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1 Tb theorem on non-homogeneous spaces I

after F. Nazarov, S. Treil and A. Volberg [1]

A summary written by Polona Durcik

Abstract

We discuss a Th-theorem which extends the Th-theorem by David,
Journé and Semmes for the Calderén-Zygmund operators on R™ to the
case of non-doubling measures.

1.1 Introduction

Let 1 be a Borel measure on R™ and d a positive number. The measure p may
be non-doubling, we assume only that u(B(x,r)) < r¢ for any ball B(z,r)
with radius r and center z. A Calderén-Zygmund kernel (of dimension d) is
a function K € L{ (R" x R™\ {(z,y) : = y}, p) satisfying

(1) [K(s,t)] < Cls =t
(ii) There exists @ > 0 and C' > 0 such that whenever |t — so| > 2|s — s¢|,

B

K(s,t) — K Bty s) = Kl so)l = Op—laa
K (5,8) = Koo, L K (05) = Kt s0)| < O

We are interested in the LP(u) boundedness of a Calderdn-Zygmund operator
T (integral operator with kernel K). Being an integral operator with kernel
K means that the bilinear form (T'f,g) of T' (or (T'b; f,bag) when talking
about byT'by) is well defined for some class of functions (say, C§° functions)
and that for compactly supported f, g with disjoint supports

(Tf.g) = / / K (2, 9)9(x) £ (4)dpu(z)du(y) (1)

We call a bounded (complex valued) function b weakly accretive (with respect
to u) if there exists a § > 0 such that for any cube! Q

/Q b(s)du(s)

This in particular implies |b| > 6 p—a.e. The main result of [1] is

n(@)~! >

!By a cube we mean an object obtained from [0,1)" by dilations and shifts.
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Theorem 1 (Tb—theorem). Let 1 < p < oo and let by, by be two weakly
accretive functions. A Calderdn-Zygmund operator T is bounded on LP(u)
if and only if the operator byThy is weakly bounded and Tby, T*by belong to
BMO().

Moreover, the upper bound of the norm of T depends on n,d,p CZ con-
stants of the kernel K, ||b||s, 6 and the BMO norm of Tb.

This theorem should be seen as a meta-theorem. There are several in-
terpretations of weak boundedness which depend on the initial assumptions
on T. According to that we will state different (preciser) versions of the
theorem again. When we assume that T is well defined for compactly sup-
ported functions, one should think that instead of T" we are given a family
(T.)e of truncated operators 7. f(x) := f|zfy|>€ K(x,y)f(y)du(y) and think
of boundedness of T" as uniform boundedness of 7.

As in the homogeneous case it suffices to show boundedness on L?(u), for
this cf. [2] where weak 1 — 1 estimates for Calderén-Zygmund operators on
non-homogeneous spaces are proven.

1.2 BMO spaces

We also have to say what is the BMO space in the theorem. There are
many spaces which generalize the case when p is a n—dimensional Lebesgue
measure in R™ and all of the definitions below then give the well known
classical BMO.

1.2.1 BMOY

Let 1 <p < ooand A > 1. A function f € L .(u) belongs to BMOX () if
there exists a constant C such that

(/Q = mQ(f)\pdu)l/p < Cp(AQ)MP

for all cubes @, where mg f = u(Q)™* fQ fdu is the average of f over (). The
best constant C' is defined to be || f HBMO’;(u)' Here A(QQ means the cube Q
dilated X\ times with respect to its center. In order to find the best general-
ization of the classical BMO, BMOX (1) has some disadvantages. It depends
on A and p and one can show that the inclusions BMOX (1) € BMOX (p) if
A < A and BMO%Y* () € BMOX' (u) if p1 < po are proper. Also, BMOY(p)
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is a wrong object for this theory, since boundedness of 7" on LP(u) does not
imply 7'1 € BMO?Y(11). The space RBMO of X. Tolsa turns out to be a more
natural analogue.

1.2.2 RBMO
Let p > 1. A function f € L} _(p) is in RBMO(u) (regularized BMO) if for

loc
each cube () there exists a number fg such that

/Q F = fol < Bun(pQ)

and such that for all cubes @, R with Q C R

IfR—erSBZ(u/ du_<fv>>

2R\Q |z — cql

where the constants By, By do not depend on (). The infimum of By + B,
is called the RBMO—norm of f.

The second regularization condition is crucial for better behaviour of
RBMO over BMOX. It may seem that this space depends on the param-
eter p, but one can show that it does not. And most importantly, RBMO
has the John-Nirenberg property (unlike BMOY):

Theorem 2. Let f €« RBMO, p>1 and 1 <p <oo. Then for any cube ()

/Q 1 — foldu < Blo,p. I lremio)(pQ)

1.2.3 7Tb e BMO

Next we need to make sense of what it means that Th belongs to a BMO
space for b € L.

Let us suppose that the bilinear form (T, f,bag) of the operator byThy
is defined for f,g € C§°. Let ¢ be an arbitrary smooth function supported
on a cube Q satisfying [bop = 0. Let ¢y € C§°, ¢y = 1 on 2Q with
0 <t < 1. Let g = 1 —1);. We define the expression (Tby, ¢bs) to be
(T1p1b1, ba) + (Thaby, wbe). While the first term is defined by assumption,
for the second term we use an integral representation by analogy with (1).



This representation does not depend on the choice of v, and we can interpret
the condition 7b; € BMO} by duality as

[(Tb1, 0ba)| < Clloball o (AQ)H”

where 1/p+1/p = 1.

The condition Th; € RBMO needs a different interpretation. Let us
suppose that the operator T is well defined on bounded compactly supported
functions. We say that f belongs to RBMO(G,u) if the inequalities defining
RBMO hold for all cubes Q@ C R C G. We consider p € C§°, 0 < p < 1
and ¢ = 1 on the cube 10G. We say that Th; € RBMO(G, u) if Thip €
RBMO(G, ), which is independent of a cutoff ¢. Finally, we say that Th; €
RBMO(p) if Th; € RBMO(G, p) for all cubes @ with uniform estimates on
the norms.

Since RBMO has the John-Nirenberg property, if Th; € RBMO(u) then
Th; € BMOX (u) for all p € [1,00), A > 1.

The condition 7b; € RBMO may be sometimes hard to verify. But for our
theorem it does not matter, which BMO space we pick. If Th; € BMOX (1)
for some p and b,Th; is weakly bounded in the sense that there exists A > 1
such that [(Thixg, baxg)| < Cu(AQ) for all cubes @, then Th; € RBMO(pu).

1.3 Estimates of the regular part of the matrix

Fix two dyadic lattices D, D’ in R™ consisting of cubes of size 2¥, k € Z, where
one is shifted with respect to the other. One version of Theorem 1 (the ”if”
part) with a stronger weak boundedness assumption is the following:

Theorem 3. Let T' be a Calderén-Zygmund operator which is bounded on
compactly supported functions, i.e. for compactly supported f, g

KTf, )| < CAfllzzgllgll 2

where A = max{diam(supp f),diam(supp g)}. Let by, by be weakly accretive
functions and let Ty, Tby € BMO3 (11). Suppose also that T is weakly bounded
in the sense that

(Tbyxg, baxr)| < Cu(Q)?u(R)"?

for cubes Q € D,R € D' of comparable size which are close, i.e. QQ, R such
that 1/2 < 0(Q)/l(R) < 2 and dist(Q, R) < min(¢(Q),¢(R)).

Then the operator T is bounded on L*(u) with the upper bound of the
norm of T depending only on the constants as in Theorem 1.
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Let us sketch the proof. We want to estimate |(T'f, g)| < C||fllz2( |9l L2¢)
for f,g € L*(n). First we decompose f and ¢ into martingale differences:
For a weakly accretive function b we define

Bhsx) = ([ van) " ([ san) o) vl

and A}, := Epy, — Ef, where Q' C Q and ((Q') = 1/2((Q). Then for a fixed
ke€Z, any f e L*(u ) can be decomposed as

= Y A Y B (2)

QEDL(Q)<2k QEDL(Q)=2F

where the series converges in L?(p).

Let us call a pair of cubes @, R with £(Q) < ¢(R) singularif dist(Q, 0R) <
Q) (R) 7 or dist(Q, IRy,) < L(Q)U(Ry,)' 7 for some subcube Rj, C R of
size ¢(R)/2, where ~ is such that vd + va = a/2. We call a singular pair
Q, R essentially singular, if in addition ¢(Q) < 27"¢(R) for some integer r to
be determined later. We say that a cube @) € D is bad if there exists a bigger
cube R € D’ such that the pair @, R is essentially singular. Otherwise it is
called good. Let f € L?(u) be supported by a cube of size 2¥. We call the
function f D—good if Agf = 0 for any bad cube Q € D of size £(Q) < 2%. If
we replace D by D' and by with by we get a definition for D’— good functions.

Fix r from the definition of singular pairs large enough such that 2"=7) >
A and 2" > 4\, After decomposing f and g into martingale differences we
first estimate ), p(T'vq, ¥r) Where pq = Agf and ¢z = A%g. For now
we only treat the case when f is D—good and g is D’'—good, so all entries in
(T'pg,¥r) corresponding to essentially singular pairs are zero. Then:

Case I: ) and R are ”far away” from each other
By this we mean that dist(Q, R) > min(4(Q),¢(R)) and 27"¢(R) < ¢(Q) <
2"¢(R), or that ) and R are disjoint, nonsingular and that (by symmetry)
0(Q) < 277L(R). In this case we can use (1) and estimate

0(Q)¥20(R)*/?
(gz@ R()a)w QY2 u(R)Y?| 0ol 2 1 ¥oll 2

where D(Q, R) := dist(Q, R) + ¢(Q) + ¢(R). Then we show that the matrix
{To.r}oep gep defined via
UQ)*U(R)?

Ton= =55 Ry (@) u(R)?

11
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generates a bounded operator on ¢? and we are done.

Case II: Q C R and (@ is not close to OR
We consider @ C R with ¢(Q) < 27"¢(R) where the pair is not singular.
First we define a paraproduct II = Iy« by

If =) > (Erbs) ™" Erf - (AQ) Ty
ReD' QeD:4(Q)=2""¢(R)
dlst(Q OR)>M\(Q)

Then we decompose

<T90Q7 77ZJR> = <(T - H*)@Qv 77ZJR> + <90Q7 HwR>

If T*b, € BMO3 (), IT is bounded on L?(x). This can be shown using
a dyadic version of the Carleson embedding theorem. To estimate ((7 —
IT*)pq, ¥r) note that the function ¢ is of the form

where B; are some constants and R; € D’ are the dyadic cubes of size ((R)/2
contained in R. We also have (pq,r) = (T'pg,bs)B;. This makes it
possible to estimate (1" — II*)¢g, ¥r) in a similar way as in case L.

Case III: ) and R are close and of comparable size
This is the case when dist(Q, R) < min(¢(Q),¢(R)) but @ and R are still of
comparable size, i.e. 277¢(R) < ¢(Q) < 2"¢(R). So the pair @, R is singular
but not essentially singular. The claim can be now deduced by the weak
boundedness assumption.

Terms involving Egj f are treated similarly. What remains is to prove the
theorem for bad functions f and ¢, which is the harder part of this proof.
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2 Painlevé’s problem and the semiadditivity
of analytic capacity

after Xavier Tolsa [8]
A summary written by Daniel Girela-Sarrion

Abstract

We prove that, for £ C C a compact set, y(E) ~ ~v4(FE), sol-
ving Painlevé’s problem. This result also implies the semiadditivity
of analytic capacity.

2.1 Introduction

Definition 1. A compact set E C C is said to be removable for bounded
analytic functions (or, simply, removable) if, whenever § is an open set con-
taining E, every bounded analytic function in Q\ E has an analytic extension

to the whole of 2.

Painlevé [7] proved in 1888 that if a set has zero 1-dimensional Hausdorff
measure, then it is removable. The classical Painlevé problem consists in
giving a geometric/metric characterization of removable sets.

To study this problem, Ahlfors introduced the notion of analytic capacity.

Definition 2. Let E C C be a compact set. The analytic capacity of F,
denoted by v(E), is defined by

Y(E) = sup{|f'(c0)|: f € Hol(C\ E), |f(2)| <1 forall z€ C\ E}.

Ahlfors [1] proved that a compact set £ C C is removable for bounded
analytic functions if, and only if, v(E) = 0.

Later, in the 1960s, the notion of analytic capacity was rediscovered by
Vitushkin [11], who used it for problems of rational approximation in compact
sets. Because of the applications to this type of problems, Vitushkin raised
the question of the semiadditivity of v, i.e., whether there exists an absolute
constant ¢ such that

Y(EUF) <c(y(E)+y(F))

for all compact sets E, F' C C.
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2.2 Cauchy transforms and the capacity ..

Definition 3. If v is a complex measure in C, the Cauchy transform of v is
the function defined by

cvl) = [ =ane),

whenever the integral makes sense.

Cauchy transforms can be considered as a tool for constructing analytic
functions. Indeed, in the conditions of the definition,

e Cvel (C).
e Cv is analytic in C \ supp(v).
e Cv(o0) =0, (Cv)(c0) =—v(C).

Definition 4. Given a compact set E C C, we define the capacity v+ of E
by
V+(E) = sup{u(E): supp(u) C E,[|Cpl[L~(C) < 1}.

This capacity was introduced by Murai [5], only for sets supported in recti-
fiable curves, and he showed its relationship with the weak (1,1)-boundedness
of the Cauchy transform on these curves. It is immediate, from the previous
remarks, that v, (E) < v(FE).

The usefulness of this capacity v, stems from the fact that it can be
characterized in terms of L?-boundedness of Cauchy transforms, curvature
of measures or certain potentials. Let us introduce some notation to state
this characterizations.

If v is a complex measure in C, the integral

[ e

may not be convergent for z € supp(r). For this reason, one considers the
truncated Cauchy transform of v, which is defined by

C'Ey(z):/| L dv(§)

z—€[>e 5 -z
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for all z € C and all € > 0. If p is a fixed positive Radon measure in C, we
write C),f = C(fp) and C,f = Cc(fp). We say that the Cauchy transform
is bounded in L?(y) if all the C,, s are bounded in L?(p) uniformly on € > 0,
and we set

Cull 2wy L2 = sup Cell L2y L2 (-

A positive Radon measure g is said to have linear growth if there exists
a constant C' such that
plB(z,r)] < Cr

for all z € C and all » > 0.

Given three pairwise different points x,y, z € C, its Menger curvature is

defined by
1

R(x,y,z)’

where R(z,y, z) is the radius of the circle passing through z,y,z. If u is a
positive Radon measure, we set

() = // c(x, y, 2)*du(y)du(z)

and we define the total curvature of u by

) = [ cwdnto) = [Jf elwp.2dute)duty)dut)

c(z,y,2) =

Finally, the maximal radial Hardy-Littlewood operator is defined by

Muv(z) = sup M, z € C,

r>0 r
where v is a complex measure in C.

With all this notation, we can characterize the capacity v, in many ways,
as the following theorem states.

Theorem 5. Let E C C be a compact set. We denote by X(E) the set of all
positive Radon measures p supported on E and such that pu|B(xz,r)] < r for
allz € C and r > 0. Also, if u is a positive Radon measure supported on F,
we define

Uy() = Mp(w) + & (w)*.

15



Finally, we set
M. (C) = {p: p is a positive Radon measure in C}.
Then, we have

Y4 (E) = sup{u(E): p € X(E), ||Cept||zoc(uy < 1 for all e > 0}

(E) (
~ sup{u(E): p € S(E), [|Cepll2( < w(E) for all e > 0}
~ sup{u(E): p € B(E), (1) < w(E)}
~ sup{p(E): [|Cullr2(—r2() < 1}
~ sup{u(E): supp(u) C FE, Uu( ) <1 foralze E}
~ sup{p(£): supp(p) C E,U,(z) <1 for all x € C}
~ inf{||p||: p € My (C),U,(z) <1 for allx € E}.

The semiadditivity of the capacity . follows from this result.

Corollary 6. There exists an absolute constant C' > 0 such that, for all
compact sets E, F C C,

V+(EUF) < C(v+(E) +74(F)).

2.3 The comparability between v and v, and the semi-
additivity of analytic capacity.

Since 74 is semiadditive, the semiadditivity of v would follow from the com-
parability between 7 and 7. Also, since the compact sets F with v, (E) = 0
are easily characterized in a metric/geometric way (indeed, from Theorem 5,
v+ (E) = 0 if, and only if, E supports a non-zero positive Radon measure
with linear growth and finite curvature), this would also lead to a complete
solution of Painlevé problem.

The main tools to attack this problem have been the local T'(b)-type
theorems for the Cauchy transform, originally due to Christ [2] in the setting
of homogeneous spaces, and its refinement in the non-homogeneous case due
to Nazarov, Treil and Volberg [6].

The first result in this setting is due to David [3].

Theorem 7. Let E C C be a compact set with finite length and v(E) > 0.
Then, v, (E) > 0.
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Later, Mateu, Verdera and Tolsa [4] obtained precise estimates for the
analytic capacity of a big class of planar Cantor sets, proving that v and v,
are comparable for these sets.

Finally, Tolsa [8] proved, in 2001, the following:

Theorem 8. There exists an absolute constant ¢ > 0 such that for all com-
pact sets E C C,

Y(E) < ey (B).

As we have stated before, this result yields to the solution of Painlevé’s
problem and to the semiadditivity of analytic capacity.
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3 The solution of the Kato square root prob-
lem for the second order elliptic operators
on R"

after P. Auscher, S. Hofmann, M. Lacey, A. M¢Intosh and P.
Tchamitchian [1]
A summary written by Ana Grau de la Herrdn

Abstract

The Kato problem questions for which operators the estimate ||[v/Lf ||z ~
|V fl|2 is satisfied. We will prove that it’s satisfied for uniformly com-
plex elliptic operators L = —div(AV) with bounded measurable coef-
ficients in R” in any dimension.

