO: verify strong
stationarity) We claim that this inverse limit is fully sated.

Indeed, let ¢ : (X, 5, i) — (X(w)> Z(w)s U(w)) De a s.s. extension. We have to verify that, for

every f € Lw(X(w),Z(w),u?w)) and I C (zkl)’ we have
E(f 0 $IZ) = E(f [5(w),0) © ¢-

2
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By the martingale convergence theorem and continuity of the expectation operator it suffices
to consider functions f = f(, o).
Let m be such that r =r,, ¢ = q,, I = I,,. By definition of X(;, ) we have

IE(f © GIZDN2 <27 + IE(f © 0| Emen.)ll2 £ 27" +IES © ¢)| Zeo,)ll2-

Since m can be chosen arbitrarily large, this implies

IECf 0 @1ZDN2 < B © 9o Zw.)ll2-

Since ¥; D @‘1(2(0))’1), this implies

E(f 0 @li:l) = E(f ° (P(w)lz(w),l) o 95

as required. O

1.4 Joining topology

Let (X;, u;); be a countable family of compact Hausdorff spaces with probability Borel measures.
The Borel probability measures on | [, X; whose i-th marginals equal y; are called joining
measures. The joining topology on the space of joining measures is the coarsest topology for
which each map

MHJI_[fiMTid.U, fi € L®(X;, 1)

is continuous. This topology is compact since it suffices to consider functions from a countable
L'-dense set of the unit ball of L*®(X;, u;) for each i.
Using compactness of the joining topology we obtain the following analog of Lemma 1.

Lemma 6. Let A be a joining of countably many s.s. laws (u;); and Sy be a combinatorial
subspace.

Then there exists a sequence of nested combinatorial subspaces (S,,),, starting with Sy such
that the laws (S,,).A converge in the joining topology to a s.s. joining of (u;); as m — oo.

1.5 Relatively independent o-algebras associated to fully sated laws
We begin with the construction that will be used to exploit the satedness of a given law.

Definition 7. Let e C k. The oblique copy ZZ of %, is (the u!-completion of) the o-algebra
ni_l(Ze) for any i € e (this o-algebra clearly does not depend on i € e).

For an up-set I let ZII' = VeeIZZ.
The key feature of fully sated laws is the following independence property they enjoy.

Proposition 8. Let u be fully sated s.s. law and e,e’ C k be disjoint. Then the oblique o-algebras

n T . . T 1
%, and Ve X (jy are relatively independent over V jEE’Zeu{j} under u".

Proof. It suffices to show that whenever f o 1t; € LZ(Z}Z) (where i € e) is not orthogonal to

T i :
Ve 2 (jp 1tis also not orthogonal to V. %, | e By the assumption we have

0#£k= o TT; h:om.du!
Jka ll_[] ].U'

jee’
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for some measurable functions h; on X and every i € e. By strong stationarity we have

K= J f (Xre),»(w))l_[hj(xre,j(w))du"(X)
XK

jee’

for any n and every word w € k" in which a letter from e occurs. Here r, ; is the operation on
words that replaces each letter from e by the letter i. Using the assumptions on f we obtain

= f £ee [ T, on)duno)
XK

jee

for all w in which a letter from e occurs. Let S, be a subspace in which every word begins with
i € e (say), so that the above equality holds for every word in this subspace.

Now we construct an extension of X as follows. Let X := X xX¢ with coordinate projections
0, (0))jee’- Let also

M :an _’an: (xw)w — (xw; (xre’j(w))jee/)w
and A" = (1), u" be the pushforward measures.!
Write & = (&%, )wekn = (X (2w, j)jee dwekn for elements of X"
Let j € ¢’ and w € k™ be arbitrary. By definition of A" we have

(Qj om,)X= Zw,j = Xr, ;(w) = (nre,j(w) 0 6,)X 9

for A"-a.e. X, so that
(9] ° Tcw)*kn = (nre’j(w) © Qe)*kn = (nre’j(w))*nun = .u'o
by strong stationarity of u. We also trivially have 6, o 7, = 7, © 6,, so that
(Ge 0 1, ) A" = (71, 0 96)*ln = (nw)*un = ‘uO.

Thus every marginal of A" on a copy of X equals u°.
By Lemma 6 there exists a sequence of nested combinatorial subspaces (S,,),, contained in
Sy such that (S,,).+«A converges in the coupling topology to a s.s. law i as m — oco. Then

0, : (X, 5, (S)ssA) = (X, 2, (S )it

is an extension for every m, and since (S,,)..4 = u by strong stationarity, the limit law is again
an extension
96 : (X) 231"1) - (X} Z)AU’)‘

Recalling (9) we obtain

fwn fob,om, l—[hjoejo“wdkn = f”k” fom,00, l_[hjonre,j(w)oeedxn = J . fom, l—[hjonre,j(w)d.un =K
b X X

jee jee jee

for every word w in the subspace S,. Since each S,, is a subspace of S, and by convergence in
the coupling topology we have

ffo@enthdeQOZI%nf foee]_[hjoejd((sg)**xn)=1inr1nf fobeomgoy [ [hjo0j0msondA™ =x.
X e X jed X jee
h\c—/
=:h

n . .
192®k is the inverse of v up to sets of measure zero
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Leti €e, j € ¢’ be arbitrary. By (9) we have
0j 0 751 (i) = Ty, (510 © O = Tr, 1)) © O = 0 © 71 ()

a.s. W.r.t. A, so that 6; o r; = 0 o ; a.s. w.r.t. (Sp, ).« A for every m. Passing to the limit (in the

coupling topology!) we see that Qj_l(Z) is e U {j}-insensitive w.r.t fi.

In particular the function 7 is v jEe’ieU{ ji-measurable. By satedness of u we obtain

K= J~ fo Geild‘ao = JN fo QeE(illQe_l(vjee’zeu{j}))d.ao-
X X

The latter expectation is a lift under 6, of a V je. %, j;-measurable function on X that correlates
with f. O

We are now in position to obtain relative independence for more sophisticated oblique
copies.

Lemma 10. Let u be a fully sated s.s. law and I,1’,1" C (>1<1) be up-sets such that I’ = 1" U {e}
and e & I. -

For minimal elements a € TU T’ let 2, C X, be arbitrary sub-o-algebras and let also E, = X,
for other a € (zkl) Define E; and E} analogously to ZZ and Z}, respectively.

Then Z} and E; are relatively independent over E;—,, under u'.
Proof. The conclusion is trivial if e € I”, so assume e & I”. Then for every a € I UI” there

exists j(a) € a e.

Given f € LZ(ZJI") C LZ(VaaZ'{i‘j(a)}) such that f / LZ(EJI",) we have to show f [/ LZ(EJI",,).
By the assumption there exist functions h € L°°(E.I//) - L"O(\/aeluilT )Jand g € L°°(E.Z) C

. {i(a}}
L*°(%!) such that
0#Kk= ffghdul.

+

Now the product fh is Vaerur iy

-measurable, hence

K= J‘ fRE(E| Vaerur Z-{'j(a)})dul~
By Proposition 8 with e/ = j(I Ul”) this expectation is measurable w.r.t. the o-algebra

+ =T 2=t ;
VCIGIUI"Zeu{_j(a)} CE,, sothat f £ L*(E,,) as required. O

Lemma 11. Let B,B’,B" C B” be o-algebras such that B and B’ are relatively independent over
B” and B and B” are relatively independent over B". Then B and B’ are relatively independent
over B".

Proof. Let f € LY(B’). Then
E(f|BVB™) =E(E(f|B v B")BVB")=E(E(f|B")|BVB") = E(E(f|B")|B") = E(f|B"),

where we have used inclusion, relative independence, relative independence and inclusion,
respectively. O

Theorem 12. Let u be a fully sated s.s. law and 1,1’ C (>kl) be two up-sets. Then ZI' and Z]IT/ are

relatively independent over Z}}Lm, under ut.
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Proof. By induction on the size of IAI” using Lemma 10 with 2, = ¥, and Lemma 11. O

Theorem 13. Let y be a fully sated s.s. law and I C I’ C (] k ) be up-sets.
For e C d with |e| d let 2, C %, be arbitrary sub o- algebras and let also 2, =%, if |e| > d.
Then ZT and E! | are relatively independent over E; " under ul.