3.1 Introduction

Let us state the problem as it is stated in [1]. Let A = A(z) be a n X n matrix
of complex, L coefficients, defined on R", and satisfying the ellipticity (or
“accretivity”) condition

M€ < Re A€ - € and |AE - ¢7| < AJE[IC], (1)

for £, € C" and for some A, A such that 0 < A < A < co. Here, u-v =
uv1 + -+ -+ u,v, and u* is the complex conjugate of u so that u-v* is the usual
inner product in C" and, therefore, A¢ - (* = Zj’k a; 1 (2)€(;. We define a
second order divergence form operator

Lf = —div(AVf). (2)

Let H'(R™) be the Sobolev space and define the operator /L : H'(R") —
L?(R") as the linear operator that satisfies vVIVL = L. We say that f €
H'(R™) belongs to the domain of v/L and denote it by f € D(vL) if

IVLfllo < Cliflla = [V fllo-

By [3] and since our hypotheses are stable under taking adjoints, it is
enough to prove that D(v/L) = H'(R") to conclude that

IVLfl2 ~ 1|V £]l2-
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Proposition 1.

VLf= a/oo(l + tQL)_3t3L2f%, (3)

0
where ™' = [(1 4+ u?)Puldu.

3.2 Reduction to a Carleson measure estimate

In this section we are going to follow a 7'(1) theorem (for square functions)
argument. That means that we are going to assume that

271 o dtdz
Sup|Q‘// 14+ t°L) tL]1(x)| ; <C (4)

and we are going to prove that, up to (4), [V Lf|lz < C||V£]|2.

3.2.1 Reduction to a quadratic estimate

Let g € C3° with ||g||2 = 1, then by duality and Cauchy-Schwarz inequality,

o) 2
<VErgs e[ [Tuseners ]
U/ [(1+ L) MLf] - [PL*(1+2L%) 7 ]dtdm}

_a2/ / |(1+t2L)—1th(x)|2@./ / ItQL*(l+t2L*)‘Qg(x)|2dttdx
n 0 " 0 —_

We will bound the second integral in this subsection by using the stan-
dard orthogonality argument of Littlewood-Paley theory and treat
the first one separately in the next subsection.

Pick any ¥ € C§°(R") with ¥ real-valued and [ W = 0 and define Q; as
the operator of convolution with Sin\ll(f) for s > 0 and we normalize such

that - dnd
ras
/ Qug() Y = g2
0 Rn

Lemma 2. Let U; : L*(R™) — L*(R"), t > 0, be a family of bounded opera-
tors with |Upllop < 1. If |UpQsllop < (inf(%,2)), for some a > 0, and some
family Qs, s > 0 as above, then for some constant C depending only on «,
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o dzdt
| [ wa@P=E <clgla
0 R

This lemma is a consequence of Schur’s lemma and its proof follows the
same standard argument.

We apply the lemma to U; = t*L*(1 + t>L*)~2 and we choose Q, in
the following manner. Let p = A¢ with ¢ € Ci°(R"), radial, so that, in
particular, ¥ = divh. This yields Qs = sdivR with R, uniformly bounded.

Therefore,

0 . - dtdx
[ [ s e tgwrtE < ol - c
nJO

3.2.2 The T(1) Theorem argument

To simplify the notation let’s denote by ©,f(z) = (1 + t*L) " tdivAf(x).
With this notation we are left to prove that

/ ) / 0.V ()P < o [ wrwpas
Y . t o

In order to benefit ourselves again with Littlewood-Paley theory we intro-
duce P; as a convolution operator with tin p(7) where p is a smooth real-valued
function supported in the unit ball of R" with [ p = 1. By the linearity of
@ta

©:Vf] < [0:1(z) - (PEVf)(@)| + |©:1(2) - (PEV f)(2) — (€, Vf) ()]
< |0:l(x) - (PEV (@) + 01 - PV f = O PV f| + 0P = D)V f]|
We apply a similar orthogonality argument as the previously described
to the second and third term of the integral with U;P,f(x) := O;1(x) -

(P(Pf)(x) — ©,P(P.f)(z) and U, := ©,V respectively. For the first term
we apply the Carleson’s inequality which reads as follows.

Theorem 3. [2] Let p be a non-negative measure, assume there exists a
constant A > 0 such that for all Q € R™ pu(Rg) < A|Q| where Rg =

Q % (0,0(Q)) then

dtdx
ﬂ71+1 |Ef‘2du(x’ t) S C ‘ A . //n+1 ’Ef‘zT
+ +
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We apply the above to u(Q) := fQ fo |@t )24z and define the

t )
Carleson measure of p as A = ||,u||c = supg |Q‘ fQ f(f(Q) 01 (z) 2442 50
we get the bound

dtdx dtdx
L] teaw vn@reE <clenle [ 1
n Ri 1

<C [ |Vflidx

Rn

This concludes the proof up to (4).

3.3 The T'(b) theorem argument

Fix a cube Q, € € (0,1), a unit vector w € C" and define a scalar-valued
function

0w(®) = (14 (el(Q))’ L) (Po(2) - w") (5)
where, denoting by x¢ the center of Q,
Qp(z) =z — zq.

Definition 4. Fiz a cube @ and denote D(Q) the dyadic decomposition of
the cube Q). We define the averaging operator ont € (0,4(Q)) as

421 () xﬂ/“ (6)

where Q(x,t) is the minimal cube in D(Q) such that x € Q(z,t) and has side
length at least t.

The remaining part of the proof is resumed in the following lemmas.

Lemma 5. There exists an € > 0 depending on n, A\, A and a finite set W
of unit vectors in C" whose cardinality depends on € and n, such that

dtdx
su o,1 2—<
p|@|/ / Otz

dtd
<C'Zsup|Q|// 001(x) - (APVB ) () P

weWw

22



where C depends only on €, n, X\, A. The supremum is taken over all cubes

Q.

Lemma 6. For C depending only onn, A\, A and ¢ > 0, we have

//'|@ )+ (AW )@ T < cjgl (7)

Let’s brief a sketch of the proof of both lemmas.

For lemma 5 we use a stopping time decomposition argument. We
select cubes in D(Q)) which are selected by being the maximal subcubes of Q
satisfying at least on the following properties

e 3
o7 [, R 0)- iy < G ®)
1 € 2 -2
a1 L [Pty > (4 ©)

We define S, the collection of such non-overlapping subcubes of Q and
822 the family of subcubes of Q such that are not contained or equal to any
cube of S;. We also cover C" with a finite family of cones C,, defined by

lu — (u- ww| < €lu - w?|

whose cardinality depends only on € and n so that

“Q) dtdz
[ eawpt -
QJO

—Z// CRIE ﬂcw(@tux))ﬁﬁtﬂ.

wew
Then Lemma 5 is a consequence of some geometrical arguments, and the

fact that ea Q] < (1 — for some n € (0,1). Note that n will
Q'esy, n n n

depend on € so we choose it small enough so this last condition is satisfied.
For Lemma 6 we pick a smooth cut-off function x = x¢ localized on 4¢)
and equal to 1 on 2Q) with || x||ec +4(Q)[|VX||ec < C(n) that we introduce as
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follows

<0/ / 001(2) - (A2 — PV (Xt ) (a) P2 1

e / / ©1(x) - (PV () () P

t
<c [ Viboule |dx+c// V() @) P
< QI

Finally we point out that the last two inequalities are not trivial and
require several technical computations that we will not include in this sum-
mary but are computed in more depth in the original paper [1, section 2 and
section b).
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4 The Tb-theorem on non-homogeneous spaces
11

after F. Nazarov, S. Treil and A. Volberg [1]
A summary written by Shaoming Guo

Abstract

We discuss a Th-theorem which extends the Th-theorem by David,
Journé and Semmes for the Calderén-Zygmund operators on R™ to the
case of non-doubling measures.

This is the summary of the second part of the paper by Nazarov, Treil
and Volberg, following the one by Polona Durcik “the Th theorem on non-
homogeneous spaces I”. The theorem we will present here is the following:

Theorem 1. Let 1 < p < oo and let by, by be two weakly accretive func-
tions. A Calderon-Zygmund operator T is bounded on LP(u) if and only if
the operator byTby is weakly bounded and Tby, T*by belong to BMO(u).

For the definition of “weakly accretive functions” and the choice of BMO(p)
spaces, see the summary of part I. As soon as we have the right BMO space
to work with, the “only if” part of the above theorem follows from standard
argument.

For the “if” part, it suffices to prove the L? boundedness, the LP bound-
edness for general p will then follow from Calderon-Zygmund decomposition.
By duality, it suffices to prove that [(T'f, g)| < || fll2llglle- To estimate the
inner product, we first do martingale difference decomposition for f and g,

1.e. write
F=Y_Abfg=)Y_ ARy,
QeD ReD’!

for the definition of A% still see the summary of part I. By linearity, we have

(Tf,9)= > (TAGS,AG9) (1)

QED,ReD’

The whole point then is to have a good estimate for the term (TA% /s Alg 9),
which we will explain now.
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Case I: ) and R are “far away” from each other, by which we
mean dist(Q, R) > 1(Q)I(R)'™", for some 7 > 0 to be chosen later.

Case II: ) C R, but @ is not close to the boundary of R, by which
we mean that dist(Q,0R) > 1(Q)"I(R)' .

Case III: singular but not essentially singular part

“singular” means if we take two cubes @, R, w.l.o.g. say [(Q) < I(R),
then
dist(Q,OR) < 1(Q)'I(R)'™7. (2)

For the definition of being “essentially singular” see below the case IV.
Roughly speaking, “singular but not essentially singular” means two cubes
are close to each other, and their sizes are also comparable.

Case IV: the essentially singular part

by “essentially singular” we mean
eqdist(Q,OR) < (Q)I(R)',1(Q) < 27"I(R), (3)
for some r large number to be chosen later.

Asin part I of the summary we have already seen the idea for the “regular”
part-case I and case II, and part of case III, I will then focus on the rest of
the “singular” part. The idea is to average over dyadic grids, “what should
we do about the ‘bad’ ones?” The surprising answer is-nothing, just ignore
them! The point is that the ‘bad’ cubes are rare, so we don’t have to worry
about them.”

4.1 Proof of the theorem under a stronger weak bound-
edness assumption

The weak boundedness assumption we will use in this section is:

(Tbixq, baxr)| S 1y 1 (4)

for all cubes @, R with 1/(R) < I(Q) < 2/(R) and dist(Q, R) < min{l(Q),(R)}.
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4.1.1 random dyadic lattice

We now want to construct a random variable £ which is uniformly distributed
over the sample space consisting of all dyadic lattices, to be precise, take the
standard dyadic lattice Dy, then the element in the sample space is like
Dy + C, where C runs through R¥.

the construction of dyadic lattice over R: we just need to determine the
relative position of all dyadic intervals in this lattice, which is equivalent to
determine for all £ € Z the position of one single dyadic interval of length
2k,

Let €2; be some probability space and let z(w) be a random variable uni-
formly distributed over the interval [0,1). Let &;(w) be random variables
satisfying P{{; = 1} = P{{; = —1} = 1/2. Assume also that z(w), {;(w) are
independent. Define the random lattice as follows:

i) let Ip(w) = [z(w) — 1, 2(w)], which uniquely determines all intervals in
D(w) of length 2% with k < 0;

ii) the intervals Iy(w) € D(w) of length 2* with k > 0 are determined induc-
tively: if [_1(w) € D(w) is already chosen, (Ix(w))+ = [r—1(w) if & (w) = +1
and (I (w))- = Iy_1(w) if & (w) = —1. In another word, in every step we
extend I;_;(w) to the left if {(w) = +1 and to the right otherwise.

To get a dyadic random lattice in RY we just take a product of N inde-
pendent random lattices in R. It’s easy to see that the random lattice D(w)
constructed in this way is uniformly distributed and satisfies

equidistribution property: for z € R, the probability that dist(z, Q) >
el(Q) is exactly (1 — 2¢)" for all cubes Q.

4.1.2 bad cubes

Let D(w) and D'(w’) be two independent random dyadic lattices, we call a
cube @ € D(w) “bad” if there exists a cube R € D'(w') of lenght I(R) > 1(Q)
such that @), R are essentially singular. Otherwise we call the cube @) “good”.

Lemma 2. Let r,vy be from the definition of essentially singular pairs, then
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for any Q € D(w) we have

2"

’ ) <
PQ is bad} < 2N1 —5 (5)

the important thing here is that when we choose r large enough, the
probability will be small enough. In this sense we say that bad cubes are
rare.

4.1.3 with large probability “bad” parts are small

We want to splitt the function f = ZQE]D Ag f into two parts fyeed + foads
where the bad part takes care of the bad cubes defined above

fraa =Y,  ABf (6)

QeD,Q is bad

Lemma 3. for a given function f and dyadic lattice D(w), we have the
following estimate on the mathematical expectation of L?* norm of the bad

parts
27"
Bl fraally < 2N AP || £, (7)

where A is some constant depending only on by and bs.

We take 7 large enough so that 2N 2= < A7227%. Then the probability

1

that
[ foaallz = 4- 2781 F13 (8)
can’t be more than i’ and therefore with probability % we have
| foaalls < 27°I1 113 (9)

4.1.4 pulling yourself up by the hair: final proof

For an operator T', consider the cut-off operator T,, which has the trivial a
priori bound ||T;|| < Cy(e, D) < oo, where D := diam(supp(f) U supp(g)).
The point of this section is to show that the constant C); can be actually
chosen independently of € and D.

By definiton of operator norm, we could pick two L? normalized functions
f.g such that [(T'f,g)| > 2Cy(e, D), splitt them into good and bad parts

I = fgo0d + fradr 9 = Ggood + Gbads
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in such a way that

[ foaallz < 2721 f 2, |gbadall < 2721 g]l2-

This is always possible because we can always choose r large enough such
that with a large probability the bad parts are small.

Then

(Tf, )| < KT fgo0d: Ggood) | + (T fgoods Goad) | + (T foad, 9)]- (10)

In case I, IT and III we have seen that there exists constant C' such that
(T fg00d> Ggood)| < Cll fgodll2llggoodllz < ClIfl2llgll2 < C, (11)
By a priori bound assumption,
(T foads 9)| < 27°Co(€, D)| fraall2llgllz < 27°Cole, D), (12)
Similarly,
T fyood, Gpaad| < 27°Col€, D)l fyooallzl| gpaallz < 27Cle, D). (13)

Notice that we have choosen f, g s.t. |[(Tf,g)| > %Co(e, D), we then get
1

Therefore Cy(e, D) < 4C, which is independent of € and D, then we are
done.

4.2 proof of the full Tb theorem
4.2.1 weak boundedness on rectangular boxes

In this subsection let’s first consider a special case, which has the following
weak boundedness assumption:

(T xqbi, xoba)| S p(@),V rectangular boxes @) (15)

The difference from the previous section is that now we are not allowed to
control (1 fgoods Ggood)| by weak boundedness assumption any more, because
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the weak boundedness assumption is of the form of () = R, but now we have
infinitely many terms with different () and R of comparable size such that

QNR#0D.
The idea to handle this term is the same as what we did for the essentially

singular part, we will throw more “bad” parts from fyood; ggood; and try to
get an estimate of the form

1
(T fg00a: 9gooa)| < Tl + C. (16)

To estimate (T fyo0d; Ggood)| it’s enough to estimate the sum

> UTALf A%, (17)
Q.R

over all cubes of comparable size 277(Q) < [(R) < 2"[(Q).

The cancellation from A% f will not play any role here, so we just write it
as linear combination of characteristic functions, then it suffices to estimate
terms of the form |[(T'xqb1, xrb2)|, where again @), R have comparable size.

In the above picture, the dark part QU Ry will be the “bad” part that we
will throw away, this is always possible provided that we choose the thickness
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of the dark part to be small enough. For the rest, either we know that
Rsep, Qsep, A are seperated, for which we have good estimate, or we will use
the weak boundedness assumption to estimate the term (T'xa, xa), as A is
a rectangular box.

4.2.2 proof of the full Tb theorem

In this section we will use the following weak boundedness assumption:

(Txqb1, x@b2)| S 1(Q),V cubes Q (18)

The only difference with the last section “weak boundedness on rectangu-
lar boxes” is that, under the above weak boundedness assumption, we don’t
have an estimate for the term (T'xa, xa) directly as A is just a rectangular
box instead of a cube.

The way out is pretty easy, although rectangular boxes are not cubes,
they can still be covered by cubes, there’s some problem near the boundary
of the rectangular boxes, but again ignore them because those cubes are
really rare!

In the above picture, the largest rectangular box is A = @ N R, the
dark part is the thin boundary of a dyadic lattice of fixed width, we can
take the thickness to be so small that f, g restricted on this part will have
“no” contribution. The rest is just a union of cubes, for two cubes in this
collection, they are either seperated, for which we have good estimate(with
constant apparently depending on the thickness of the dark part), or they
are the same, for which we could use weak boundedness assumption!
SHAOMING GUO, UNIVERSITAT BONN
email: shaoming@math.uni-bonn.de
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5 Sharp weighted estimates for dyadic shifts
and the A, conjecture

after Tuomas Hytonen, Carlos Pérez, Sergei Treil, Alexander Volberg [1]
A summary written by Timo Hdanninen

Abstract
We outline the proof of the A, theorem given in the above-mentioned
paper.

5.1 Introduction

A weight is a strictly positive locally integrable function on R?. The A, char-
acteristic [w]a, of a weight w is defined by [w]4, = SUPQ is a cube (W)@ (=) 0-
The As class consists of all the weights w such that [w]a, < co.

Theorem 1 (Ay theorem). For each Calderdn-Zygmund operator T there
exists a constant Cr such that

1T L2y 22wy < Orlw]a, for all weights w € A,.

After many intermediate results by others, the Ay theorem in full generality
was first proven by Hyténen [2]. The paper [1], which we summarize here,
gives a simplified proof of the A, theorem. For lecture notes on the proof,
see [4], and for a survey on further simplications of the proof, see [3].

The first step in the proof is to represent each Calderén-Zygmund op-
erator as a series of dyadic shifts and dyadic paraproducts averaged over
randomized dyadic systems. A dyadic shift Sg associated with non-negative
integers ¢ and j and a collection of dyadic cubes D is an operator of the form

S f = Z Ag = Z Z ary(fshi)hy

KeD KeD  1€D,JeD,ICK,JCK
LN=2""U(K),(J)=2"7¢(K)

for Haar functions h;, which are L?-normalized, and for some coefficients a;jx

Vi

K]
is to ensure that |Ax f| < 1x(|f|) k. We say that the shift S is generalized
if we allow some of the functions h; to be of the form h9 = |I|71/21;. We say
the shift S2 has the complezity k := max{i, j} + 1.

There are 2¢ possible choices for the dyadic parent of a cube. By choosing
the parents at random, we can define the randomized dyadic systems D“.

that satisfy the size condition |ar x| < . The point of the size condition
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Theorem 2 (Dyadic representation theorem). Let T be a Calderdn-Zygmund
operator with the Holder exponent cv. Then there exist dyadic shifts Sp. and
a constant Cr such that

(9,Tf) =E, (CT > 2 ST + (9,118 f) + (g, (H?fl)*ﬁ)

120,720

for all, say, f € CHR?) and g € CL(R?). Moreover, the constant Cy depends
only on the dimension, on the Holder exponent, on the constant in the weak
boundedness property, and on the constants in the standard estimates for the
kernel.

The second step is a Sawyer-type characterization for the boundedness of
generalized dyadic shifts from a weighted L? space to another. Let u and w
be weights. For the dual weight o := u~! of the weight u we have that

T 2= r2@w) = 1TC- )| L2(0) = £2(w)

and that the weights w and o are interchanged by taking the adjoint: The
formal adjoint of the operator T'(-¢) : L?(c) — L*(w) is the operator
T*(-w) : L?*(w) — L*(0). Note that in the special case of one weight we
have v = w, and hence 0 = w™ 1.

Let Sp be a generalized dyadic shift with complexity x associated with a
dyadic system D. Let D,, denote the collection of all the dyadic cubes with
side length 27". We may separate the dyadic length scales by picking every
rth dyadic length scale: For each integer k with 0 < k£ < k — 1 we define
Dy mod s = UnGZ Dk—f—nn'

We say that each dyadic shift Sp, __,,. has its scales separated. Note that
Sp = Z;é Sp, woan- The point of separating scales is that Ax is constant
on K’ whenever K’ C K and ((K') = 27"¢(K). In the series of the dyadic
representation theorem, to sum the termwise estimates we need that they
decay in the complexity fast enough. The motto is that the estimates for
dyadic shifts with scales separated are independent of the complexity.

Theorem 3 (Two weight testing conditions for generalized dyadic shifts).
Let S be a generalized dyadic shift with scales separated. Let w and o be
weights. Suppose that for some constants [w,o)a,, &, and &*, we have that

(w)g(o)g < [w,0la,  for all dyadic cubes @), and, moreover, that
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115(100) [ r2(w) < G0(Q)'? and  [105*(1ow)l12() < & w(Q)?

for all dyadic cubes Q). Then for some absolute constant C' we have
1S(fo)llL2w) < C (6 + & + [w,g]il/22> | fllz2@) forall f e L*(0).

The third step is to verify the testing conditions, step which we shall not
discuss further in this summary.

Theorem 4 (Verification of the testing conditions). Let S be a generalized
dyadic shift with scales separated. Suppose that S is bounded on L? with the
operator norm at most one. Let w be a weight. Let o := w™! be the dual
weight of w. Then for some constant Cyq we have

1105 (190)| 2wy < Calw, o) 4,0(Q)Y?  for all dyadic cubes Q.

5.2 Proof of the dyadic representation theorem

In this section we outline the proof of Theorem 2. We fix a non-negative
integer r and a real number v with 0 < v < 1. We say that a dyadic cube
I € D is good if the boundary of every much bigger cube lies far away from
it:

dist(Z,8.J) > (0(J) /(1) ¢(I)  for every J € D with £(J) > 27¢(1).

Let f € L? and g € L?. By expanding the functions in the Haar basis and
splitting the summation, we obtain

9. TfH =" Agh) by, Thi)(f;h)+ > (g, ha)(hs, Thi)(f, hu).

1€D, JeD: 1eD,JeD:

the cube with the cube with
smaller side smaller side
length is good length is bad

Let (9, Tf) =: (9, Tf)5oa + (9, Tf)na- The point of averaging over random
dyadic systems is that on average the bad part is comparable to the good
part.

Proposition 5. We have
Eulg, T )ioa = Crva Bl g, Tf)goa  Jor all f € CL(R?) and g € CL(R?).
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Hence it suffices to estimate the good part. Let IV J denote the minimal
dyadic cube that contains both I and J. By rearranging the summation, we
have

(9T gpoa = >, (9. (> > (hg, Thi)(f, hi)h.))

12520 KeD IeD,JeD:IVI=K,
LI)=27"U(K),L(])=277U(K),
and I is good

+ (f and g interchanged, 7" and 7™ interchanged).

We note that the operator in the round brackets has the form of a dyadic
shift. Hence it remains to prove that the size condition

—atiriy2 VI
h..Th\| < C2-a+i)/2 |—
‘( Js I>’— ‘[\/J‘

holds whenever I is good, £(I) < ¢(J), {(I) = 274(K), and {(J) = 2794(K).
There are three alternative cases: I C J, [ = J, or INJ = (. The case
‘I = .J is estimated by the weak boundedness property. The case ‘INJ = ()’
and, after separating the dyadic paraproducts, the case ‘I C J’ are estimated
by the standard estimates. The point of a good cube is that it stays away
from the boundaries of all other (much bigger) cubes. This, after quantifying
‘away’, has two consequences: In the case ‘I C J’ we have a lower bound for
dist(7,dJ) and in the case ‘I NJ = ()’ we have an upper bound for ¢(I V J).
These bounds yield the exponential decay in (i + 7).

5.3 Proof of the two weight testing conditions

In this section we give a proof of Theorem 3, whose statement and proof vary
from the corresponding original theorem [1, Theorem 3.4.] in that we have
separated scales of dyadic shifts and of Haar projections. Let S := Sp, ..
be a generalized dyadic shift with scales separated and with complexity x.
Throughout this section it is understood that all dyadic cubes that we are
considering belong to the collection Dg moqa.. With this convention, the op-
erator A has the following two crucial properties:

o Af =1xAx(1xf) e Agf is constant on K’ whenvever K' C K.

Let f € L*(0). We use the notations o(Q) := [, 0 and (f)3 := ﬁ Jo fo
We define weighted Haar projections with scales separated by

Dgf = > 10:(1a, = 12

Q::Q;CQ and £(Q;)=2""4(Q)

35



The operator D¢, has the following three crucial properties:
e DOf =10D5(1of) e (1o, 0D f) =0 e D) f is constant on Q'
whenever Q" C Q.

We may assume that f can be expanded as f = ZQ D¢ f. We deal with
g € L?(w) similarly. Let us consider the dual pairing

(wg, S(of)) = ) (wDjg, Ax(0D3f)).
Q,R,K

By using the crucial properties of the operators Ax, D), and D, we ob-
serve that (wDgg, Ax(0Dg f)) = 0 unless we have one of the following four
alternative cases: K CQ C R KCRCQ, Q=R=K,or K CQ =R.
For further convenience, we define the operator Sg := ) Kkeg Ak

First we check the case ‘K C ) C R’. By the fact that Dfg are can-
cellative on R and constant on the proper subcubes of R, by the expansion
g = >_rDpg, by the fact that DgDg = Dg and (Dg)* = Dg, by the
Cauchy—-Schwarz inequality applied twice, first to the weighted integral and
then to the summation over (), and by Pythagoras’ theorem, we have

| Y (wDRg, Ak(e D) = 1D (D Dhg) (DS (1qw), oD f)|
Q R

QR,K:KCQGCR

1/2
S<Z(<|9|>Z‘3)2HDEJSZ;(W)||i2<a)> 1f 1l z2(o)-
Q
We use the dyadic Carleson embedding theorem to estimate the quantity in
the round brackets. The key observation is that Dg,S¢ (w) = Dg,Sh(w)
whenever @' C @, because 1g:S5(w) = 1S5 (w) + 1o D k.ooko0 Ak
where the second term is constant on (). Then the condition in the dyadic
Carleson embedding theorem is checked by using Pythagoras’ theorem, the
expansion 1¢S5 (w) = 1o (S5 (w))5+>_gicq DGSo(w), and the direct testing
condition. The case ‘K C R C ()’ is checked in a similar way.

Next we check the case ‘6l = R = ’. By the estimate |[Agf] <
IT%I | flgllLt, by the Cauchy—Schwarz inequality applied to each of the weighted

integrals, and by the definition of the joint A, characteristic [w, o] 4,, we have
w (e 1 w o
(wDgg, Ale Do/ < 151 1Pgllew 1o Nl e)

w(Q)l/za(Q)l/z w . 1/21) 1w o
< 0] 1D ]| 20 | DG F 1 1200 < [0, 01421 DB gl 12 () | DG S N £2(0)-
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By summing over the dyadic cubes @), applying the Cauchy—Schwarz inequal-
ity to the summation, and using Pythagoras’ theorem, we conclude the case.

Next we check the case ‘K C @Q = R’. Let @ be the maximal, and
hence pairwise disjoint, dyadic cubes strictly contained in (). By expanding
ZKgQ A = ZQk S, Dof = ZQi<f>gQi1Qm and Dgg = ZQj <9>8j1Q]-7
using the fact that @); are pairwise disjoint, applying the Cauchy—Schwarz
inequality to the weighted integral, using the direct testing condition (or,
alternatively, the dual testing condition) and the joint As condition to obtain
the estimate ||Sg, (0)]|z2(w) < (6 + [w, 0]2/22)0(62;{)1/2, applying the Cauchy—
Schwarz inequality to the summation over (), and using the definition of the
integral, we obtain

(wDgg, Y Ax(aDH] < Y D59, | (DG, e 2w | Saw (@)l 2w
KCQ Qs

1/2 w o
< (& + [w, 012 11089 2 | DG N 2200

By summing over the dyadic cubes @), applying the Cauchy—Schwarz inequal-
ity to the summation, and using Pythagoras’ theorem, we conclude the case.
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6 Wavelet method for Cauchy integral and
Kato conjecture

after Ph. Tchamitchian [6], P. Auscher and Ph. Tchamitchian [1]
A summary written by Yi Huang

Abstract

We give a brief survey on the wavelet methods used in re-proving
the boundedness of Cauchy integral along lipschitz curves [6] and in
re-solving the one dimension Kato conjecture [1]. If time permits, we
shall also connect the wavelet objects with the T(b) scheme.

6.1 Introduction

Let the lipschitz curve I be the graph of a real-valued function A, which is
assumed to be defined on R, differentiable almost everywhere and with A’
bounded. The Cauchy integral along the lipschitz curve I" is defined as

o f(y)
Caf(z) =pv.— r T —y+i(A(r) — Aly))

The celebrated theorem of Coifman-McIntosh-Meyer [3] affirms that

(1+3A'(y))dy. (1)

C, is bounded on L*(R).

In 1964, A. P. Calderén [2] used for the first time the following transform
dbda
a )

Viel®. f= [ [ buvu @)
Ry JR
where v,,(z) = a*/?1(az — b) and ¢ € L*(R) with
~ da
| 19 = 2m v o0
R a
This kind of decomposition has been employed to study the boundedness

of singular integral operators of Calderén-Zygmund type, in particular, the
Cauchy integral on lipschitz curves as in [3]. The discrete version of (2) is

F= i) im: (3)
7.k
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where ;4 (z) = 27/%)(2x — k), j,k € Z, and 1 is properly chosen.

Just like its continuous version, (3) can also be used to study the bound-
edness of singular integral operators, say for example, the re-proof in [6] for
Cauchy integral on lipschitz curves. Moreover, (3) enables us to construct
the bases of L*(R) and many other function spaces, and this is the main idea
taken in [1] to re-solve the one dimension Kato conjecture.

6.2 Wavelets and Cauchy integral on lipschitz curves

Let b(x) =1+ iA’(x), and define the bilinear symmetric form B by

B(f.q) = / £(2)g(x)b(z)de.

The boundedness of C4 on L?(R) arrives as a corollary of the following result.

Theorem 1 ([6]). There exist a family of b-wavelets © 1, j,k € Z, and two
constants C,a > 0, such that the following properties hold true

0,(x)] < C/2emolaH, (4)

10, 4 (x)] < C2%/2emelakl (5)

[ eustapiariz o (6)

B(O©;k: O k1) = 0(j.k),( k) (7)

vfe @), [ IfF = S 1B/, 60 ®)
;

Here, the expression “family of b-wavelets” means that the wavelets are adapted
to b, and that there exists ©(x) such that ©;(x) = 29/20(27x — k).

6.3 Wavelets and Kato conjecture in one dimension

Let the complex-valued function a(z) € L*(R), with Re a(z) > 1 almost
everywhere. Denote by D = —id/dx the differentiation operator and by A
the pointwise multiplication by a(z). Consider the sesquilinear form

J(f.9) = / o(z)Df () Dg(x)dr,
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which is defined on the Sobolev space H'(R). Thus we have

Re J(f, f) = | Dflj.

It was shown by T. Kato in [4] that the form J defines a maximal accretive
operator T, which we write as D*AD, where the domain D(T') is the largest
subspace in H'(R) and is consisted by those functions f such that

J(f,9)=(Tf, g), Vg€ H(R).

The square root of T is then defined by the functional calculus of T. Kato,
and the conjecture of Kato is to determinate the exact domain of 7/2.

The difficulty comes from the fact that a(x) is not regular. Indeed, D(T")
coincides with the set of functions f € H'(R) such that a(z)Df(z) € H'(R).
But this space is not classical and in particular is not realized in the scale of
Sobolev spaces H!™¢(R), ¢ > 0. The Kato conjecture (in one dimension) was
solved in 1982 by R. Coifman, A. McIntosh and Y. Meyer [3]:

The domain of T%? is the space H'(R) (with the equivalence of norms).

Basing on the wavelet method in [6] in reproving the boundedness of C4,
the authors in [1] characterized D(T') by an appropriate wavelet basis.

Theorem 2 ([1]). Denote by A the set of dyadic intervals of R. There exists
a family of lipschitz functions Ty(x), X\ € A, which belong to D(T) and form
an unconditional base of each of the spaces L*(R), H'(R) and D(T).

Moreover, the respective membership of > axty(z) in each of these spaces
are characterized by {ay} € I2(A), {an} € PP(A,w) and {an} € 12(A,w?).
Here, w is a certain positive weight defined on A.

Once the above theorem is established, we arrive at the solution of one
dimension Kato conjecture by using a result of J.L. Lions.

Lemma 3 ([4]). If T is an operator with domain D(T') in a Hilbert space H,
and T 1s mazimal accretive, then the domain of the square root of T is the
space of complex interpolation at the mid-point between D(T') and H.

To complete the proof of Theorem 2, the following result is needed, and
it is essentially in the same spirit of [6] (see Theorem 1 above).
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Lemma 4 ([1]). There exist two constants C,~vy > 0 and a family of complez-
valued C? functions {0x(x)}ren, such that if A\ = [k279 (k+1)277), k,j € Z,
we have

05 ()] < C2/2e2eH] (9)
|DO(z)| < C2%/2e 2okl (10)
| D20, (z)| < €252 1P a=Hl (11)

(4@@%@sz& (12)
/Rxe,\(x)b(x)dx =0, (13)

where b(x) = 1/a(z), a(x), D and A are as before. Moreover, we have

/GA(x)GM(x)b(x)dx =0y AEN peA (14)

The collection of all these functions constitutes an unconditional base of
L*(R): all the function f(z) can be written uniquely as f(z) = > a 0,()
with {ay} € I2(A).  Moreover, ||flla and (3 |ax|*)Y? are two equivalent
norms. In the end, for all A € A,

o = / F ()0 (@)b()dz. (15)
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7 A new proof of Moser’s Parabolic Harnack
Inequality using the old ideas of Nash

after E. B. Fabes and D. W. Stroock [5]
A summary written by Sukjung Hwang

Abstract

We revisit Nash’s idea to show a Harnack inequality, quantitative
relations between the values of solutions at different points, of second
order parabolic differential equations in divergence form.

7.1 Introduction

We introduce second order elliptic and parabolic operators of the form

L¢ =" D, (af;(x)D,)) (1)

ij=1
L= Dy, (a;(t,x)Dy,) — D (2)

ij=1
where ¢ is a real number and = = (z1,...,2,) € R". Basic assumptions on

the matrix are symmetry, i.e. af; = af; and a;; = aj;, and the existence of a
number A € (0, 1] such that for all (£, 7) € R"™ and all nonzero ¢ € R"

n
MEP <) ag(@)ég; < AP,
ij=1
and .
MEP <D ay(t, )6 < AHEP, (3)
ij=1
which is so called uniform ellipticity and boundeness of the coefficient matrix.
Before DeGiorgi-Nash-Moser, the regularity theory in partial differen-
tial equations is studied based on perturbation type of arguments such as
Schauder’s estimate obtaining a priori estimates depends on the smootheness

of coefficients and the boundary. Assuming only measurability, uniform el-
lipticity, and boundedness of the coefficients, DeGiorgi (1957,[4]) gives the

43



Holder continuity of weak solutions satisfying L°u = 0 by taking iteration
that a certain integral quantity of u decays in between two different sized
balls, yielding a proper relation of the oscillations like Lemma 1. Later,
Moser (1961 [6] for L¢ (1) and 1964 [7] for L) introduces another itera-
tion scheme to control the power of L, norm of weak solutions leading to
a Harnack inequality. Those two powerful techniques are adopted and ex-
tended by many mathematicians (Aronson, Chen, DiBenedetto, Kurihara,
Ladyzenskaja, Serrin, Trudinger, Ural’ceva, etc.).

In 1958, Nash [8] approaches the regularity theory of the parabolic op-
erator L with physical intuition and regards the elliptic operator L¢ as a
specialization typically the steady state of parabolic equations. However,
the complexity and difficulty of his proof does not permit one to sharpen his
results easily. In the paper [5], a Harnack inequality is given by combining
Nash’s idea and techniques developed later in a simper way.

7.2 The upper and lower bounds

We may assume that the matrix a(t, z) = a;;(t, x) of the parabolic operator L
(2) is smooth; however, we emphasize that all quantitative estimates (a priori
constants) are only allowed to depend on n and A, from (3). For z,y,£ € R”
and t,s,r € R let ['(¢, x; s,y) = Lu(t, ; s,y) denote the fundamental solution
of the parabolic operator L, in (2). The purpose of this paper is to use the
ideas of Nash [8] to obtain the following estimates: for s <t

exp {__C|f:syl2 Cexp {— g(ﬁlj) } .
C(t — s)n/? (t — s)/2 )
where C' depends only on n and .