Proof. By induction on the size of I’ \ I using Lemma 10 and Lemma 11. O

1.6 The infinitary removal lemma

Theorem 14. Let u be a fully sated s.s. law and 1 < d < k. Then for any positive functions
fi € L®(%; ), i € k where I; 4 := (i) N (>kd) we have

fﬁflondu =0 = fﬁfiduozo.
X

i€k iek

Proof. We use descending induction on d. The case d = k is clear. Assume that the statement
is known for d + 1 and let ficx € L*(%; ) be as in the hypothesis. Replacing f; by the
characteristic function of its support we may assume f; =1, withA; € % .

For each e € (k) let (2, ,), be an increasing sequence of finite o-algebras that to-
gether generate %, and for e € (_ » +1) let 2,, = .. Let § > 0 be chosen later and
B, = {E(Ail'—'ll—,d,n) > 1- 06}, so that B;,, — A; (in L', say). Here and later we identify
sets with their characteristic functions.

By definition of the algebra Bl gn eachset B; , € ElJ, o Can be written as a finite union of
sets of the form

n €(i>ﬂ(§)cise ﬂAi

with C; , € £, and A e 2y, ,,, Assume for the moment that ,ul(ﬂl-Bim om;) =0, so that
O:f I_[ l_[ CieoT; -A;omdul —f l_ll_ICi’eonj(e)~I_[Aionidu1,
xX* iek eeli n( ) ee( ) i€e i€k

where j(e) € e is arbitrary, and by Theorem 12 we obtain

J l_[ E(l_[Clelz (.~ ))on(e) l_[A o m;dut.

ec(i n() ice ick

Here we may replace the function E(] [,

ice C <e)m(2dk+l)) by its support that is a set in

PH @n(.k,) C XL g The induction hypothe51s 1mplies
o= TT swope T s - [Taw= | TTT]ei[Jaew
eem( ) ice = ee( ) ice ick

since suppE(] [.c, Ci..
finitely many such terms, and we obtain

E(e>ﬂ(2dkﬂ)) 2 [ i, Ci - Therefore ,uo(ﬂiBi’n) vanishes, being a sum of

uo(NA) = lir{IlMO(ﬁiBi,n) =0
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It remains to be seen that the set F,, := ]_[l. Bipom;is p!-null. For every i we have

pr(F\ 71 (A) = f (Bin \Aj)om; | | Bynomy = J E(Bin \AilE;, 0 0 T | | By yomy
xk i'#i xk i'#i
.

()n

are relatively independent over =1 . by Theorem 13. Note that

since ¥; and = !
i,d i,d>

IE(Bi,n \Ai|EIi’d,n) = Bi,n(1 - E(Ailzli’d,n)) < 5Bi,n;

so that
.U’I(Fn \ nl‘_l(Ai)) = S.ul(Fn)
Therefore
pHF) < u (O A + Y (F \ N AD) S0+ Y 5ul(Fy).
iek iek
If 5 < 1/k this implies u'(F,) = 0. O

Corollary 15. Let u be a law on {0, 1} (with discrete topology) such that ,un(rcv_vl(l)) > 6 >0 for
every n and every word w of length n. Then there exists an n and a combinatorial line S : k* — k"
such that un(ﬂiekns_(li)(l)) > 0.

Proof. Let (S,,), be the sequence of combinatorial subspaces given by Lemma 1. It suffices to
obtain the conclusion with S being the identity subspace S : k! — k! and some law (S,,,) .-
Since {1} is clopen, it suffices to obtain the conclusion for the s.s. law given by Lemma 1,
thus we may assume that y is strongly stationary.
Clearly it suffices to obtain the conclusion for any extension of u, so by Proposition 5 we
may assume that y is also fully sated. Now the result follows from Theorem 14 withd =1. O

The density Hales-Jewett theorem follows by [FK91, Proposition 2.1].

Polynomials

The obvious polynomial generalization of the proof of Proposition 8 fails because one cannot
conclude

K :f f(xre,i(w))l_[hj(xre,j(w))dun(x)
XK

jee

since the points r, j(w) in general do not lie on a combinatorial line in k™ .
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