} <T'(t,z;s,y) <

The upper bound (described as ‘the moment bound’ in Nash’s paper,
Part I on [8]) is given applying techniques by Davies [3]. First, define

fu(@) = exp(—u(x)) / F)T(E 230, ) exp(t(y) dy,

where f € S(R";(0,00)), a positive function from the Schwartz test func-

tion space, and ¥ (z) = « -z with a fixed element @ € R™. From various

inequalities, one provides that for any p € [1,00), t > 0, and some € > 0
|o?p

d € 1+4p/n —4p/n
S5l <~ A+ 22
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For each 0 > 0, the above inequality implies that there is a constant K =
K(e,0) < oo such that for t > 0

n a? n(l—
| fill2p < (Kp?) /41’||ft||pe‘S t/Apyn(1-p)/4p_
In particular, we also obtain for ¢ > 0

2
1fallz < €T £]l2.

By setting pj, = 2% and wy, = max{s"P+=2/% || f,||,, : 0 < s <t} if [[f]l. =1
and u; (t) < e®’/* then we have

Wi1(t) k 7o\n/4-2¥ da’t
<
() S (4"K) exp | 3o

and there is a constant C' < oo, depending only on n, A and § > 0, such that

(o]

sup wy(t) < C'exp [ )

k

Therefore, by taking k& — oo, it follows

[ filloo < Ot exp {(1+—>\5)at} |

By using the adjoint operator and the duality, it allows us to have
¢ 2
La(2t,;0,y) <z exp (dlaft/A+a- (v - y))

and the upper bound, the right-hand side of (4), is provided by choosing

o= %(y—x).

The lower bound, the left-hand side of (4), is obtained by combining
Nash’s idea (‘The G Bound’, Part II of [8]) with Aronson and Serrin’s
work ([1] and [2]). Set u(s,y) = Ly, (s,y;0,2), in particular I';(1,z;0,y) =
Lo, (s,y;0,2) where a; = a(t — -, ). Consider

G(s) = /6‘“"2 log u(s,y) dy,

which is sensitive to areas where |y| is not large and u is small. Note that
[ u(s,y)dy =1 and G(s) < 0. Roughly speaking, we obtain a result limiting
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the extent to which a fundamental solution can be very small over a large
volume of space near its source point, y in I'(t,z;s,y). With additional
restrictions on the solution that

sup u(z,y) < K
1/2<s<1

with an absolute constant K and the existence of R, depending only on A

satisfying
Sup/ u(s,y) dy <
1/2<s<1J |y|>Rx

the lower bound for G(1) is given that there is a constant B < co depending
only on A\ such that for all |z| <1

N | —

/e_ﬂy|2 logly(1,2;0,y) dy > —B.

By taking s = 0 and ¢t = 2, we write (Kolmogorov identity)

[a(2,2;0,9) :/Fa(17£;07y>rfz<1ax;0>€> dg
where a = a(- + 1,-). We overlap two fundamental solutions with nearby
sources, and then there exists a constant C' depending only on A such that

1

Lot 258,y) 2 m———=.7
( xsy) C(t—S)n/2

for all  and y satisfying |« — y| < v/t —s. The lower bound is obtained, for
any x,y € R" and t,s € R, by repeatedly applying the previous techniques
after taking subdivision of the region properly.

7.3 Consequences of the lower and upper bounds

From the lower and upper bounds (4), we derive Nash’s theorem on the
continuity of weak solutions and Moser’s Harnack inequality. First, define

oscu(s, &, R) = sup {|u(t,z) —u(t',2')| : s,s' € B(§, R), s — R* <t, t' <s}.
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Lemma 1. For each § € (0,1), there is a p = p(n, A\, d) € (0,1) such that
for all (s,€) € R x R™ and R > 0:

osc u(s,&,0R) < p osc u(s,&, R)
whenever u € C=([s — R% 5] x B(&, R)) satisfies Lu = 0 in (s — R%, 5) x
B(&, R).
Lemma 1 is a key to show following theorems, Theorems 2 and 3.
Theorem 2. (NASH) For each o € (0, 1), there are constants C = C(n,\,§) <
oo and B = B(n,\,0) € (0,1) such that for all (s,£) € R x R" and R > 0:

B
lu(t, ) — u(t’, )] < Cllulloygs-r2,9% B, R ( I3

for (t,x), (t',2) € [s = (1 —6%)R?, 5] x B(&, (1 —0)R) whenever u € C*([s —
R? s] x B(&, R)) satisfies Lu =0 in (s — R%,s) x B(£, R))

Theorem 3. (Harnack inequality) Let0 < a < 8 < 1 and~y € (0,1) be given.
Then there is an M = M (n, A\, «r, B,7) < 0o such that for all (s,x) € RX R",

all R > 0, and all non-negative u € C>®([s — R% s] x B(&, R)) satisfying
Lu =0, one has

u(t,y) < Mu(s, ) (5)
for all (t,y) € [s — BR?, s — aR? x B(z,0R).

We also mention a Harnack inequality from Moser’s paper (Theorem 1
on [7]) which is equivalent to Theorem 3.

Theorem 4. If u is a non-negative weak solution satisfying Lu = 0 in
Q(t,z) = (t,t + 1) X By g for some constants T > 0 and R > 0, then
max(s,y)EQ’ U<57y) S Y Tnin(s,y)GQ+ U(S,y), (6>

where v > 1 is a constant which depends onn, \ and sixz geometrical constants
R, R 7,7 ,75,7" and

Q = (11,75 ) X Ber, QY =(",7)%X Byur
with 0 < RR<Rand0 <71 <715 <7" <T.
At the end of paper [8], Nash describes a Harnack inequality as
ult, x2) = F(ul(t,z1)/B, |z — 22| /vt — o),

provided 0 < w < B for t > t3. F' is an a priori function that is a more
general function than a linear function on uw. From Theorem 3, it is not
possible to obtain Nash’s Harnack inequality.
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8 Two Weight Inequality for the Hilbert Trans-
form

after Michael T. Lacey [1]
A summary written by Viekoslav Kovac

Abstract

Consider all pairs of weights (w, o) without common point masses.
The problem is to characterize those pairs for which the Hilbert trans-
form satisfies the estimate [[H(o f)||r2(w) < C|lfll2(s)- The paper in
question contains a “real-variable characterization”: the one in terms
of the Poisson Ay condition and the Sawyer-type testing conditions.

8.1 A bibliographical note

The study of Hilbert transform estimates with two different weights was first
suggested by Benjamin Muckenhoupt and Richard L. Wheeden. The char-
acterization was conjectured by Fedor Nazarov, Sergei Treil, and Alexander
Volberg, who had also verified it in the case of doubling measures. The origi-
nal paper by Michael T. Lacey claiming the result has been transformed into
2], a sequel to a previous paper [3]. Therefore, the complete proof of the
two-weight characterization is distributed to the following pair of articles:
Part I, by Michael T. Lacey, Eric T. Sawyer, Chun-Yen Shen, and Ignacio
Uriarte-Tuero, [3];

Part II, by Michael T. Lacey, [2].

A unified and self-contained exposition collecting material of both papers
was given by Lacey [1]. Here we always refer to that paper.

8.2 Introduction and formulation of the main result
8.2.1 On individual two-weight problems

Let T be a given operator acting on one-dimensional functions. One can ask
to determine for which weights w and o the L? estimate

1T (0 )llezw) < NIz (1)
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holds with a finite constant A independent of f. Here by a weight we simply
mean a nonnegative locally finite Borel measure on R, so the “weighted” L2
norm is simply the Lebesgue norm with respect to that measure, i.e.

1 fllz@) = (/R |f|2da>1/2.

The “product” o f is interpreted as the signed measure v defined by dv = fdo
and the expression T'(o f) should make sense. One can further ask to quantify
the dependence of the best possible constant A in (1) on the weights w, .

Let us quickly explain how Estimate (1) is motivated by the most classical
weighted inequality for 7', namely

1T fllez(w) < N fllL2 ), (2)

where this time w is a strictly positive locally integrable function on R and we
can understand it as a Radon-Nikodym derivative of some positive measure.

It is a classical idea of Eric T. Sawyer to write o = i and substitute g =

wf = g, so that

||f||i2<w)=/le(x)IQw(l“)dJJZ/ng(l“)l%(ﬂf)dJJZ gtz o)

and (2) becomes (1) with f replaced with g. It is then natural to try to omit
the pointwise constraint wo = 1 and relax any conditions on w (such as the
Muckenhoupt A, condition) to their joint variants in both w and o. Finally,
one does not have to confine themselves to absolutely continuous measures.
We will also comment on the need for discussing general measures in the last
section.

The two-weight problem was previously resolved for several classical op-
erators:

e for the Hardy operator by Muckenhoupt,

e for the maximal function, the Poisson integral, and fractional integrals by
Sawyer,

e for certain non-positive dyadic operators by Nazarov, Treil, and Volberg.
The discussed paper of Lacey establishes such a characterization for the
Hilbert transform. This result is particularly interesting because the Hilbert
transform is the first non-positive “continuous-type” operator for which this
task is accomplished.
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8.2.2 Characterization for the Hilbert transform

For any 0 < 7 < 1 we consider the truncated Hilbert transform acting on a
signed Borel measure v by the formula

(H,v)(x) = /{ v(dy) 3)

y:T<ly—z|<r—1} y—r

One certainly recovers the usual definition of H, f when v is absolutely con-
tinuous and dv = fd\, where A denotes the Lebesgue measure. We never
attempt to study the limiting behavior as 7 — 0, because the limit of (3)
need not exist in our setting, and because pointwise convergence is typically
a more difficult problem than boundedness itself. We only take care that the
inequality we investigate is uniform in 7, i.e. we are actually characterizing
the bound

sup [[H-(0f)llL2w) < N fllezo)- (4)
0<r<1

Let N' € [0,00] be the smallest constant such that (4) is satisfied. We
suppress the dependence of H, on 7 in the notation.

A convenient way of measuring size of the Poisson extension of ¢ to the
upper half-plane is via the quantity

o) = /R (1] + dist(z, 1)) (dz),

defined for any bounded interval I. Define

Ay = Sl}p P(o,I)P(w, I) € [0, ], (5)

where the supremum is taken over all bounded intervals /. Quantity (5) is
called the Poisson As characteristic. It is related to the Muckenhoupt A,

characteristic
] (7 /07 )
wlpa, ==sup | — [ —)|—= [ w
r N Jpw/ NI,
1

by [w]a, S A2 S[w]i, when w is a locally integrable function and o = . In
general one only has the trivial estimate



showing that the Poisson A, condition A; < oo is indeed stronger than the
two weight Muckenhoupt Ay condition.
Let T € [0, 00] denote the smallest constant such that

/(H(alf))zdw < T?c(I) and /(H(wll))Qda < T?w(I) (6)
I I
hold for all bounded intervals I. Conditions (6) are called the Sawyer-type
testing conditions. It follows from Stefanie Petermichl’s representation of
H as an average of dyadic shifts that 7 < [w]a, holds in the previously
mentioned case o = i

Finally, let us say that measures ¢ and w do not share a common point
mass if o({x})w({x}) = 0 for each z € R. We can now formulate the main
result of the paper in question.

Theorem 1 (M. T. Lacey, 2013). If two weights 0 and w do not share a
common point mass, then

N ~ A§/2+7',

i.e. the two quantities are comparable.

8.2.3 On counterexamples

Even though it had initially been suspected that already the two weight
Muckenhoupt A, condition might be sufficient for (4), it was soon shown by
Muckenhoupt and Wheeden that this is not the case. Much later Nazarov
gave a proof that the Poisson A, condition alone is not enough for having (4),
answering negatively to the conjecture of Donald Sarason. A more advanced
counterexample that also satisfies one of the two sets of testing conditions
(6) was given by Nazarov and Volberg.

8.3 Proving the main theorem

A basic line of approach to this type of problems was invented by Nazarov,
Treil, and Volberg. In order to keep this summary concise, we only comment
on a couple of entirely novel ideas of Lacey, both of which can only be adapted
to the case of the Hilbert transform. One can say (rather vaguely) that these
novel ideas exploit the positivity, as the derivative of the Hilbert kernel is
positive, %y%@ = ﬁ > 0.
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For any bounded interval I let I_ and I, denote the left and right halves
of I respectively. The associated Haar function is chosen depending on a
weight o and defined to be

he = <a([)a([+)>1/2<011+ 1, )

o(1) 1) o)

This choice is convenient because h9 is normalized in L?(0), its integral with
respect to o is 0, and its L?(¢) inner product with t: R — R, «(z) := z is
nonnegative.

8.3.1 The monotonicity principle

This ingredient turns certain “off-diagonal” estimates for H into estimates
for the Poisson integrals.

Lemma 2. If a positive measure p and a signed measure v are such that
lv| < w, both measures are supported outside an interval I € D, and none of
W, v, w has a point mass at an endpoint of I, then

P(u71)<’—;|,§>w S (Hi, G

for any g € L*(J,w) such that [, gdw = 0.

Here

g=g:= I{g,hy)ul b

J'eD
is a Haar multiplier with respect to a dyadic grid in question.

8.3.2 The energy inequality

The following auxiliary result fundamentally uses both the A, condition and
the testing conditions. The energy of w with respect to an interval I from a
dyadic grid D is defined to be

B(w.1) = (1112 Y <L,h;v>3u)l/2.

JeD:JCI
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Lemma 3. For an interval Iy € D and its partition P into intervals such that
neither o nor w have point masses at their endpoints one has the estimate

> P, I)E(w, I)’w(I) $ (A2 + T7) o(ly).

IeP

There is also a more advanced functional energy inequality, which also
crucially depends on positivity.

8.4 Applications and connections with other problems

The two weight problem for the Hilbert transform is connected with a number
of diverse problems, such as composition of Toeplitz operators, model spaces,
and de Branges spaces. We only shortly comment on the first topic.

Let H?(D) denote the complex Hardy space on the unit disk and let
P, : L*(T) — H*(D) denote the Riesz projection. A Toeplitz operator with
symbol g € L*(T) is a map T, defined by

Tyf == Pi(gf)-

Finally, let

P(gP)(z) = [ 1=

T _

denote the Poisson extension of |g|> to the unit disk.

Conjecture 4 (D. Sarason, 1994). For two outer functions g, h € H?(D) the
composition T, Ty, is bounded on H*(D) if and only if

TEIIID?P(IQV)(Z)P(IhIQ)(Z) < 0. (7)

It was observed by Treil that (7) is a necessary condition for boundedness,
which motivated the conjecture. However, the previously mentioned result
by Nazarov shows that (7) is not sufficient, so Sarason’s conjecture is actually
false.

However, the problem of characterizing all pairs (g, k) for which 7,75 is
bounded on H?(ID) remains interesting. It is equivalent to boundedness of
M,PM;, where M, denotes the multiplication by g. Using the structure of
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outer functions one can further reformulate it as boundedness of My P My,
on L*(T). Since

Mg P My [y = [P (- [P (In|*

L2 )HLQ%LQUgPd)\) - ‘ )HL2(|h\2d)\)aL2(|g|2d)\)

we arrive precisely at the two weight inequality for P, with weights |g|>d\
and |h|*dA. By writing Py = I — TH it becomes possible to apply the
characterization of Theorem 1.
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9 L? theory for outer measures and two themes
of Lennart Carleson united

after Y. Do and C. Thiele [1]
A summary written by Mariusz Mirek

Abstract

We will develop a theory of LP spaces based on outer measures
instead of measures. With the aid of this theory we illustrate LP
boundedness of bilinear Hilbert transform.

9.1 Introduction

The time—frequency analysis provides some tools/techniques which allows us
to bound various operators (multilinear operators) corresponding with model
sums of the form

Afr,-n fa) =D e [ ar(fy),

PcP  j=1

where the summation index runs through a discrete set P, typically a col-
lection of rectangles (tiles) in the phase plane and the coefficients cp are
inherent to the multilinear form. One of the most important example of the
sequences (ap(f;))pep is

ap(f;) = (fj, op),

where
o—k
¢P(x) — 2_k¢(2_kaj o n)627r12 xl’

is L' normalized wave packet with a suitably chosen Schwartz function ¢
and integers k,[,n which parameterize the space P. For more examples of
sequences (ap(f;))pep we refer to [3].

The main idea of Yen Do and Christoph Thiele in [1] is based on a brilliant
observation that the bound on A is a Holder’s inequality with respect to an
outer measure on the space P

IA(Frs- s fo)] < CH lap(£)ll2 ey
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where ... stands for the explicit outer measure structure which will be dis-
cussed later. Our principal examples will be paraproducts and the bilinear
Hilbert transform. However, after the general use of Holder’s inequality the
main work is carried over into the following estimate

lar(f)lzs e,y < ClFs e,

for each 1 < 5 < n separately. Such kind of estimate will be called a gener-
alized Carleson embedding theorem. Employing these ideas we will reprove
the following theorem of Michael Lacey and Christoph Thiele [2].

Theorem 1. Let 8 = (B, 32, 83) be a vector in R with pairwise distinct
entries. For three Schwartz functions fi1, fa, f3 on the real line we define

3
As(f1: f2, I3) :P-U-/R/Rnfj(:c—ﬁjt)%dx.

Then for any 2 < p1,p2, ps < 00 with ) ;’.:1 }% =1 there is a finite constant
J
C > 0 such that for all Schwartz functions fi, fo, f3 we have

3
As(fr, fos )] < CTT NSl e -
j=1

Before we prove this theorem let us recall that outer measures are sub-
additive set function. Some outer measures produce interesting measures by
restriction to Caratheodory measurable sets, the best known example is clas-
sical Lebesgue theory. The outer measures which will occur in time—frequency
analysis give rise only to trivial Caratheodory measurable sets.

Outer measures do not satisfy additivity for disjoint collections of sets
and we do not have a linear theory of integrals with respect to outer mea-
sures. Even though, we are led to a non—linear theory and instead of linear
functionals we have to consider norms, the LP theory of outer measure spaces
is quite parallel to the standard theory of L spaces.

9.2 LP? theory of outer measure spaces

In many cases it is convenient to generate an outer measure by a concrete
premeasure. It is possible due to the following.
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Proposition 2. Let X be a set and E be a collection of subsets of X. Let o
be a function from E to [0,00). Define for an arbitrary subset E of X

— 9 /
u(E) = inf 3 o(B),
E'eE/
where the infimum is taken over all subcollections E' of E which cover E.
Then p is an outer measure. Moreover, if for every set E € E and every
cover of E by a subcollection E' of E we have

o(B) < Y o(E).

E'cE/

then u(E) = o(FE) for every E € E.

9.2.1 Examples of outer measures

Example 1. Lebesque measure via dyadic cubes. Let X be the Euclidean
space R? for some d > 1 and let E be the set of all dyadic cubes @ of
the form

Q = [2"n1,28(ny + 1)) x ... x [2ng, 2%(ng + 1)),

where k,ny,...,ng € Z. For each dyadic cube Q we set o(Q) = 2~
Then o generates an outer measure p which is the classical outer mea-
sure on R? and we have o(Q) = u(Q) for any Q € E.

Example 2. Lebesque measure via balls. Let X = R? be as above and E be
the set of all open balls B,(z) with radius » > 0 and canter z € Q%
Let o(B,(z)) = r? for any B,(z) € E. Then o generates a multiple of
Lebesgue outer measure p and again o = pg.

Example 3. Outer measure generated by tents. Let X = R x (0, 00) be the
open upper half plane and let E be the set of all open isosceles triangles
of the form

T(z,s)={(y,t) e Rx (0,00) : t <s, |z —y| <s—t},

for some pair (z,s) € R x (0,00) which is the tip of the tent. Define
o(E) = s for any T'(z,s) € E. One can easily see that o generates
an outer measure ;. on X which coincides with ¢ on the collection E.
Moreover, the Caratheodory’s o—algebra 9t is trivial, i.e. 9t = {0}, X }.
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9.2.2 Size, essential supremum and super level measure

To avoid too abstract settings we shall assume that X is a metric space and
every set of the collection E is Borel. Finally B(X) will denote the set of all
Borel measurable functions on X.

Definition 3. Let X be a metric space. Let o be a function on a collection
E of Borel subsets of X and let pu be the outer measure generated by o such
that 0 = pyg. A size map is a map S : B(X) — [0, oo|® satisfying for every
fyg € B(X) and every E € E the following properties:

1. Monotonicity: if | f| < |gl|, then S(f)(E) < S(g)(E).
2. Scaling: S(Af)(E) = |NS(f)(E), for every A € C.

3. Quasi-subadditivity: S(f + g)(E) < C(S(f)(E) + S(g9)(F)), for some
finite constant C > 0 depending only on S but not on f, g, E.

Now we discuss sizes for the examples from previous subsection. In the
Example 1, we define for every f € B(X) and every cube Q € E

SUW@=M®1LU@WL

where the integral is in the Lebesgue sense. In the Example 2 we may define
size in a similar way as above taking open balls instead of cubes.

In the Example 3 for every F' € B(R x (0,00)) and every tent T'(z,s) € E
we define

amamwnzlé(Jﬂ%mw%.

s
In the literature one often works with the class of Borel measures v on X
rather than the class of Borel measurable functions and defines

SW)T(x,5)) = s~ V|(T(x, 5)).

If S(v) is bounded, the measure v is called a Carleson measure on X.

Finally, we introduce the definition of outer essential supremum and super
level measure which allow us to build up theory of outer LP spaces in the
next subsection.
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Definition 4. Assume that (X, pu,S) is an outer measure space with a size

map S. Given a Borel subset F' of X we define the outer essential supremum
of f € B(X) on F to be

outsuppS(f) = 21;1]?3 S(Fl1p)(E).

The use of the outer essential supremum is the main subtle point in the
following.

Definition 5. Assume that (X, pu,S) is an outer measure space with a size
map S. Let f € B(X) and A > 0 and define the super level measure to be

p(S(f) >N =inf{u(F): FeE and outsuppS(f) <A}

We emphasize that in general u(S(f) > A) is not the outer measure of
the Borel set where |f| is larger that A.

9.2.3 Outer L? spaces

The definition of outer L space is straightforward using outer essential supre-
mum and super level measure. We will follow in the same way as in the
classical theory.

Definition 6. Let (X, u,S) be an outer measure space with a size map S.
Then for any 0 < p < oo we define the spaces

L¥(X, 1, 8) ={f € B(X) : ||fllLe=(x,u,s) = outsupxS(f) < oo},
o0 1/p
LP(X, 0, S) ={f € BX) : [ flleox s = (/0 pAP T u(S(f) > A)dA> < oo},

/p
DX, 8) = (£ € BEX) ¢ [ flimmiinsy = (supVa(S(1) > 0) " < oc).

Proposition 7. Assume that (X, p, S) is an outer measure space with a size
map S and let f,g € B(X). Then for every 0 < p < oo we have

1. Monotonicity: if | f| < |g|, then || fllor(x,ms) < 9llze(xps)-

2. Scaling: | Mf|lrcxps) = [ M fllerxp,s), for every X € C.
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3. Quasi-subadditivity: ||f + gllr(xns) < CU|fllzrxms) + 19ller(x p9))s
for some finite constant C' > 0 depending only on S but not on f,qg, F.

The same type of estimates hold for the spaces LP>*(X,u,S). Moreover,
”f“Lp"’O(X,M,S) S ||f||Lp(X,u,S) fOT’ any f € Lp(X, M, S)

Now we have the following generalization of Holder’s inequality.

Proposition 8. Assume that (X, u,S) is an outer measure space with a
size map S and there are two sizes Sy,Sy such that for any E € E and
f1, f2 € B(X) we have

S(fif2)(E) < S1(f1)(E)Sa(f2)(E).

Then for any p,p1,p2 € (0,00] such that 1/p =1/py + 1/py we have
1 f1folle sy < 20 f1ller xs) | 2]l 2o (x p0,s) -

9.2.4 Paraproducts and Carleson embedding theorem

Now we are at the place where we can show how this theory works in practise.
Let X =R x (0,00) be the upper half plane and E be the collection of tents
as in the Example 3. For 1 < p < 0o, define sizes

1 dt\'""

ST = (1 [ IFworad)
S JT(x,s) t

and SOO(F)(T(xv S)) = Sup(y,t)ET(x,s) |F(y7t>|7 where [’ € B(R X (O’ OO))

For f € L>(R) consider the function Fj(f) on X defined as follows

Fy(f)(9,1) = /X FEE Oty — 2))dz,

where ¢ is a Schwartz function such that [, f(z)dz = 0. It is well known
that |F(f)(y,t)[? is a Carleson measure. The mapping f — Fj(f) is an em-
bedding of a space of functions on the real line into a space of functions in the
upper half plane reminiscent of Carleson embeddings. Therefore, Carleson
embedding theorem can be rephrased in the following way.
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Proposition 9. Let 1 < p < o0 and ¢ be a Schwartz function as above.
Then

[Es ()l e x500) < Copll fll o),
and in addition if [, ¢(x)dx =0, then

1Es (Pl sy < Copll fllo)-

This proposition will be the main tool in the estimates for paraproducts.
A classical paraproduct is a bilinear operator, which after pairing with a
third function becomes a trilinear form which is essentially of the type

o 3
Mt = [ [ TR ()@ 00T,

where ¢1, ¢2, ¢3 are Schwartz functions such that [, ¢y (x)dz = 0, for k = 1,2,
whereas the third one does not necessarily have mean zero. Now one can see
that Holder’s inequality combined with Carleson emmbeding theorem yield
that

|A(f1, f2, f3)] < C

HF¢j(fj>

< O Fg, (fu)llzor (x,80) [ F s (o) || 292 (36, 10,50) | Fos (f3) | 273 (X 0,500)
< Ol fullzor @) | f2l| o2 ) | f3]] o5 (R) »

for any 1 < py, p2, p3 < oo such that 2?21 1/p; =1

Ll(le"HSl)

9.2.5 Boundedness of the bilinear Hilbert transform

Exploring the same ideas as for A from the previous subsection we will be
able to prove similar estimates for Ag from Theorem 1. For this purpose we
have to consider the space X = R x R x (0, 00) and define generalized tents

TB<:U7558) = {(yanat) EX:tSS? ’.’lﬁ—y’ <s—1, ’5_77‘ < Bt71}7

for B> 0. Let 0 < b <1< B and for FF € B(X) define the size map by
setting

S"P(F)(T(x,€,5)) =

1/2
max { </ \F(y,n,t)|2dydndt> : sup IF(y,n,t)!},
TB(z,£,5)\T?(z,£,s) (ymt)€T B (z,€,s)
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and o(S*B(F)(T(x,€,5))) = s. The main ingredient in the proof of Theorem
1 and the novelty in the time-frequency analysis is the following generalized
Carleson theorem.

Theorem 10. Let B > 10b, 2 < p < oo and define for f € LP(R) the

function

F(y,n,t) =sup
ped

/R F (@)1 (y — ),

where the supremum is taken over the class ® of all functions ¢ € L*(R)
such that ¢ is supported in (—=b/2,0/2) and |¢p(z)| < 1/b(1 + |x/b])~3 and
|¢'(z)] < 1/b(1+ |x/b])~2 for all x € R. Then for any 2 < p < oo we have

| E ()l zr(x.500) < Cppsll fllrw),

and
1Fs ()l 2200 (x,500) < CoBll fllz2m)-
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10 Rectifiable sets and the Traveling Sales-
man Problem

after P. Jones [3]
A summary written by Marti Prats

Abstract
We present the so-called Peter Jones betas and we use them to
give a necessary and sufficient condition for a set to be rectifiable.

10.1 Introduction

A salesman wants to visit a number of villages during a certain period and
then go back home. Which is the best order to spend the minimal time
traveling? Of course we seek the shortest cycle through all this places. If
we represent each village with a point in the plane, let’s call this set E, we
can use the so-called greedy algorithm to find a spanning tree GG of minimal
length with vertices in all the points in F, and one such minimal tree will be
contained in any minimal tour 7" with segment end-points in the points in
E. A minimal connected set K connecting all those villages may not have
segment endpoints in the points of E, but

((K) < 0(G) < UT) < 20(K)

and, thus, the minimal connected set bounds the distance that a clever sales-
man must drive (as long as he can travel in helicopter).

When it comes to a non-finite set F, the Traveling Salesman Problem
consists in finding a minimal rectifiable curve I' D E. This will be possible
only when the set is rectifiable, that is, when the set is contained in the image
of a finite interval by a Lipschitz function. One necessary condition for F to
be rectifiable is that the Hausdorff one-dimensional (outer) measure of the
set, H'(E), is finite, but it is not sufficient unless F is connected.

Let Ay, be the canonical dyadic grid of cubes which have side-length 27*
and A = [J, Ax the whole dyadic mesh. We will give a characterization of
rectifiable sets in terms of the next coefficients:

Definition 1. Let Q be a (dyadic) square of side ((Q). We write 3Q) for the
concentric square with triple side-length, and call

Be(Q) = €(32Q) inf{;fgl?% dist(z, L) : L is any line}.
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Then Bg(Q)0(3Q) is the width of the narrowest strip containing £ N 3Q).
Notice that fg(Q) < 1.

Definition 2. Given a set E, we associate to it the coefficient

FAE) = diam(E) + Y BRQUQ).
QeA
{(Q)<diam(E)
The main result of this paper is the next theorem:

Theorem 3. Suppose E C C is a bounded set. Then E is contained in a
rectifiable curve if and only if 3*(E) is finite. Moreover, there are constants
c1, co such that

e B(E) < inf H'(D) < e2°(B). 1

Notice that, even though we do not find the best path for the salesman,

we bound the distance the salesman must travel if he designs his route wisely.

We follow the proof of the book by Garnett and Marshall [2], which is

mostly inspired by the original Peter Jones’ paper [3]. The argument of the

left-hand side inequality in (1) is mainly of complex analysis. In [4], Kate
Okikiolu gives a more general proof valid in R™.

10.2 Right-hand inequality: finding a good route

Sketch of the proof. Breaking a rectangle into two
We start giving a construction to iterate. Consider a given rectangle S with
side-lengths L and SL with § < 1 whose four sides intersect £. We find
two new rectangles Sy and S; with long sides Ly and L; with minimal width
which contain FN.S and separate the left and right thirds of S. If the middle
third of the rectangle is empty, we add a segment 7. Otherwise, we ensure
the new rectangles have at least one common point and it is in F.

One can see using the Pythagorean Theorem that in both cases we have

Lo+ Ly <(1+58%)L (2)

and
T < (1+ )L (3)

Covering F
Assume E C QQy € Ag and let Sy be a rectangle containing E, meeting E
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at its four sides and with minimal shortest side. Write its side-lengths as L

and [Lg. Notice that § < CBr(Qo). Iterate the process described above.
After n steps we have 2" rectangles Sy, with I € {0,1}" and, if case 2

is applied to S;, we get a segment T7. One can see that, after 25 steps the

diameter of S; will drop by at least 1/2.

Bounds for the length

Let R, be the sum of the diameters of the rectangles at stage n. From (2)

we have

Lo+ Li < L+ CBLQUQ) (4)
for any @ such that @ N EN S # 0 and diam(S) < 4(Q) < 2diam(S). As

noted before, each such cube can occur at most a certain number of times
during iterations, so that R, < C3?(E).

It only remains to bound the sum of the lengths of all the segments.
Note that, if case 2 is applied and Lo+ L; > 0.9L, then the original rectangle
couldn’t be flat, so § > f, for a fixed (y, and so, using (3) we get

7| < CBEQUQ).

Thus, the sum of lengths of all the segments created from a rectangle with
B > By is at most CB2(E).

Now write R, = I, + II, where I, is the sum of the lengths of the
rectangles at stage n to which case 1 will be applied or for which 5 > S, and
11, the sum of the lengths of the remaining rectangles. Notice that in the
second case, Lo+ L1 < 0.9L. Let T, 1 be the sum of the segments created
at stage n with 8 < fy. Then, it can be seen using the previous bounds that

ST0IT <R, - Ro+C Y BAQIUQ) < CH(E).
j=1 QeA:QCQo

Glue rectangles of stage n with all the segments created and take limit. [

10.3 The route cannot be improved much
10.3.1 The left-hand inequality for Lipschitz graphs
Let I" be the graph of a Lipschitz function. Then (1) holds for all £ C T".

Sketch of the proof. We assume that ' = {0 < =z < 1,y = f(x)}, where
f(0) = f(1) and f is Lipschitz with constant M.
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It is enough to show the case E'=T'. Let I' be the jth dyadic interval
of length 27", call its image graph I'} and let J}' be the segment uniting the
endpoints of I'}. Then J;ffl, J;L]-J;ll and J;' are the three sides of a triangle
and call 9, ; its height times 2". Using the Pythagorean Theorem, one gets

2700 S LIS + (5 — 0(T7)

n,) ~ J
with constant depending on the Lipschitz constant M. This implies

> sl < 20(T).

m,k

Now, by the triangular inequality,

By = 2"sup{dist(z, J}') : z € I} } < Z 2" sup{Omp 1 Iy C 17}

m=n

Using Holder inequalities and other standard arguments for series, one gets
S 278, S S 2, S 20(D),
n,Jj m,k

Finally we extend the function periodically and obtain some translated
coefficients 3, ;(t) related to I'(t) = (Id x f)([t,1 4+ t]) C C verifying the
last inequality as well. Then, for a cube Q with £(Q) = 2772, 3Q will have
projection contained in the translation of an interval I, ;(¢) with probability
1/4 with respect to the Lebesgue measure on ¢, so

Y BQZ / 12 Bai(t)2dt.

(Q)=2-n"2

Summing with respect to n proofs the claim for Lipschitz periodic functions.
]

10.3.2 The general case: a decomposition theorem

We call an M-Lipschitz domain to a simply connected domain whose bound-
ary can be expressed as {r(6)e? : 0 < 0 < 27} (i.e. it is starlike with
respect to the origin), with r a Lipschitz function of coefficient M and
S <) < 1.
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In the previous section we have established (1) for boundaries of M-
Lipschitz domains, so we need to extend the result to general sets E of
finite length. The key point is to find E C [JI'; being each I'; the boundary
of an M-Lipschitz domain D;. We need to do this in such a way that we keep
control on the total length and on the relations between the original betas
and », er 5%J(Q) The latter is a rather technical lemma we skip here
for the sake of brevity. Using this lemma relating the betas, Theorem 3 gets
reduced to the next one:

Theorem 4. There exists a constant M < oo such that if I" is a connected
plane set with H'(T') < oo, then there exists a connected plane set I' 5T such
that HY(T') < MHYT), the bounded components D; of C\T' are M-Lipschitz
domains with I' C |J0D;, and the boundary of the unbounded component Dy
of C\T is a circle at least 3v2H'(T") units from T'.

Outline of the proof. We may proof the case of I' being the boundary of a
simply connected domain 2. Otherwise, we could apply this particular result
to each bounded component of the original set united to a circle big enough
by a segment.

We will apply a corona construction to a disk, related to 2 through a
Riemann mapping ¢. We will make the division in the disk in such a way
that, using the properties of ¢ we can ensure that the images of the domains
in D are also M-Lipschitz domains.

Write F' = /¢ and g = log(¢’). Using Bieberbach’s Theorem one can
see that ¢ is in the Bloch space with seminorm

lglls <6 (5)

ie. “;l,,((zz)) < # for all z € D.
Thanks to a result due to Alexander (see [1]) we can see that ¢’ € H',
and [|¢ || < 2H'(02). With this result and the Littlewood-Paley formula

for Hardy spaces, one can see that

[ [1#0lg P10 dm(e) < a1 00). )

2|

Set Dy = {|z| < 1/2} and Uy = ¢(Dy). By the growth theorem and the
distortion theorem for univalent functions (see [2, Theorem 1.4.5]), one can
see that U is an M-Lipschitz domain. Since ¢ € H' we also have

H (OUy) < H'(99). (7)
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Next form the dyadic Carleson boxes
Q={re” 1-27" <r <12 " <o <n(j+ 127}

for 0 < j < 2"*2 and consider their top halves T(Q) = {z € Q : |z] <
1 — 2=+ Write 2, for the center of T(Q). We choose the domains by a
stoping time argument. Fix € to be determined later and consider a Carleson
box () as big as possible.

Define G(Q) to be the set of maximal boxes ' C @ for which

sup [g9(2) — g(2Q)| = € (8)
T(@)

and define D(Q) = (Q \ Ue) Q') UT(Q).

Keep finding D(Q) for the successive remaining maximal cubes. Then,
the family {D,};>¢ is pairwise disjoint. Write U; = p(D;).

To bound the lengths one must distinguish three types of domains and
use different techniques for each one of them. We refer the reader to [2] or
3] for the details. We obtain

> H(auy) < CH'(09).

The last step is to divide the original domains into smaller ones which
are M-Lipschitz. Here one uses a Cantor-type construction and uses again
complex analysis techniques to keep the previous bound. O
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11 The Cauchy integral, analytic capacity, and
uniform rectifiability

after P. Mattila, M.S. Melnikov, and J. Verdera [3]
A summary written by Joris Roos

Abstract

We discuss a necessary and sufficient condition for L? boundedness
of the Cauchy integral on Ahlfors-David regular sets. This will imply a
characterization of Ahlfors-David regular sets with vanishing analytic
capacity.

11.1 Introduction

The analytic capacity of a compact set £ C C is defined as v(E) = sup{|f’(c0)| :
f € Mg} where Mg denotes the set of bounded holomorphic functions on
C\E such that [|f|l <1 and f(cc) = 0. Hence f'(00) = lim, o, 2f(2) for

f € Mg. As was proven by Ahlfors, we have v(E) = 0 if and only if F

is removable in the sense that every bounded analytic function on C\F is
constant. It was a well known conjecture that for £ of Hausdorff dimension

1 and HY(E) > 0, y7(E) = 0 holds if and only if E is purely unrectifiable,
ie. HY(T' N E) = 0 for every rectifiable curve I'. Here, H' denotes the
1-dimensional Hausdorff measure. The presented article proves this in the
special case that H!(E) < co and E satisfies the regularity condition

M Yr <HYENB(z7r)) < Mr (1)

for some constant M > 0, z € F and 0 < r < diam(E), where B(z,r) is the
closed ball of radius r around z. If condition (1) is satisfied, we will refer to
E as being Ahlfors-David regular (AD-regular).

Let E C C be s.t. 0 < HY(E) < oo. The Cauchy integral operator,

symbolically given by
cese) = [ L auco)

is defined to be the canonical singular integral operator associated to the
kernel K(z,w) = (z —w)~! as discussed in [1]. Here we have set u = H'.
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Note that condition (1) implies that (£, ) is a space of homogenous type
in the sense of Christ. Cg is bounded in L*(E) = L*(E, i) iff the family of
truncated operators (Cg.e)eso,

B f(C)
Cpf(z) = /E\B(Zﬁ) mdﬂ(o,

is uniformly bounded in L?*(E), i.e. with a constant independent of ¢. The
main result from the presented article [3] is

Theorem 1 (MMV). Let E C C be AD-regular. Then
(a) Cg is bounded in L? if and only if E is uniformly rectifiable, and
(b) Y(E) =0 if and only if E is purely unrectifiable.

By saying that E is uniformly rectifiable we mean that it is contained in
an AD-regular curve. The converse of (a) follows from the T(b) theorem of
Christ [1]. Regarding part (b) it suffices to show that v(E) > 0 implies that F
is not purely unrectifiable, since the other direction is already known (follows
from the solution of Denjoy’s conjecture). If on the other hand v(F) > 0,
then Theorem 29 in [1] and (a) imply that E is not purely unrectifiable.
Hence it only remains to prove that E is uniformly rectifiable provided that
Cg is bounded in L?. We will sketch the proof of this below. The main idea
is to introduce a curvature-type quantity corresponding to the measure p
using an elementary geometric insight. In [4] this was also used to prove the
L? boundedness of the Cauchy integral on Lipschitz curves, a special case of
Theorem 1 (a).

11.2 The curvature of a measure

In case 21, 22, 23 € C do not all lie on the same line, we define ¢(zq, 29, 23) =
1/R where R is the radius of the circle passing through 21, 25, z3. Otherwise
we set ¢(z1, 29, z3) = 0. This quantity is called the Menger curvature of the
triple (21, 22, 23).

Lemma 2. Let z € C, r > 0 and z1, 29, 23 € B(z,r) pairwise different. Then

- 45(21)Z27Z3)
0(21722723) - )
|21 — 22|21 — 23|22 — 3]

(2)
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1
c(z1, 22, 23)° = —————— and (3)

£ (o) = 2o)) (20(3) = Zo(1))

dist(z1, L., .,) < 2r°c(z1, 2o, 23) (4)

where S(z1, 22, z3) denotes the area of the triangle with edges 21,23, 23, L,
is the line passing through z #+ w € C, and dist(z, L) = infy,er |2 — w| for
LcC.

The first identity follows from elementary triangle geometry and the sec-
ond can be validated by a simple computation, see [4]. Identity (2) implies
(4). We turn now to the crucial lemma.

Lemma 3. Let E C C be AD-reqular and suppose that Cg is bounded in L?.
Then

c(21, 20, 23)? dpu(z1)dp(2) dpa(z3) < Mr (5)
///(EmB)S

for some constant M > 0 and B a ball of radius r.

The idea is here to apply the L? boundedness in the case f = 1 and then
use Fubini and (3). Let us illustrate this by a purely symbolical calculation:

/‘/ 2:///(22—21)1(2'3le)

ceS(3)

_ é /// o(21, 22, 23)? (6)

where all the integrals are with respect to du. The quantity on the right in (6)
can be interpreted as the curvature of the measure . Making this calculation
rigorous using truncations and carefully manipulating the regions over which
we integrate, one obtains a proof of the lemma. It is noteworthy that the
converse of Lemma 3 also holds. This can be seen from the T(1) theorem.

1
(—=z
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11.3 Sketch of the proof

Let £ C C AD-regular and assume that Cg is bounded in L?2. We want
to prove that E is uniformly rectifiable. To achieve this, a result by David
and Semmes [2] comes in handy, which characterizes uniform rectifiability in
terms of a certain quantity [Ss(z,7). Define

L

Po(z,1) = (infr_g/ dist (w, L)? d,u(w))
ENB(z,r)

for z € C and r > 0. where the infimum is taken over all lines in the complex
plane. David and Semmes proved the following result in [2].

Theorem 4. Let E C C be AD-reqular. Then E is uniformly rectifiable if
and only if there is M > 0 such that

/R/ r ' By(w, r)? dpu(w)dr < MR (7)
0 JENB(z,R)

for all z € E and 0 < R < diam(E).

Mattila, Melnikov and Verdera now deduce the inequality (7) from (5).
The first step is to apply (4) to estimate

e <ot [ distCen Ly ()
ENB(z1,r)

< 4N / (21, 29, 23)°dp(22)
ENB(z,2r)

for z; € B(z,r) and z3 € B(z, A\r)\B(z,2r) for some constant A > 2. The
restriction on z3 stems from the fact that we must avoid it to be equal to z;.
Integrating with respect to z1, z3 now gives

/EmB(z,r) Palz, 1) dulz)) < 4)‘2///0(217227 23)2dpa(z21)dpa(z2) dp(23)

where Q = E3 N (B(z,7) x B(z,2r) x B(z, \r)\B(z,2r)). After integrating
from 0 to R with respect to r, this would already look a lot like the inequality
we need, except for the cumbersome domain of integration on the right.
However, this can be dealt with by decomposing with respect to a Vitali-type
covering on £ N B(z, R), c.f. [3, Theorem 3.6].

Actually the inequalities (7) and (5) are even equivalent, as was remarked
before.
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12 A T(b) theorem with remarks on analytic
capacity and the Cauchy integral

after M. Christ [1]
A summary written by Sebastian Stahlhut

Abstract

The aim of M. Christ’s article is to discuss testing conditions for
the L?-boundedness of singular integral operators on spaces of homo-
geneous type. The comparision with previous theorems by different
authors as well as the case of antisymmetric kernels is in the scope of
M. Christ’s article. In particular, this allows applications to analytic
capacity and the Cauchy integral.

12.1 Definitions

Before we start to discuss the main theorem of Michael Christ’s article we
need several definitions. The setting for Michael Christ’s theorem are spaces
of homogeneous type, or more precisely quasi-metric doubling spaces. By a
quasi-metric p on a set X we mean a function p : X x X — [0,00) which
satisfies:

p(r,y) =0 iff v =y,
p(z,y)=p(y,x) Va,y € X,
p($7y> S AO (p($,2)+p(2,y)) v‘%'7:%2 € X7

where Ay < oo is independent of x,y,z. The related balls are defined by
B(z,r) == {ye€ X :p(z,y) <r}. Then a space of homogeneous type is a
set X equipped with a quasi-metric p such that the associated balls B (z, )
are open and equipped with a nonnegative Borel measure p satisfying the
doubling condition

p(B(z,2r)) < Ajp (B (z,r)) Ve e X,r>0.

Here, let us also remark that the function A (z,y) := p (B (z, p (x,y))) will be
important later on. The testing conditions under consideration are in terms
of para-accretive functions or pseudo-accretive systems.
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Definition 1 (Para-accretive functions). b € L™ (X) is said to be para-
accretive if there exists 6 > 0 such that for all x € X and all r > 0, there
exists ¥ € B (x,r) and r' € [dr,r] such that

[ pet)| = u(s )

By [3] the Lebesgue differentiation theorem is valid on spaces of homo-
geneous type. Thus there exists € > 0 such that |b| > ¢, which is important
to know for the definition of singular integral operators later on. There is a
weaker notion for testing conditions for singular integrals on spaces of homo-
geneous type.

Definition 2 (Pseudo-accretive systems). A pseudo-accretive system is a
collection of L™ -functions bg, one for each ball B = B (z,r) C X, satisfying
for some C' < 00, 6 >0

lbsll= <C VB,  and

/BbB (y)du(y)‘ >0p(B) VB.

In fact, one observes that the functions functions bg may vary here. In
the following we denote by D, the space of Holder continuous functions of
order a € (0, 1] with compact support. Whenever b € L> (X)) satisfies |b] > €
p-a.e. there exists an isomorphism from 0D, to D,. Moreover, by (bDa)/ one
denotes the dual space of bD,,.

Definition 3 (Singular integral operator). A singular integral operator T on
a space of homogeneous type X is a continuous linear operator from b1 D, to
(bosD,) for some o € (0,1] and some by, by € L™ (X) satisfying |by], |ba| >
0 > 0 p— a.e., which is associated to a standard kernel, i.e. there exists a
function K : X x X\ {zx =y} - C and ¢,0 > 0, C < 0o such that

K ()] < 57

for all distinct x,y € X and such that

'K@w%Jﬂ%w%HK@m—K@wwSC(M%w)Af
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whenever p (x,z") < dp (z,y) and the relation between operator and kernel is
given by

(Tf.9) hypoy bopa = / / K (2,y) f(y) g (z) du () dp ()

for all f € byD, and g € bD,.

One observes that the quantities in the definition of singular integral
operators are invariant by the isomorphism from b,D, to D,, i.e. to every
singular integral operator T": byD, — (bgDa)/ associated to a kernel K there
exists by the isomorphism a unique corresponding singular integral operator
T : D, — D, associated to a kernel K. Often it is useful to conclude
L?-boundedness of singular integral operators via truncations.

Definition 4 (Truncated singular integral operator). Let T be a singular
integral operator associated to a kernel K. Then we define the truncated
singular integral operator T¢ : D, — (Dy)" for any a by

Tf (z) = / K@ @i

Besides testing conditions via para-accretive functions we will also need
a weak boundedness condition. It will be a remarkable point that the weak
boundedness condition is not needed in Christ’s 7" (b)-theorem below.

Definition 5. A continuous linear transformation T : byDy — (b2Dy) is
weakly bounded (with respect to by, by) if there exists C' < 0o such that for all
x0 € X, r>0 and all p1,ps € By 5y holds

| (T (b1p1) , bapa) | < Cpu(B (0,7)) -
Here, we denote by By, 4, the set of all f € D, such that suppf C {y : p(xo,y) <1},
1flle <1 and |f (x) = f(y)| <r7%p(2,y)" for all w,y € X.

12.2 The main theorem and comparision to previous
results

Now, we are in position to state Christ’s theorem and to compare it to a
former version by David, Journé and Semmes.
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Theorem 6 (Christ’s Th theorem). Let X be a space of homogeneous type
and T be a truncated singular integral operator. Suppose there exists C' < 0o
and pseudo-accretive systems {bk} and {b%} on X such that for all B,

T (bp) ||~ < C, 1T (b%) ||~ < C.

Then T is bounded on L? (X, ), with an operator norm not exceeding a bound
which depends only on Ay, A1, on the bounds in the standard estimates for
K, on the constants in the definition for {b%}, and on C'.

In comparision one has

Theorem 7 (DJS-Theorem). Suppose that by, by are para-accretive functions
and that T is a singular integral operator on a space X of homogeneous
type. Suppose that T is weakly bounded from biD, to (bsD,)’, that a is

sufficiently small, and that T (b1),T" (be) € BMO. Then T extends to a
bounded operator on L* (X, ).

As already remarked before Christ’s theorem does not need to require a
weak boundedness condition. Christ’s theorem permits pseudo-accretive sys-
tems instead of a single para-accretive function and it can be shown that the
existence of a good pseudo-accretive system is necessary for L2-boundedness.
But, one might think that the formulation of Christ’s theorem via truncated
singular integrals is a disadvantage. In fact, that isn’t the case. If there
is a pseudo-accretive system {bp} such that 7' (bp) € L* uniformly then
this pseudo-accretive system works simultanously for all truncations 7T, i.e.
T¢(bg) € L* uniformly in B for all ¢ > 0. The consequence is that we
can deduce L2-boundedness of 7' by uniform L?-boundedness of the trun-
cations 7T taking the limit ¢ — 0. The only disadvantage in relation to
DJS-Theorem is that Christ’s theorem requires T' (by) , T (b%) € L™ instead
of T'(by),T" (by) € BMO.

An interesting case in applications is whenever the kernel is antisymmetric,
i.e. K(z,y) = —K (y,z). In this case the singular integral operator T" can
be defined for @1,y € Dy, by = by =b € L™ via

(T ) bes) =5 [ [ K@) ble)b) o )62 (0) = 1 (2) 22 () i (0) s ()

and the integral converges absolutely as consequence of standard estimates
and Holder continuity of ¢1, 9o € D,. In this case of antisymmetric kernels
one can always deduce L?-boundedness of T' by uniform L?-boundedness of
the truncations. So, in the case of antisymmetric kernels we get
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Theorem 8 (Christ’s Theorem for antisymmetric kernels). Let X be a space
of homogeneous type and T be a singular integral operator associated to an
antisymmetric kernel. Suppose there exists a pseudo-accrteive system {bp}
on X such that ||T (bg) ||z~ < C < oo for all balls B. Then T is bounded on
L?(X).

and

Theorem 9 (DJS for antisymmetric kernels). Suppose b is an para-accretive
function and T is a singular integral operator on a space X of homogeneous
type . Suppose T (b) € BMO. Then T is bounded on L* (X).

The reader observes that in Christ’s theorem for antisymmetric kernels
we have a singular integral operator instead of a truncated singular integral
operator and in DJS-Thoerem for antisymmetric kernels we are allowed to
drop the weak-boundedness condition as it is automatically satisfied. This
case is interesting in particular for the Cachy integral and analytic capacity.
For more details we refer the reader to [1] and turn to the proof of Christ’s
theorem.

12.3 Dyadic cubes and the proof of Christ’s theorem

The core of the proof is the following analogue of Dyadic cubes on spaces of
homogeneous type.

Theorem 10 (Christ’s dyadic cubes). There exists a collection of open sub-
sets {Q(’; CX:keCac Ik}, and constants § € (0,1), ag > 0, n > 0 and
C1,Cy < 00 such that

1. p (X\U, Q%) =0 for all k.

2. If 1 > k then either Q% C QF or Q5N QL # 0.

3. For each (k,«) and each | < k there is a unique 3 such that Q* C QZB.
Diameter (QZ) < 6%,

Each QF contains some ball B (z¥, agd*).

S o

1 {x S Q’; ) (x,X\Q’;) < t5k} < Cot"u (Q’;) for all k,a and all t >
0.
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Indeed this analogue of dyadic cubes allows to generalize Coifman-Jones-
Semmes theorem to the setting of spaces of homogeneous type. That is

Theorem 11 (CJS-Theorem). Suppose that b*, b* are dyadic para-accretive
functions, thatT : b'D — (b2D)/ 18 weakly bounded singular integral operator,
and that T (bY), Tt (b*) € BMO (dyadic). Then T is bounded on L*.

This allows us to reduce Christ’s theorem to CJS-theorem. That means
having the dyadic cubes in hand one proves the following proposition.

Proposition 12 (The reduction). Let X be a SHT, let Q be a system of
dyadic cubes on X and suppose that X itself is an element of Q. LetT be a
truncated singular integral operator. Suppose there exists a pseudo-accretive
systems {bk}, {b%} such that T (by), T (b%) € L> uniformly in B. Then
there exists dyadic para-accretive functions b, b* such that T (b'),T* (b?) €
BMO (dyadic) and T : b'D, — (bosD,)" is weakly bounded for any o > 0.
Moreover, b*,b*, T (b*),T" (b*) and the constant in the weak boundedness in-
equality satisfy bounds depending only on Ay, A1, on the constants in the stan-
dard estimates for K, on the constants in the definition of pseudo-accretivity
for by, and on supg ||T' (by) |l + supg || (05) [loo-
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13 The local T'(b) theorem with rough test
functions

after T. Hytonen and F. Nazarov [1]
A summary written by P. Villarroya

Abstract
The authors of [1] prove a version of the local T'(b) theorem under
minimal integrability assumptions.

13.1 Introduction

We present an outline of the current most general version of a local T'b the-
orem. The result solves a question posed by Hofmann in 2008 with possible
applications to free boundary theory (see [3]) and stated below.

Definition 1. (Accretive and buffered accretive systems) Let p,q € [1,00].
A (p, q) accretive system for an operator T' is a family of functions (bg)gep
indexed by dyadic cubes such that

pl/p
suppbo €Q . flo=1. (f lbal) 51 1)

(f 1m0ar)" 5 2

A buffered (p,q) accretive system for an operator T is a family of functions
(bg)gep satisfying the conditions in (1), and (2) changed by

(f, ool 51 3

The expression that bp&b3, is a (p, q)&(r, s) accretive system (or buffered
accretive system) for T1&75 has the obvious meaning.

and

Theorem 2. (Solution to Hofmann’s problem). Let T be an operator asso-
ciated with a C-Z kernel such that for some p,q € (1,00) there ezist bb&bé
a buffered (p,q)&(q,p") accretive system for T&T™*.

Then, ||T||r2—s12 is bounded with constant depending only on the constants
of the C-Z kernel and the constants in (1) and (3).

Remark 3. Whether the word ‘buffered’ can be removed from the statement
remains open for exponents such that 1/p+1/q > 1.
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13.2 Definitions and statements of the results

The authors’ approach is based on the technique of suppressed operators
used in the solution to the quantitative Vitushkin conjecture (see [2]).

Definition 4. The suppressed singular integral operator is defined by

K(z,y)
1 + ((I)(q;)(l)(y) )m

lz—y|?

Tof(x) = / Kale.)f()dy .  Kolz,y) =

for a suitable non-negative Lipschitz function ®.

Definition 5. Let the maximal truncated operator be defined by

Tof(@) sl TS . T = [ Ky
e>0 lz—y|>e
The idea is to prove, via the operator T, a classical local T'(b) theorem
for Ty and then to extrapolate boundedness to 7. More explicitely: Cotlar’s
inequality Ty f < My (Tf) + M,y f and the bound |Te f| < T f + M f allow
to transfer the hypotheses from T to Tg, while the fact that Te(f) = T(f)
when supp f C {® = 0} allows to transfer the thesis from Ty to 7'

Definition 6. (Ample collection; Sparse collection) We say that 9 is an
ample collection of dyadic subcubes of a given cube Q) with exceptional fraction
o € (0,1) if the mazimal subcubes Q C Q with Q & 2 satisfy 3 |Q| < o|Q)|.

We say that & is a sparse collection of dyadic subcubes of a given cube
Qo if it contains Qg and for some T > 0 and all Q € P we have that the

subcubes Q € 2 with Q C Q satisfy ‘UQ‘ < (1-7)|Q|.
Remark 7. Z is a sparse collection with parameter T if for all Q € & the
family g = {Q}U{Q C Q : Q ¢ P} is an ample collection of Q with
exceptional fraction 1 — .

The cubes in a sparse collection will be often referred as stopping cubes.

Definition 8. (Off-diagonal estimates) An accretive system (bg)gep for T
satisfies off-diagonal estimates if for all o > 0, there exist C, > 0 so that

£, T earba)l < C, ()

for all cubes QQ and all Q' in an ample collection of dyadic subcubes of Q) with
exceptional fraction o.
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Hoffman’s conjecture is an immediate consequence of this stronger result:

Theorem 9. (Main theorem). Let T be an operator with C-Z kernel such
that for some p € (1,00) there exist b(lg&bQQ a (p,p)&(p,p) accretive system
for Tu&(T™*) 4 with off-diagonal estimates.

Then, ||T||p2-12 is bounded with constants depending only on the C-Z
constants of the kernel and the constants in (1), (2) and (4).

If T is antisymmetric, then the hypothesis "with off-diagonal estimates’
can be dropped.

Proposition 10. Suppose there exists by a (p,p) accretive system for Ty.
Then, for a fized p € (0,1) and a fized cube Q) there exists a non-negative
function ® with Lipschitz constant 1 such that [{® > 0} < p|Q| and there
exists bg an (00, p) accretive system for Ty on sparse sub-cubes of Q.

Definition 11. (Accretive system on a sparse family) Let p,q € [1,00] and
Qo be a given cube. A (p,q) accretive system for an operator T on a sparse
collection 2 of subcubes of Qo is a family of functions (bg)ges such that

1/p
supp by C Q bg2 1, ( |bQ|p> Sl (5)
Q' Q'

(f,1ma) " <1 0

for all Q € 2 and all Q' C Q such that Q' is not contained in any Q C Q
with Q € 9.

If 9 is sparse with parameter T € (0, 1), then the described cubes Q' form
an ample collection of subcubes of Q) with exceptional fraction 1 — 7.

Proposition 12. (Baby Tb theorem) Let T be an operator with C-Z kernel,
Qo be a cube and bh&byy be a (0o,t)&(00,t) accretive system for T&T™* on
D &Ds, two sparse collections of subcubes of Q.

We also assume that T' satisfies the following weak boundedness condition:

(T (Lgbger), 1obge2)| < 1Q (7)

for all Q dyadic subcubes of Qo where Q%' is the minimal member of %;

containing Q.
Then, for s' € (max{t',2},00] and all f,g € L*(Qy), we have

‘<T<f)ag>’ 5 ||f||s/||gHS’|Q0‘1_2/S/

and
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13.3 Proofs

13.3.1 Proof of Proposition 10: construction of an (oo, u) accretive
system and the Lipschitz function ¢.

Two stopping conditions. Let () be an arbitrary fixed cube. Let also
d,€,0,n € (0,1) be fixed parameters to be chosen later. Then,

a) We call b-stopping cubes to the maximal dyadic subcubes Q@ C Qg
with fQ |bé20|p > 6! and denote %, = %1(Qy) the collection of these cubes.

Let bbo be the good part of the usual Calderén-Zygmund decomposition.
We also define the function eg, () = Y- g, o) (1 + UQ) Mz — cql) ).

b) We call Th-stopping cubes to the maximal dyadic subcubes @ C Qg
Satisfyiflg either fQ | Tybg, + Mbg, +eg,IP > ¢, or fQ Ty (1(3q)-bg,) > Co,
or ‘ fQ bbo‘ < n. We denote by 7 = 71(Qo) the collection of these cubes.

Iterating the stopping conditions. We assume that %, and 9, are
constructed. For every Q € 7, we use the function bb to choose the b-

stopping cubes in ), %;(Q), which we use to construct the functions ’61@ and
eg- Then, using b, l;b and e, we choose the Tb-stopping cubes in Q, 71 (Q).
We iteratively define %1 = UQG% %,(Q) and T = UQE% 71(Q)
These sets satisfy > -, > eaan 1@l < Sore 6(1=7)"1Qo| < 2]|Qo] with
7= (1 —n)? and the latter value is smaller than 1 for ¢, o, small enough.
Finally, we define ®(z) = sup{dist(z, (3Q)°) : Q € U,—, i} which sat-
isfies {® > 0}| < p|Qo| with p = ¢/7 arbitrarily small for ¢ small enough.
Moreover, bb is a (00, p) accretive system for Tg on sparse subcubes of Q.

13.3.2 Proof of the baby 7b theorem (Proposition 12).

Let Q° be a fixed cube and by an accretive system on Z a sparse family of
Q°. For every Q@ C Q°, let Q* be the minimal element in Z containing @
and let (); be the collection of dyadic children of (). We define

BY() = i lober . DGl = S EL ()~ Ehl))

to be the expectation and difference operators. The latter satisfies, for some
bounded functions ¢q ;, the equality

2d

DY (f) = (DH)*(f) +wallla =D ¢eiDy.f)a, (8)

1=0
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with DY, f = Dy f for 1 <4 <29, DY f = (f)o when i = 0 and @Q has a
stopping child and DY +f =0 when i =0 and () does not have stopping child.
By the properties of the selected functions bg., we have for s € (1, 00)

(X 10bart) sl and (X wbut) 7 <A @
QCQO

QCQ°
Moreover, since f = 37, q0 Dy(f), we write

T =( >+ Y )TDhsDRg)

Q,RCQ° JRCQ°
2(Q) < Z(R) K(R) <0(Q)

By symmetry, we just need to study the first term, which we parametrize as

ST3T N (Tl Fr k) (10)

k=0 mezd RCQV

with S = R+ ml(R ]D)b k= ZD f. We analyse (10) in separate cases.

QCS
£€Q) = 27%¢(s)

1. Disjoint cubes. This case assumes |m| > 1 and so, we can write
bl k 2 bl k i jisk b2k
TS0 =3 [ DL e D o)y
- X
with

1R].(I)
| R;]

1o,(y)
Kby = Y IQQ»I (Togi Oy
Qcs ’

2(Q) =27"u(s)

It is proved that || K35 || 2gaxray S 27Fm{el/2(1 4 k)oarrzm| =@+ with
da,1/2 the Kronecker’s delta. This estimate suffices to bound the correspond-
ing terms in (10) by C| ]l2]l]l2.

2. Nested cubes. In this case, m = 0 and we perform the decomposition

> Y (TR 1. D) = Z(TD%f,D%g +) > (TDy f,Dfg) = D+ND

k=0 R R QCR

2.1. The non-diagonal part is proved to satisfy the decomposition

< ]D)blf7b2a2

]\D:Z <bQ ZZ Z Z TDb kfv 1SC¢R] S><DRJ'9>R]:P+M?

Q k=0 R ScR j=0
é(S)fé(R)/Z

85



for some bounded functions wﬁj; g- The second term can be treated with
the same ideas as the disjoint cubes (case 1).

On the other hand, the paraproduct is dealt with (8) and an L*® version
of the Carleson embedding theorem:

Py (DR f, (DR) T 0hea)(9)rl + Y [(DiofwpT bgaz)(9)nl
RCQO RCQO

SN ) "L ot e Ghesptan?) 7, + 57

(Z| (D2 T (b )| ) 2HLS 4 ST

where the terms ST and ST’ are sumlar to their preceding ones (changing
(Dl}%)* by wg, and Dl}% f by }Dl}’%lyo f) and can be bounded using similar ideas.

Now, we decompose all subcubes P C S into k-th generations of maximal
subcubes so that P = P*2, which we denote by P¥(S). Then, by disjointness
of the elements in P*(S) and (9), the ||||zs-norm is bounded by

(3 (X o) ) S X (e

SIf

ollgllzs sup S|~V
SCQO

k=0 Pe2(S) Rciaz k=0 PePk(S)
o0 1 o0 1/
S
SO (X ) s (a-nt sy sl
k=0 PePk(S) k=0

ending this case.
d
2.2. For the diagonal term, since DY = Z?:l 15, D%, we have that

DY Y IaDiflalls, Dl};gHﬁZZ! (18, D} f), 15, D g)| (11)

R i,j:i#]g R j=1

where the first term follows from Hardy’s inequality and it is easily bounded
by C||fll2]lg]l2. To deal with the last part, it is first proved that

2 1
(T (1r,DY% £), 1r,D%g)| < > KT(1g,b; ot 1ij1%«;,1>| > D% k(DR A9 R
4,he€{0,5} i,h€{0,5}

By the weak boundedness property (7), the first factor is dominated by |R|.
Then, with inequality |R|1/2|(D’}’%172~f>3i| < ||Dlj;lf||g and (9), the second term
in (11) is bounded by C|| f]|2|lg||2- This finishes the proof of Proposition 12.

86



13.3.3 Proof of the main result (Theorem 9).

The hypotheses and Cotlar’s inequality imply the existence of by&b7) a
(p, p)&(p, p) accretive system for T & (T )* satisfying the hypotheses of Propo-
sition 10. Then, there exist a Lipschitz function ® and Bég&:l% a (00, p)&(o0, p)
accretive system for T&(Tp)* on sparse cubes of Q) satisfying the hypothe-
ses of Proposition 12. This implies that for s’ € (p', 0c] and all f, g € L* (Qo),

(To(f), 90 S f N llgllor|@Qol 2 (12)

Let bg, = %1%0{@:0} which satisfies: fQo bo, = 1, |[bgellee < 1.
Moreover, supp bg, C {® = 0} and so, Tebg, = Tbq, and T4bg, = T*bg,-

Applying (12) to f = bg, and an arbitrary g with [|g|[;« g, = 1, We get

1/s
([ moar)” s 1@l
Qo

and similar for 7" (choosing g = bg, and an arbitrary f with [|f|| g, = 1)-
Then, bg,&bg, is a (00, s)& (00, s) accretive system for T&T*. By a
standard stopping time construction, for every cube )y we can extract a
(00, 5)& (00, s) accretive system for T&T™ on sparse subcubes of Q.
By Proposition 12 again, for ' € (max{r’, 2}, 00] and all f,g € L (Qo),

KT, ) S 1l llgllr Qo2 (13)

Now, using (13) first for f = 1g, and an arbitrary g with [|g[|;+ g, =1 and
later for g = 1, and an arbitrary f with || f|[,vq,) = 1, we deduce

AT 1 . AT 1
([ 1mal) " st . (f 1miel) " S1Qd
Qo Qo

Finally, the standard local T'(1) theorem proves the ||T'||z2_, 2 boundedness.
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14 Two short proofs of L? boundedness for
the Cauchy integral operator on Lipschitz
curves

after R. R. Coifman, Peter W. Jones, and Stephen Semmes [1]

A summary written by Marco Vitturi

Abstract

We give two short proofs of the L? — L? boundedness of the
Cauchy integral operator on Lipschitz curves. The two proofs are
similar in spirit but rely on different techniques, the first one using
complex analysis, the second one using a suitably modified Haar basis.
The second proof can be modified to yield the proof of a T'(b) theorem.

14.1 Introduction

Let I' be a Lipschitz graph embedded in C, that is I' = {x +iA(z) : x € R},
where A is a Lipschitz function. The Cauchy integral is defined for functions
f : C — C and points z € QF := {z +iA(x) +iy : * € R,y > 0} (the
epigraph) as

11 f©Q

= dc.
/() 2mi Jr 2 —( ¢
From this, one defines it for points on I' itself by taking the limit
1
Cf(z) = lim — Ldf zel.

50+ 2mi Jp 2410 — C

Formally, going back to real variables, one can write

_ VA +id)]
Cr@) =55 /R o+ iA)) — (g +iA@)

where the integral is to be interpreted carefully.

The Cauchy integral is interesting because it’s an example (probably the
naivest one) of a singular integral operator - satisfying the so-called standard
estimates - which is not a convolution operator. Its L? — L? boundedness
was first addressed by Calderén in [2], where it was proven under the weaker
condition that the Lipschitz constant ||A’|| ~ be small.

The theorem addressed in the paper is
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Theorem 1. Let I' be a Lipschitz curve in C as defined before and let f be a
function in L*(T, ds),where ds is the arc length. Then there exists a constant
C > 0 such that

ICfl2as) < Ol fll2r.as) (1)

for every such f. Moreover, the constant C' only depends on || A’|| L.

As stated in the abstract, the article provides two different proofs - al-
though similar in spirit. We outline them in the next sections.

14.2 First proof: complex analysis

It is based on two lemmas. We first introduce a norm || - ||+ induced by an
hermitian product on the measurable C-valued functions on QF:

Ifllos = [ 1FGPdCe) dody,

where d(z) = dist(z,I') and x,y are real and imaginary part of z. The
associated Hilbert space is denoted by H(Q27F).

Lemma 2. Let F be a holomorphic function in Qt such that F — 0 at
infinity. Then
IF N2y S A 2o | 7 lox (2)

Allowing the control of a certain L? “boundary” norm of a function
through its derivative, this lemma is in the spirit of Littlewood-Paley the-
ory. To prove it, one notices that Q* is conformally equivalent to HT (the
upper half-plane) via a conformal map ®, and then uses this ® for a change
of variables. Kobe’s and Schwarz’s complex analysis lemmas also come into
play yielding useful estimates.

Lemma 3. Let T be the operator

[ a0d0,
Ty(z) := /Q+ (Z—Q)Qd dy.

Then T is H(QT) — L*(T') bounded:

1Tl 2y S 1A < llgller- (3)
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The proof of this lemma is just tecnical, but it’s worth mentioning it’s
obtained via Schur’s test.
With these two lemmas one can easily prove theorem 1, as follows.

ICH 2y S NA oo ll(CF) Ml = 1AL sup [((C)'s 9o,

lgllg+<1

by lemma 2, and

((CF) 9o+ =

| ot dxdy'

/m/f— z)d( dx dy

= /Ff(C)Tg(C) dC‘ <N flleeITgll 2y S NA 2o 1 f 2y llgllor Sar 12y,

by lemma 3, where we used Fubini and Cauchy-Schwarz in the end.

14.3 Second proof: Haar-like basis

This proof is again based on two lemmas. Using the parametrization of I’
one reduces to study operator

Tfy) = lim / - CORNT

50+ Jg 2(y) +1i0 — z(2)

where z(x) is assumed to be an arc-length parametrization of I'. With I € §,
the collection of dyadic intervals, one introduces the modified wavelets

T 1/2 T
b(a) = L (" () i)
f 'HW2 my mp oy )

where m; = |I|7" [, 2/(x) dx and I, ¢ I" are respectively the left and right
halves of I. Then one 1ntroduces the blhnear product

:Aﬂmwwﬂmw

Lemma 4. {¢;}c5 is an orthonormal basis for (L*(R), (-, -)y) and

ST ~ 1 F oy

Ieg

and proves
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Again this falls within Littlewood-Paley theory. The proof requires the
introduction of an expectation operator E with respect to the complex mea-
sure Z'(x) dz,

1 .
E;f(x) = T, /Ifz’dy when z € I,|I| =277,

and the difference operator

Then one proves that A; = Zfeg,ng—j (¢r1,-)p¥r (a projection), so that

2
1% >_jezA; (Lis the identity). An application of Carleson’s theorem on
Carleson measures yields the size equivalence.

Lemma 5. With T as above, one has

sup > (|(Tr, va)p| + [(Tws, 1)) < oo,

1€8 jex

This is nothing but an adapted Schur’s test. It’s proven by scaling (so
that one can take I = [0,1] and remove the supremum) and by carefully
estimating the contribution of every term through elementary estimates on
the size of |T'(¢r)(x)| when z is far from I itself, and when it’s close or within
it. Alternatively, one can exploit the property A? =A; =01=)> ez A?,
writing 7' = >, .5 Ak (A TA;) A; and reducing to estimate instead

sup E |ART Al L2 12 —|—ill}z) E | ARTA; || 2o 2
S X
JEZ

I€L Ye7,

14.4 Remarks on a T'(b) theorem

Let b be a dyadic pseudo-accretive function, i.e. there exists 6 > 0 s.t.

i)
— [ bdx
il

If the standard operator T satysfies the weak boundedness property and
T(b) = T*(b) = 0, then one can prove it is L? — L? bounded by writing

>0 for every I € §.

T=>" A (ATMA;)AM,™,

J,kEZ
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with M,f :=b- f, and doing an analogue of what outlined at the end of the
previous section. If b is (dyadic) para-accretive only, i.e. there exists §,e > 0
s.t. for every I there exists I' C [ s.t. |I'| > ¢|I| and

1
‘—/ / bdx| >0
' S
then one has to change accordingly the o-algebra relative to which the con-
ditional expectation E; is taken (it was the one generated by dyadic intervals

of length 277 before) in order for the above machinery to work in this case
as well.

Y
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15 Boundedness of the twisted paraproduct

after V. Kovac [1]
A summary written by Michal Warchalski

Abstract

We prove LP estimates for a two-dimensional bilinear dyadic and
continous operator of paraproduct type.

15.1 Introduction and notation
We denote dyadic martingale averages and differences by
1
Eyf = Z (m/f)ﬂh Ay =Er1 —Ey,, k€eZ
I

[I|=2*

and the sum is taken over dyadic intervals I C R of length 27%. When we
apply operator of two-dimensional function in only one variable, we mark
that variable in the superscript. For instance,

(EVF)(w,y) == (EF(y))(@).

Then we can define the dyadic twisted paraproduct as

TuF,G) =Y (BYF)AYG).
kEZ

For two functions ¢, 1 € C*(R) satisfying

P e(@)] S A +[a))%, ()| S (1 +]2)77 for j=0,1,

supp(¢)) C {{eR:%S €] §2}

we define the continous twisted paraproduct as

T.(F,G) = Z(PQ%FXP#%G),

keZ
where P f = f x ¢.
The main result of the paper is the following theorem.
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Theorem 1. (a) Operators Ty and T, satisfy the strong bound
|T(F, G| poar v w2y Spa 1 F o @2) |Gl are2),
if 1 < p,q < oo, %+%>%.

(b) Operators Ty and T, satisfy the weak bound

(p+49)/prq

@ Sea 1F | o2 |Gl Lagre),

{w) em s 10EG w0 > o
ifp=11<g<occorq=1,1<p< 0.

(c) The weak estimate fails for p = oo or ¢ = oc.

Our strategy is to prove (a) for operator T, for p,q > 2 and then extend
the range of exponents proving the weak estimate (b) and using real multi-
linear interpolation. We establish bounds for T relating T, to T;. In the final
step we discuss counterexample for (c¢). Since we dualize, we are concerned
with the proper trilinear form

Ao(F.G, H) = / TA(F, G)(z, y) H(x, y)dzdy.

R2
For a dyadic interval [ we denote the Haar scaling function and the Haar
wavelet by

o = 1720, Wi = 7 (L, — 1

right )

respectively. We can rewrite martingale averages and differences in the Haar
basis as

Bef= 3 ( /R fw?)so?, Af= 3 ( /R f¢?>w?.

[1|=2-F |I|=2—*

Thus, we can rewrite the twisted paraproduct and the trilinear form as

TyF.G)= > /

IxJjec /R

Fu,y)G(z, V)7 () ()95 (V)¥5 (y)dudv,
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A(F,G,H) = Z /4 F(u,y)G(xz,v)H (z,y)

IxJjec /R
7 (w)pf ()05 (V)¢5 (y)dudzdudy,

where C denotes the collection of all dyadic squares. We also introduce the
Gowers box inner-product for functions Fi, Fy, F5, Fy and a dyadic square
Q=1xJas

[FlaF27F37F4 Q) ‘= ’Q| ////FlU’UngL"U)

Fs(u,y)Fy(z, y)dudxdody,

which induces the Gowers box norm

1/4
I1Fllog) = [F, F, F, Flg.

15.2 Telescoping identities over trees

As mentioned above, we start by proving (a) for a certain range of exponents.
We also reduce our argument to show the bound for nonnegative dyadic step
functions.

We call a tree a subset T of dyadic squares C if it satisfies the following
condition: there exists Q7 € T, called the root of 7 that satisfies Q C Q1
for any Q € T. A tree is convex if for every J1,@3 € T the inclusions
@1 C Q2 C Q3 imply Qs € T. A leaf is a square which is not an element of
T, but its parent is. We denote by £(7) the collection of leaves of a tree 7.
For any tree 7 we have corresponding version of the form A,

Ar(F,G,H) = Z /4 F(u,y)G(z,v)H (z,y)

IxJjeT /R
o (u) ] ()Y (0) 5 (y) dudzdvdy.

It is more convenient to introduce quadrilinear forms
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O (Fy, Fy, Fy, Fy) = 3 / Fy(u, ) Fa(w, v) Fy(u, y) Fa(, y)
IxJeT

Pr (U)SDI (m)wJ(UWJ(?J)dUdUdmdya

@(1)(F1,F2,F3,F4 . Z Z / F1 U U F2 fL’ U)F3(U y)F4(ZL‘ y)

IXJET je{left,right}

VT (w)yi ()9, (0)9], (y)dudvddy.

Note that Ar(F,G, H) := @E,%)(JI,G, F, H). We also denote for any F C C:

Er(Fy, Fy, Fs, Fy) : Z / Fi(u,v)Fy(x,v)F3(u,y)Fy(x,y)
IxJeF

P ()l (@) ()5 (y)dudvdady = |Q|[Fy, Fa, Fs, Filog)-
QEF

After introducing essential definitions we can formulate the following
lemma which is crucial for the proof.

Lemma 2. (Telescoping identity) For any finite convex tree T with root Qr
we have

@'(7})<F17F27F37F4>+@’(7%)(F17F27F37F4)
:Eﬁ(ﬂ(FlvF%F?nFll)_EQT(F17F27F37F4)-

The telescoping identity leads to the so-called single tree estimate:

Proposition 3. For any finite convex tree T we have

4
O (Fy, Fy, Fs, Fy)| < 2 F
| (F1, Fy, F3, Fy)| ‘QT’HQIHED;)” lo@)
In particular

Ar(F,G,H)| <2 F G Hlloo)-
AT(F.GH)| < 21Qr] s |Fllo) mas [Cllo) e |1H o)
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Using this proposition we are able to derive the point (a) of the theorem for
2 < p,q < oo. Next, we use one-dimensional Célderon-Zygmund decomposi-
tion for F(-,y), G(x,-) for every z,y € R to obtain the bound

| T(F, G| Lorvsvy.comzy Sp 1 lLe@2) |G 2 g2,

what is exactly the point (b) of the theorem for the operator T,. Finally, we
interpolate to get (a) in the whole range Il) + % > %, 1 <p,q<oo.

15.3 The continous case

The key tool of the transition to the continous case is the following result
due to Jones, Seeger and Wright|[2].

Proposition 4. Let the function ¢ be as in the beginning and additionally
let fR @ = 1. The square function

1/2
Siswp = (Z [Py, f — Ekf\2>

kEZ

is bounded from LP(R) to LP(R) for 1 < p < oo, with the constant depending
only on p.

Combining this proposition with already proven bound in the dyadic case
we show (a) for the operator T..
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16 A boundedness criterion for generalized
Caldern-Zygmund operators

after G. David and J-L. Journé [1]
A summary written by Jingzrin Zhong

Abstract

We outline a proof of T1 theorem due to G. David and J-L. Journé.

16.1 Introduction

Singular integral operators appear naturally in analysis. For the classical sin-
gular integral operators of convolution type, such as Hilbert transform, the
fourier transform method gives a satisfatory description. For more general
singular integral operators, the classical fourier method is no longer effective
and a more sophisticated method is needed. The class of Calderén-Zygmund
operator (CZO) is an important generalization of the classical singular in-
tegral operators, whose distributional kernels still satisfy some regularity
conditions. To define a CZO, we first need the following notion:

Definition 1. A standard kernel is a continuous function K defined on €2 =
R™ x RM\A, where A = {(z,y);x = y}, such that there exist two constants
d € (0,1] and C > 0, and K satisfies the following conditions:
For all (z,y) € ,

|K(z,y)| < Cle—y[™", (1)

For all z, ',y such that |2/ — z| < 3|z —y|,

|x" — :v|5

/ _ " — sCr——
K (o' y) = K (o)l + 1K (.2") = Ky )| < Cp— 0

(2)
Definition 2. A Calderdon-Zygmund operator is a bounded operator from the
class S(R"™) of Schwartz functions to its dual S"(R") associated with a stan-
dard kernel K such that:

1) For all functions f,g € CX(R") with disjoint supports, < Tf,g >=
[] K(z,y)f(y)g(z)dxdy, where <,> is the dual paring of S'(R"™) and S(R");
2) T can be extended to a bounded operator on L*(R™) .
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Actually from the defintion of CZOs, we can easily see that the adjoint
operator T defined by < T*g, f >=< Tf,g > is also a CZO associated
with the kernel K*(z,y) = K(y,z). If we work a little harder, we can
establish the boundedness of CZOs in various LP space for 1 < p < oo.
Given the nice properties of CZOs, the problem is to give a workable criterion
for CZOs. In general, one can write down the kernel of a singular integral
operator explicitly and check the standard kernel condition. However the
L?-boundedness condition seems impossible to verify. The David and Journé
T'1 theorem, which is the theme of this summary, gives a necessry, sufficient
and workable criterion for the L2-boundedness, which roughly states that one
can verify the L2-boundedness condition of a singular integral operator with
a standard kernel simply by checking its action on the constant function 1.

16.2 Preliminaries

To state the T1 theorem, we first need to define the action of a CZO, T on
1, or more generally on any bounded smooth function. The result will be a
distribution (up to some modulation) acting on functions in a dense subspace
of the Hardy space H*.

Let f € C*(R") be bounded, g € C°(R") with integral 0, f; € C>°(R")
coincide with f in a neighborhood of supp(g) and fo = f — fi. We define
<Tf.g>=<Tf,g >+ [[ K(z,y)f(y)g(x)dzdy. Note that < Tf1,g >
is well defined from the defition of CZO. Moreover, the convergence of the
integral in the definiton follows from the regularity of the standard kernel and
the special cancellation property due to the function g. One can easily check
the defintion is independent of the choice of f;. Now by a well-known result
proved by Peetre, Spanne and Stein, the CZO extends to a bounded operator
from L to BMO. Therefore, from the BMO — H' duality, "T(1) € BMO”
means there exists a constant C' > 0 such that < 7'(1), g >< C||g|| s for any
g € CX(R"™) with integral 0.

We need one more defintion. A continuous operator 7' from S(R") to
S’(R™) has the weak boundedness property if for any bounded subset B
of C*(R"), there exist a constant C dependent on B, such that for any
¢1, ¢ € B, z € R and R > 0, we have | < T¢"" ¢2% > | < CR",
where ¢"%(y) = ¢((y — z)/R). Note that L? boundedness implies weak
boundedness.

We now state the main theorem:
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Theorem 3. (T'1 theorem) Let T be a continuous operator from S(R™) to
S'(R™), associated with a standard kernel. Then T can be extended to a
bounded operator on L*(R™) if and only if the following three conditions holds:
i) T1 e BMO,

ii) T*1 € BMO,

i11) T has the weak boundedness property.

The necessity of i), ii) and iii) follows from the discussion above. The mir-
acle lies in the sufficiency. To prove sufficiency, the scheme is to decompose
T as the sum of three operators L,M and T. The first two operators belong
to the family of paraproducts. The L?-boundedness of the third operator T
will be an application of Cotlar-Knapp-Stein lemma.

16.3 Paraproduct construction

The first part of the proof is to construct two CZOs, L and M, which are
typical examples of a special class of bilinear operators called paraproduct
and satisfy L1 = T1, L*1 = 0, M1 = 0 and M*1 = T*1. Once we con-
struct L, then M can be similarily constructed. We pick ¢ € C*(R")
be a radial function supported on the unit ball with integral 1. Denote
wi(x) = (1/t")p(x/t) , P; to be the operator of convolution with ¢; and Q)
to be the operator —tdP,/dt. It is easy to check @, is a operator of con-
volution with ¢y (z) = (1/t")(x/t), where ¢ is a radial atom supported on
the unit ball. Let 8 = T1 € BMO. We define the operator L formally

by Lf =n [ Q:[(Q:B)(P,f)]dt/t, where n is some normalized constant to be
0

chosen.
To show the operator L is a CZO, we need the following approximation
lemma which can be easily deduced.

Lemma 4. Let Ty, be a bounded sequence of CZOs (i.e. the L*-operator
norms of T, are uniformly bounded and the associated kernels estimates
have the same constant C'). If the associated kernels K,,(x,y) converges
uniformly on any compact set in Q2 to K(x,y) and the T,, converges weakly
to an operator T', then'T" is a CZO with kernel K. Moreover, for any function
g € CX(R™) with integral zero, < T1,g >=lim,, 100 < Tjnl,9 >.

The lemma tells us how to approximate a CZO by a sequence of CZOs.
We define L, f =n [ Q:[(Q:8)(P.f)]dt/t and the natural goal is to show:

1/m
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Proposition 5. The sequence L, satisfies the hypothesis of the lemma.

Given the explicit expression of L,,, we can directly verify the standard
kernel condition. Denote Li(z,y) = [¢(x — 2)QiB(2)¢i(z — y) to be the
kernel of Q;[(Q:5)FP;]. As we mentioned above @ is convolution with an
atom, we know @0 is uniformly by C||5||smo for some constant C. Then
the kernel of L,, and its derivative are bounded by C||5||smo/|z — y|* and
C||B|lsmo/|x — y|™*, which satisfy the standard kernel condition.

The key tool to prove L?*-boundedness of L,, is the Carleson measure.
For f,g € C*(R"), using Cauchy-Schwarz inequality, we have:

|<Infg>|<(f / QuPS ([ / QPP

Using Plancherel theorem, the first factor can be estimated:

[\ odedt
</Rn1/|c2tg| s < gl 0

For the second factor, we notice that |Q.fS |2@ is a Carleson measure
since 8 € BMO. Therefore, using the Carleson measure estimate and the L2-
boundedness of Hardy-Littlewood maximal operator (for details of Carleson
measure, see [2]), we have:

r dadt
([ 1@BrIPsPEE ) < CllFlalBl o )

Now we know the L,, is a bounded sequence of CZ0Os and < L,,f,g >
converges. Therefore, L,, has a weak limit L, which is a CZO. Moreover,

since ;1 = 0, we have L’ 1 = 0 and therefore L*1 = 0. It remains to show
L1 =23

Lemma 6. For all g € C2°(R™) with integral 0, by choosing an appropriate
n, we have

lim,, voo < Lypl,9 >=< 3,9 >.
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The proof of the lemma essentially uses the characterization of Hardy
space by Riesz transform to transform the limit into a convergence of func-
tions under L'-norm. We omit the details here.

Now we have constructed two CZOs, L and M, satisfying L1 =T'1, L*1 =
0, M1 =0 and M*1 = T*1. Therefore, the operator T =T — L — M satifies
T1=0,T*1=0.

16.4 Almost orthogonality

We turn to the second part of the proof, which is to establish L?-boundedness
of T. The main ingredient to prove L?-boundedness of T is the following
Cotlar-Knapp-Stein lemma (for a elegant proof, see [2]):

Lemma 7. Let H be a Hilbert space, and T be a sequence of bounded op-
erators on H. Let T} be the adjoint of Tj. Suppose there exists a sequence
w: Z — [0,400) such that Y \/w(k) = A < co and for all (j k) € Z?,
T Tl + |T;T]| < w(j — k). Then the sum Syn = Z;V:_MT]» converge
strongly to a bounded operator T satisfying ||T|| < A

To use the lemma, we apply a Littlewood-Paley type decomposition to
T. Let ¢ be as in the previous section. For j € Z, denote S; to be the
convolution with @o; and A; = S; — ;4. Let Tj = S;TA;, T, = A;TS; and
T‘g{/ = A]TA] Note Z]_VMTYJ + TY]/ + T’](/ = S_MTS_M + SNTSN and Sj is
an approximation to identity, so the partial sum converges weakly to 7. We
will show T; satisfies CKS lemma and the other two can be deduced in the
same way. The result is based on the following estimates of the kernel of T}:

Lemma 8. Denote p;(z) = 27"p(x/27). The operator Tj is given by a ker-
nel K; such that:

|Kj(z,y)| < Cpj(z —y); (6)
|Kj(x,y) — K;(2', y)| + |K;(y, ) — K;(y,2)| .
< OMin(1, = (@ — ) 1 py(a — ) "

97
/Kj(:v,y)dy =0 (8)
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for all z;
[ Kotz =0 ©)
for all y.

By defintion, the kernel Kj(x,y) =< Tgbgj, ©5; >, where ¢, = @, — @b, .
To prove (6), we have two cases. For |z —y| < 10 27, then (6) follows from
the weak boundedness property of 7. For |z — y| > 10 27, 5; and @7 have
disjoint supports. Using the fact that ¢}, has integral 0, then (6) follows
from the standard kernel estimate (2) associated to 7.

For (7), we also have two cases. For |z — 2| > 27, then (7) follows from
(6). For the other case, (7) can be reduced to the following gradient estimate

of the kernel Kj:
ALK (2, )| + | A K (2,y)| < C2pj(x —y) (10)

Note A, K(z,y) = =27 < T(Agb)gj, @5; >, so (10) follows from the proof of
(6) applying to A¢, ¢.
(8) and (9) follow from the fact that ¢ has integral 0 and T*1 = 0.
Finally, using the estimates in the lemma, we can show T)s satisfy the
hypothesis of the CKS lemma and thus complete the proof of the main the-
orem.

Proposition 9. Let T; be a sequence of operators with kernel K; satisfying
(6),(7),(8) and (9). Then there exists a constant C > 0 such that for all
(4, k) € 22,

T3 Tull + 1T < G270 H, (11)
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